1
|
Pawlowski K, Wibberg D, Mehrabi S, Obaid NB, Patyi A, Berckx F, Nguyen H, Hagen M, Lundin D, Brachmann A, Blom J, Herrera-Belaroussi A, Abrouk D, Pujic P, Hahlin AS, Kalinowski J, Normand P, Sellstedt A. Frankia [NiFe] uptake hydrogenases and genome reduction: different lineages of loss. FEMS Microbiol Ecol 2024; 100:fiae147. [PMID: 39479807 DOI: 10.1093/femsec/fiae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 12/18/2024] Open
Abstract
Uptake hydrogenase (Hup) recycles H2 formed by nitrogenase during nitrogen fixation, thereby preserving energy. Among root nodule bacteria, most rhizobial strains examined are Hup-, while only one Hup- Frankia inoculum had been identified. Previous analyses had led to the identification of two different [NiFe] hydrogenase syntons. We analysed the distribution of different types of [NiFe] hydrogenase in the genomes of different Frankia species. Our results show that Frankia strains can contain four different [NiFe] hydrogenase syntons representing groups 1f, 1h, 2a, and 3b according to Søndergaard, Pedersen, and Greening (HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 2016;6:34212. https://doi.org/10.1038/srep34212.); no more than three types were found in any individual genome. The phylogeny of the structural proteins of groups 1f, 1h, and 2a follows Frankia phylogeny; the phylogeny of the accessory proteins does not consistently. An analysis of different [NiFe] hydrogenase types in Actinomycetia shows that under the most parsimonious assumption, all four types were present in the ancestral Frankia strain. Based on Hup activities analysed and the losses of syntons in different lineages of genome reduction, we can conclude that groups 1f and 2a are involved in recycling H2 formed by nitrogenase while group 1 h and group 3b are not.
Collapse
Affiliation(s)
- Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany
| | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Nadia Binte Obaid
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - András Patyi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Fede Berckx
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Han Nguyen
- Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden
| | - Michelle Hagen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Daniel Lundin
- Department of Biology and Environmental Science, Linnaeus University, 39182 Kalmar, Sweden
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig Universität Giessen, 35392 Giessen, Germany
| | - Aude Herrera-Belaroussi
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Danis Abrouk
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Ann-Sofi Hahlin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany
| | - Philippe Normand
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Anita Sellstedt
- Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
2
|
M Meirovich M, Bachar O, Shemesh M, Cohen Y, Popik A, Yehezkeli O. Light-driven, bias-free nitrogenase-based bioelectrochemical cell for ammonia generation. Biosens Bioelectron 2024; 255:116254. [PMID: 38569252 DOI: 10.1016/j.bios.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Nitrogen fixation is a key process that sustains life on Earth. Nitrogenase is the sole enzyme capable of fixing nitrogen under ambient conditions. Extensive research efforts have been dedicated to elucidating the enzyme mechanism and its artificial activation through high applied voltage, photochemistry, or strong reducing agents. Harnessing light irradiation to minimize the required external bias can lower the process's high energy investment. Herein, we present the development of photo-bioelectrochemical cells (PBECs) utilizing BiVO4/CoP or CdS/NiO photoanodes for nitrogenase activation toward N2 fixation. The constructed PBEC based on BiVO4/CoP photoanode requires minimal external bias (200 mV) and suppresses O2 generation that allows efficient activation of the nitrogenase enzyme, using glucose as an electron donor. In a second developed PBEC configuration, CdS/NiO photoanode was used, enabling bias-free activation of the nitrogenase-based cathode to produce 100 μM of ammonia at a faradaic efficiency (FE) of 12%. The ammonia production was determined by a commonly used fluorescence probe and further validated using 1H-NMR spectroscopy. The presented PBECs lay the foundation for biotic-abiotic systems to directly activate enzymes toward value-added chemicals by light-driven reactions.
Collapse
Affiliation(s)
- Matan M Meirovich
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Oren Bachar
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Mor Shemesh
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yifat Cohen
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Alice Popik
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Omer Yehezkeli
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
3
|
Jiang H, Ryde U. H 2 formation from the E 2-E 4 states of nitrogenase. Phys Chem Chem Phys 2024; 26:1364-1375. [PMID: 38108422 DOI: 10.1039/d3cp05181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Nitrogenase is the only enzyme that can cleave the strong triple bond in N2, making nitrogen available for biological lifeforms. The active site is a MoFe7S9C cluster (the FeMo cluster) that binds eight electrons and protons during one catalytic cycle, giving rise to eight intermediate states E0-E7. It is experimentally known that N2 binds to the E4 state and that H2 is a compulsory byproduct of the reaction. However, formation of H2 is also an unproductive side reaction that should be avoided, especially in the early steps of the reaction mechanism (E2 and E3). Here, we study the formation of H2 for various structural interpretations of the E2-E4 states using combined quantum mechanical and molecular mechanical (QM/MM) calculations and four different density-functional theory methods. We find large differences in the predictions of the different methods. B3LYP strongly favours protonation of the central carbide ion and H2 cannot form from such structures. On the other hand, with TPSS, r2SCAN and TPSSh, H2 formation is strongly exothermic for all structures and En and therefore need strict kinetic control to be avoided. For the E2 state, the kinetic barriers for the low-energy structures are high enough to avoid H2 formation. However, for both the E3 and E4 states, all three methods predict that the best structure has two hydride ions bridging the same pair of Fe ions (Fe2 and Fe6) and these two ions can combine to form H2 with an activation barrier of only 29-57 kJ mol-1, corresponding to rates of 7 × 102 to 5 × 107 s-1, i.e. much faster than the turnover rate of the enzyme (1-5 s-1). We have also studied H-atom movements within the FeMo cluster, showing that the various protonation states can quite freely be interconverted (activation barriers of 12-69 kJ mol-1).
Collapse
Affiliation(s)
- Hao Jiang
- Department of Computational Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
| | - Ulf Ryde
- Department of Computational Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
4
|
Einsle O. Catalysis and structure of nitrogenases. Curr Opin Struct Biol 2023; 83:102719. [PMID: 37802004 DOI: 10.1016/j.sbi.2023.102719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
In providing bioavailable nitrogen as building blocks for all classes of biomacromolecules, biological nitrogen fixation is an essential process for all organismic life. Only a single enzyme, nitrogenase, performs this task at ambient conditions and with ATP as an energy source. The assembly of the complex iron-sulfur enzyme nitrogenase and its catalytic mechanism remains a matter of intense study. Recent progress in the structural analysis of the three known isoforms of nitrogenase-differentiated primarily by the heterometal in their active site cofactor-has revealed a degree of structural plasticity of these clusters that suggest two distinct binding sites for substrates and reaction intermediates. A mechanistic proposal based on this finding integrates most of the available experimental data. Furthermore, the first applications of high-resolution cryo-electron microscopy have highlighted further dynamic conformational changes. Structures obtained under turnover conditions support the proposed alternating half-site reactivity in the C2-symmetric nitrogenase complex.
Collapse
Affiliation(s)
- Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
5
|
Yan T, Pan H, Liu Z, Kang P. Phase-Inversion Induced 3D Electrode for Direct Acidic Electroreduction CO 2 to Formic acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207650. [PMID: 36890777 DOI: 10.1002/smll.202207650] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Indexed: 06/08/2023]
Abstract
Direct electrochemical CO2 reduction to formic acid (FA) instead of formate is a challenging task due to the high acidity of FA and competitive hydrogen evolution reaction. Herein, 3D porous electrode (TDPE) is prepared by a simple phase inversion method, which can electrochemically reduce CO2 to FA in acidic conditions. Owing to interconnected channels, high porosity, and appropriate wettability, TDPE not only improves mass transport, but also realizes pH gradient to build higher local pH micro-environment under acidic conditions for CO2 reduction compared with planar electrode and gas diffusion electrode. Kinetic isotopic effect experiments demonstrate that the proton transfer becomes the rate-determining step at the pH of 1.8; however, not significant in neutral solution, suggesting that the proton is aiding the overall kinetics. Maximum FA Faradaic efficiency of 89.2% has been reached at pH 2.7 in a flow cell, generating FA concentration of 0.1 m. Integrating catalyst and gas-liquid partition layer into a single electrode structure by phase inversion method paves a facile avenue for direct production of FA by electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Tao Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hui Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhikun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
6
|
Cheng Y, Xu W, Hou J, Kang P. Temperature-Dependent Electrosynthesis of C 2 Oxygenates from Oxalic Acid Using Gallium Tin Oxides. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Yingying Cheng
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| | - Wenjing Xu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| | - Jing Hou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| | - Peng Kang
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
7
|
Taut J, Chambron J, Kersting B. Fifty Years of Inorganic Biomimetic Chemistry: From the Complexation of Single Metal Cations to Polynuclear Metal Complexes by Multidentate Thiolate Ligands. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Josef Taut
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
- Institut de Chimie de Strasbourg UMR 7177 CNRS-Université de Strasbourg 1, rue Blaise Pascal 67008 Strasbourg France
| | - Jean‐Claude Chambron
- Institut de Chimie de Strasbourg UMR 7177 CNRS-Université de Strasbourg 1, rue Blaise Pascal 67008 Strasbourg France
| | - Berthold Kersting
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
8
|
MacArdle SG, Rees DC. Solvent Deuterium Isotope Effects of Substrate Reduction by Nitrogenase from Azotobacter vinelandii. J Am Chem Soc 2022; 144:21125-21135. [DOI: 10.1021/jacs.2c07574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Siobhán G. MacArdle
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Douglas C. Rees
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| |
Collapse
|
9
|
Lin S, Banerjee S, Fortunato MT, Xue C, Huang J, Sokolov AY, Turro C. Electrochemical Strategy for Proton Relay Installation Enhances the Activity of a Hydrogen Evolution Electrocatalyst. J Am Chem Soc 2022; 144:20267-20277. [DOI: 10.1021/jacs.2c06011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shaoyang Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Samragni Banerjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Matthew T. Fortunato
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Congcong Xue
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Jie Huang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| |
Collapse
|
10
|
Construction of a Rhodobacter sphaeroides Strain That Efficiently Produces Hydrogen Gas from Acetate without Poly(β-Hydroxybutyrate) Accumulation: Insight into the Role of PhaR in Acetate Metabolism. Appl Environ Microbiol 2022; 88:e0050722. [PMID: 35670584 DOI: 10.1128/aem.00507-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purple nonsulfur phototrophic bacterium Rhodobacter sphaeroides produces hydrogen gas (H2) from acetate. An approach to improve the H2 production is preventing accumulation of an intracellular energy storage molecule known as poly(β-hydroxybutyrate) (PHB), which competes with H2 production for reducing power. However, disruption of PHB biosynthesis has been reported to severely impair the acetate assimilation depending on the genetic backgrounds and/or culture conditions. To solve this problem, we analyzed the relationship between PHB accumulation and acetate metabolism in R. sphaeroides. Gene deletion analyses based on the wild-type strain revealed that among the two polyhydroxyalkanoate synthase genes in the genome, phaC1, but not phaC2, is essential for PHB accumulation, and the phaC1 deletion mutant exhibited slow growth with acetate. On the other hand, a strain with the deletion of phaC1 together with phaR, which encodes a transcriptional regulator capable of sensing PHB accumulation, exhibited growth comparable to that of the wild-type strain despite no accumulation of PHB. These results suggest that PHB accumulation is required for normal growth with acetate by altering the expression of genes under the control of phaR. This hypothesis was supported by a transcriptome sequencing (RNA-seq) analysis revealing that phaR is involved in the regulation of the ethylmalonyl coenzyme A pathway for acetate assimilation. Consistent with these findings, deletion of phaC1 in a genetically engineered H2-producing strain resulted in lower H2 production from acetate due to growth defects, whereas deletion of phaR together with phaC1 restored growth with acetate and increased H2 production from acetate without PHB accumulation. IMPORTANCE This study provides a novel approach for increasing the yield of photofermentative H2 production from acetate by purple nonsulfur phototrophic bacteria. This study further suggests that polyhydroxyalkanoate is not only a storage substance for carbon and energy in bacteria, but may also act as a signaling molecule that mediates bacterial metabolic adaptations to specific environments. This notion will be helpful for understanding the physiology of polyhydroxyalkanoate-producing bacteria, as well as for their metabolic engineering via synthetic biology.
Collapse
|
11
|
Centi G, Perathoner S. Nanocarbon for Energy Material Applications: N 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007055. [PMID: 33682312 DOI: 10.1002/smll.202007055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Nanocarbons are an important class of energy materials and one relevant application is for the nitrogen reduction reaction, i.e., the direct synthesis of NH3 from N2 and H2 O via photo- and electrocatalytic approaches. Ammonia is also a valuable energy or hydrogen vector. This perspective paper analyses developments in the field, limiting discussion to nanocarbon-based electrodes. These aspects are discussed: i) active sites related to charge density differences on C atoms associated to defects/strains, ii) doping with heteroatoms, iii) introduction of isolated metal ions, iv) creation and in situ dynamics of metal oxide(hydroxide)/nanocarbon boundaries, and v) nanocarbon characteristics to control the interface. Discussion is focused on the performances and mechanistic aspects. Aim is not a systematic state-of-the-art report but to highlight the need to use a different perspective in studying this challenging reaction by using selected papers. Notwithstanding the large differences in the proposed nature of the active sites, fall all within a restricted range of performances, far from the targets. A holistic approach is emphasized to make a breakthrough advance.
Collapse
Affiliation(s)
- Gabriele Centi
- Departments ChiBioFarAm and MIFT, University of Messina and ERIC aisbl, V.le F. Stagno D'Alcontres 31, Messina, 98166, Italy
| | - Siglinda Perathoner
- Departments ChiBioFarAm and MIFT, University of Messina and ERIC aisbl, V.le F. Stagno D'Alcontres 31, Messina, 98166, Italy
| |
Collapse
|
12
|
Thorhallsson AT, Bjornsson R. The E 2 state of FeMoco: Hydride Formation versus Fe Reduction and a Mechanism for H 2 Evolution. Chemistry 2021; 27:16788-16800. [PMID: 34541722 PMCID: PMC9293435 DOI: 10.1002/chem.202102730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/27/2022]
Abstract
The iron‐molybdenum cofactor (FeMoco) is responsible for dinitrogen reduction in Mo nitrogenase. Unlike the resting state, E0, reduced states of FeMoco are much less well characterized. The E2 state has been proposed to contain a hydride but direct spectroscopic evidence is still lacking. The E2 state can, however, relax back the E0 state via a H2 side‐reaction, implying a hydride intermediate prior to H2 formation. This E2→E0 pathway is one of the primary mechanisms for H2 formation under low‐electron flux conditions. In this study we present an exploration of the energy surface of the E2 state. Utilizing both cluster‐continuum and QM/MM calculations, we explore various classes of E2 models: including terminal hydrides, bridging hydrides with a closed or open sulfide‐bridge, as well as models without. Importantly, we find the hemilability of a protonated belt‐sulfide to strongly influence the stability of hydrides. Surprisingly, non‐hydride models are found to be almost equally favorable as hydride models. While the cluster‐continuum calculations suggest multiple possibilities, QM/MM suggests only two models as contenders for the E2 state. These models feature either i) a bridging hydride between Fe2 and Fe6 and an open sulfide‐bridge with terminal SH on Fe6 (E2‐hyd) or ii) a double belt‐sulfide protonated, reduced cofactor without a hydride (E2‐nonhyd). We suggest both models as contenders for the E2 redox state and further calculate a mechanism for H2 evolution. The changes in electronic structure of FeMoco during the proposed redox‐state cycle, E0→E1→E2→E0, are discussed.
Collapse
Affiliation(s)
- Albert Th Thorhallsson
- Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavik, Iceland.,Department of Inorganic Spectroscopy, Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavik, Iceland.,Department of Inorganic Spectroscopy, Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Mallamace D, Papanikolaou G, Perathoner S, Centi G, Lanzafame P. Comparing Molecular Mechanisms in Solar NH 3 Production and Relations with CO 2 Reduction. Int J Mol Sci 2020; 22:E139. [PMID: 33375617 PMCID: PMC7795446 DOI: 10.3390/ijms22010139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanisms for N2 fixation (solar NH3) and CO2 conversion to C2+ products in enzymatic conversion (nitrogenase), electrocatalysis, metal complexes and plasma catalysis are analyzed and compared. It is evidenced that differently from what is present in thermal and plasma catalysis, the electrocatalytic path requires not only the direct coordination and hydrogenation of undissociated N2 molecules, but it is necessary to realize features present in the nitrogenase mechanism. There is the need for (i) a multi-electron and -proton simultaneous transfer, not as sequential steps, (ii) forming bridging metal hydride species, (iii) generating intermediates stabilized by bridging multiple metal atoms and (iv) the capability of the same sites to be effective both in N2 fixation and in COx reduction to C2+ products. Only iron oxide/hydroxide stabilized at defective sites of nanocarbons was found to have these features. This comparison of the molecular mechanisms in solar NH3 production and CO2 reduction is proposed to be a source of inspiration to develop the next generation electrocatalysts to address the challenging transition to future sustainable energy and chemistry beyond fossil fuels.
Collapse
Affiliation(s)
| | | | | | - Gabriele Centi
- Departments ChiBioFarAm and MIFT, University of Messina, ERIC aisbl, INSTM/CASPE, V. le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.); (S.P.)
| | - Paola Lanzafame
- Departments ChiBioFarAm and MIFT, University of Messina, ERIC aisbl, INSTM/CASPE, V. le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.); (S.P.)
| |
Collapse
|
14
|
Luxem KE, Leavitt WD, Zhang X. Large Hydrogen Isotope Fractionation Distinguishes Nitrogenase-Derived Methane from Other Methane Sources. Appl Environ Microbiol 2020; 86:e00849-20. [PMID: 32709722 PMCID: PMC7499036 DOI: 10.1128/aem.00849-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 02/01/2023] Open
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase. Two forms of this metalloenzyme, the vanadium (V)- and iron (Fe)-only nitrogenases, were recently found to reduce small amounts of carbon dioxide (CO2) into the potent greenhouse gas methane (CH4). Here, we report carbon (13C/12C) and hydrogen (2H/1H) stable isotopic compositions and fractionations of methane generated by V- and Fe-only nitrogenases in the metabolically versatile nitrogen fixer Rhodopseudomonas palustris The stable carbon isotope fractionation imparted by both forms of alternative nitrogenase are within the range observed for hydrogenotrophic methanogenesis (13αCO2/CH4 = 1.051 ± 0.002 for V-nitrogenase and 1.055 ± 0.001 for Fe-only nitrogenase; values are means ± standard errors). In contrast, the hydrogen isotope fractionations (2αH2O/CH4 = 2.071 ± 0.014 for V-nitrogenase and 2.078 ± 0.018 for Fe-only nitrogenase) are the largest of any known biogenic or geogenic pathway. The large 2αH2O/CH4 shows that the reaction pathway nitrogenases use to form methane strongly discriminates against 2H, and that 2αH2O/CH4 distinguishes nitrogenase-derived methane from all other known biotic and abiotic sources. These findings on nitrogenase-derived methane will help constrain carbon and nitrogen flows in microbial communities and the role of the alternative nitrogenases in global biogeochemical cycles.IMPORTANCE All forms of life require nitrogen for growth. Many different kinds of microbes living in diverse environments make inert nitrogen gas from the atmosphere bioavailable using a special enzyme, nitrogenase. Nitrogenase has a wide substrate range, and, in addition to producing bioavailable nitrogen, some forms of nitrogenase also produce small amounts of the greenhouse gas methane. This is different from other microbes that produce methane to generate energy. Until now, there was no good way to determine when microbes with nitrogenases are making methane in nature. Here, we present an isotopic fingerprint that allows scientists to distinguish methane from microbes making it for energy versus those making it as a by-product of nitrogen acquisition. With this new fingerprint, it will be possible to improve our understanding of the relationship between methane production and nitrogen acquisition in nature.
Collapse
Affiliation(s)
- Katja E Luxem
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
15
|
Abstract
As the only enzyme currently known to reduce dinitrogen (N2) to ammonia (NH3), nitrogenase is of significant interest for bio-inspired catalyst design and for new biotechnologies aiming to produce NH3 from N2. In order to reduce N2, nitrogenase must also hydrolyze at least 16 equivalents of adenosine triphosphate (MgATP), representing the consumption of a significant quantity of energy available to biological systems. Here, we review natural and engineered electron transfer pathways to nitrogenase, including strategies to redirect or redistribute electron flow in vivo towards NH3 production. Further, we also review strategies to artificially reduce nitrogenase in vitro, where MgATP hydrolysis is necessary for turnover, in addition to strategies that are capable of bypassing the requirement of MgATP hydrolysis to achieve MgATP-independent N2 reduction.
Collapse
|
16
|
Affiliation(s)
- Cécile Cadoux
- University of GenevaSciences II Quai Ernest-Ansermet 30 1211 Geneva 4 Switzerland
| | - Ross D. Milton
- University of GenevaSciences II Quai Ernest-Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
17
|
Patel J, Cai R, Milton R, Chen H, Minteer SD. Pyrene‐Based Noncovalent Immobilization of Nitrogenase on Carbon Surfaces. Chembiochem 2020; 21:1729-1732. [DOI: 10.1002/cbic.201900697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Janki Patel
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Rong Cai
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Ross Milton
- Department of Inorganic and Analytical Chemistry University of Geneva, Sciences II Quai Ernest-Ansermet 30 1211 Geneva 4 Switzerland
| | - Hui Chen
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Shelley D. Minteer
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| |
Collapse
|
18
|
Thorhallsson AT, Benediktsson B, Bjornsson R. A model for dinitrogen binding in the E 4 state of nitrogenase. Chem Sci 2019; 10:11110-11124. [PMID: 32206260 PMCID: PMC7069239 DOI: 10.1039/c9sc03610e] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022] Open
Abstract
Molybdenum nitrogenase is one of the most intriguing metalloenzymes in nature, featuring an exotic iron-molybdenum-sulfur cofactor, FeMoco, whose mode of action remains elusive. In particular, the molecular and electronic structure of the N2-binding E4 state is not known. In this study we present theoretical QM/MM calculations of new structural models of the E4 state of molybdenum-dependent nitrogenase and compare to previously suggested models for this enigmatic redox state. We propose two models as possible candidates for the E4 state. Both models feature two hydrides on the FeMo cofactor, bridging atoms Fe2 and Fe6 with a terminal sulfhydryl group on either Fe2 or Fe6 (derived from the S2B bridge) and the change in coordination results in local lower-spin electronic structure at Fe2 and Fe6. These structures appear consistent with the bridging hydride proposal put forward from ENDOR studies and are calculated to be lower in energy than other proposed models for E4 at the TPSSh-QM/MM level of theory. We critically analyze the DFT method dependency in calculations of FeMoco that has resulted in strikingly different proposals for this state. Importantly, dinitrogen binds exothermically to either Fe2 or Fe6 in our models, contrary to others, an effect rationalized via the unique ligand field (from the hydrides) at the Fe with an empty coordination site. A low-spin Fe site is proposed as being important to N2 binding. Furthermore, the geometries of these states suggest a feasible reductive elimination step that could follow, as experiments indicate. Via this step, two electrons are released, reducing the cofactor to yield a distorted 4-coordinate Fe2 or Fe6 that partially activates N2. We speculate that stabilization of an N2-bound Fe(i) at Fe6 (not found for Fe2 model) via reductive elimination is a crucial part of N2 activation in nitrogenases, possibly aided by the apical heterometal ion (Mo or V). By using protons from the sulfhydryl group (to regenerate the sulfide bridge between Fe2 and Fe6) and the nearby homocitrate hydroxy group, we calculate a plausible route to yield a diazene intermediate. This is found to be more favorable with the Fe6-bound model than the Fe2-bound model; however, this protonation is uphill in energy, suggesting protonation of N2 might occur later in the catalytic cycle or via another mechanism.
Collapse
Affiliation(s)
- Albert Th Thorhallsson
- Science Institute , University of Iceland , Dunhagi 3 , 107 Reykjavik , Iceland
- Department of Inorganic Spectroscopy , Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| | - Bardi Benediktsson
- Science Institute , University of Iceland , Dunhagi 3 , 107 Reykjavik , Iceland
| | - Ragnar Bjornsson
- Science Institute , University of Iceland , Dunhagi 3 , 107 Reykjavik , Iceland
- Department of Inorganic Spectroscopy , Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| |
Collapse
|
19
|
Abstract
The fixation of atmospheric dinitrogen to ammonia by industrial technologies (such as the Haber Bosch process) has revolutionized humankind. In contrast to industrial technologies, a single enzyme is known for its ability to reduce or "fix" dinitrogen: nitrogenase. Nitrogenase is a complex oxidoreductase enzymatic system that includes a catalytic protein (where dinitrogen is reduced) and an electron-transferring reductase protein (termed the Fe protein) that delivers the electrons necessary for dinitrogen fixation. The catalytic protein most commonly contains a FeMo cofactor (called the MoFe protein), but it can also contain a VFe or FeFe cofactor. Besides their ability to fix dinitrogen to ammonia, these nitrogenases can also reduce substrates such as carbon dioxide to formate. Interestingly, the VFE nitrogenase can also form carbon-carbon bonds. The vast majority of research surrounding nitrogenase employs the Fe protein to transfer electrons, which is also associated with the rate-limiting step of nitrogenase catalysis and also requires the hydrolysis of adenosine triphosphate. Thus, there is significant interest in artificially transferring electrons to the catalytic nitrogenase proteins. In this Account, we review nitrogenase electrocatalysis whereby electrons are delivered to nitrogenase from electrodes. We first describe the use of an electron mediator (cobaltocene) to transfer electrons from electrodes to the MoFe protein. The reduction of protons to molecular hydrogen was realized, in addition to azide and nitrite reduction to ammonia. Bypassing the rate-limiting step within the Fe protein, we also describe how this approach was used to interrogate the rate-limiting step of the MoFe protein: metal-hydride protonolysis at the FeMo-co. This Account next reviews the use of cobaltocene to mediate electron transfer to the VFe protein, where the reduction of carbon dioxide and the formation of carbon-carbon bonds (yielding the formation of ethene and propene) was realized. This approach also found success in mediating electron transfer to the FeFe catalytic protein, which exhibited improved carbon dioxide reduction in comparison to the MoFe protein. In the final example of mediated electron transfer to the catalytic protein, this Account also reviews recent work where the coupling of infrared spectroscopy with electrochemistry enabled the potential-dependent binding of carbon monoxide to the FeMo-co to be studied. As an alternative to mediated electron transfer, recent work that has sought to transfer electrons to the catalytic proteins in the absence of electron mediators (by direct electron transfer) is also reviewed. This approach has subsequently enabled a thermodynamic landscape to be proposed for the cofactors of the catalytic proteins. Finally, this Account also describes nitrogenase electrocatalysis whereby electrons are first transferred from an electrode to the Fe protein, before being transferred to the MoFe protein alongside the hydrolysis of adenosine triphosphate. In this way, increased quantities of ammonia can be electrocatalytically produced from dinitrogen fixation. We discuss how this has led to the further upgrade of electrocatalytically produced ammonia, in combination with additional enzymes (diaphorase, alanine dehydrogenase, and transaminase), to selective production of chiral amine intermediates for pharmaceuticals. This Account concludes by discussing current and future research challenges in the field of electrocatalytic nitrogen fixation by nitrogenase.
Collapse
Affiliation(s)
- Ross D. Milton
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Shelley D. Minteer
- NSF Center for Synthetic Organic Electrochemistry, Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
20
|
Shimizu T, Teramoto H, Inui M. Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively. Appl Microbiol Biotechnol 2019; 103:9739-9749. [DOI: 10.1007/s00253-019-10199-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022]
|
21
|
|
22
|
Khadka N, Farquhar ER, Hill HE, Shi W, von Lintig J, Kiser PD. Evidence for distinct rate-limiting steps in the cleavage of alkenes by carotenoid cleavage dioxygenases. J Biol Chem 2019; 294:10596-10606. [PMID: 31138651 DOI: 10.1074/jbc.ra119.007535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/24/2019] [Indexed: 11/06/2022] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) use a nonheme Fe(II) cofactor to split alkene bonds of carotenoid and stilbenoid substrates. The iron centers of CCDs are typically five-coordinate in their resting states, with solvent occupying an exchangeable site. The involvement of this iron-bound solvent in CCD catalysis has not been experimentally addressed, but computational studies suggest two possible roles. 1) Solvent dissociation provides a coordination site for O2, or 2) solvent remains bound to iron but changes its equilibrium position to allow O2 binding and potentially acts as a proton source. To test these predictions, we investigated isotope effects (H2O versus D2O) on two stilbenoid-cleaving CCDs, Novosphingobium aromaticivorans oxygenase 2 (NOV2) and Neurospora crassa carotenoid oxygenase 1 (CAO1), using piceatannol as a substrate. NOV2 exhibited an inverse isotope effect (k H/k D ∼ 0.6) in an air-saturated buffer, suggesting that solvent dissociates from iron during the catalytic cycle. By contrast, CAO1 displayed a normal isotope effect (k H/k D ∼ 1.7), suggesting proton transfer in the rate-limiting step. X-ray absorption spectroscopy on NOV2 and CAO1 indicated that the protonation states of the iron ligands are unchanged within pH 6.5-8.5 and that the Fe(II)-aquo bond is minimally altered by substrate binding. We pinpointed the origin of the differential kinetic behaviors of NOV2 and CAO1 to a single amino acid difference near the solvent-binding site of iron, and X-ray crystallography revealed that the substitution alters binding of diffusible ligands to the iron center. We conclude that solvent-iron dissociation and proton transfer are both associated with the CCD catalytic mechanism.
Collapse
Affiliation(s)
- Nimesh Khadka
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Erik R Farquhar
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973.,Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4988, and
| | - Hannah E Hill
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wuxian Shi
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973.,Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4988, and
| | - Johannes von Lintig
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Philip D Kiser
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, .,Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| |
Collapse
|
23
|
Benedek Z, Papp M, Oláh J, Szilvási T. Exploring Hydrogen Evolution Accompanying Nitrogen Reduction on Biomimetic Nitrogenase Analogs: Can Fe-N xH yIntermediates Be Active Under Turnover Conditions? Inorg Chem 2019; 58:7969-7977. [PMID: 31125218 DOI: 10.1021/acs.inorgchem.9b00719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitrogen reduction reaction (N2RR) carried out on biomimetic catalytic systems is considered to be a promising alternative for the traditional Haber-Bosch ammonia synthesis. Unfortunately, the selectivity of the currently known biomimetic catalysts is poor, as they also catalyze the unproductive hydrogen evolution reaction (HER). In the present computational study, we examine the HER activity of early N2RR intermediates in EP3 (E = B, Si) ligated single-site biomimetic iron complexes by calculating and comparing the activation Gibbs free energies of HER and N2RR elementary steps. We find that, in contrast to previous suggestions, early N2RR intermediates are not likely sources of HER under turnover conditions, as the barriers of the competing N2RR steps are significantly lower. Consequently, future research should focus on preventing other potential HER mechanisms, e.g., hydride formation, rather than accelerating the consumption of early N2RR intermediates as proposed earlier to design more efficient biomimetic catalysts.
Collapse
Affiliation(s)
- Zsolt Benedek
- Department of Inorganic and Analytical Chemistry , Budapest University of Technology and Economics , Szent Gellért tér 4 , 1111 Budapest , Hungary
| | - Marcell Papp
- Department of Inorganic and Analytical Chemistry , Budapest University of Technology and Economics , Szent Gellért tér 4 , 1111 Budapest , Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry , Budapest University of Technology and Economics , Szent Gellért tér 4 , 1111 Budapest , Hungary
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 , United States
| |
Collapse
|
24
|
Jian L, Bai X, Zhang H, Song X, Li Z. Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress. PeerJ 2019; 7:e6875. [PMID: 31119081 PMCID: PMC6510217 DOI: 10.7717/peerj.6875] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
The Legume-Rhizobium symbiosis has been proposed as a promising technique for the phytoremediation of contaminated soils due to its beneficial activity in symbiotic nitrogen fixation. However, numerous studies have shown that excessive heavy metals reduce the efficiency of symbiotic nodulation with Rhizobium and inhibit plant growth. In this study, we aimed to evaluate the synergistic effects of IAA-producing bacteria and Rhizobium on Medicago lupulina growth under Cu and Zn stress. Pot experiments showed that 400 mg kg-1 Cu2 + and Zn2 + greatly inhibited plant growth, but dual inoculation of Medicago lupulina with Sinorhizobium meliloti CCNWSX0020 and Agrobacterium tumefaciens CCNWGS0286 significantly increased the number of nodules and plant biomass by enhancing antioxidant activities. Under double stress of 400 mg kg-1 Cu2 + and Zn2 +, the nodule number and nitrogenase activities of dual-inoculated plants were 48.5% and 154.4% higher, respectively, than those of plants inoculated with Sinorhizobium meliloti. The root and above-ground portion lengths of the dual-inoculated plants were 32.6% and 14.1% greater, respectively, than those of the control, while the root and above-ground portion dry weights were 34.3% and 32.2% greater, respectively, than those of the control. Compared with S. meliloti and A. tumefaciens single inoculation, coinoculation increased total Cu uptake by 39.1% and 47.5% and increased total Zn uptake by 35.4% and 44.2%, respectively, under double metal stress conditions. Therefore, coinoculation with Sinorhizobium meliloti and Agrobacterium tumefaciens enhances metal phytoextraction by increasing plant growth and antioxidant activities under Cu/Zn stress, which provides a new approach for bioremediation in heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Liru Jian
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Bai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiuyong Song
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhefei Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Hong DH, Murray LJ. Carbon Dioxide Insertion into Bridging Iron Hydrides: Kinetic and Mechanistic Studies. Eur J Inorg Chem 2019; 2019:2146-2153. [PMID: 31787843 PMCID: PMC6884086 DOI: 10.1002/ejic.201801404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 11/11/2022]
Abstract
The reduction of CO2 to formic acid by transition metal hydrides is a potential pathway to access reactive C1 compounds. To date, no kinetic study has been reported for insertion of a bridging hydride in a weak-field ligated complex into CO2; such centers have relevance to metalloenzymes that catalyze this reaction. Herein, we report the kinetic study of the reaction of a tri(μ-hydride)triiron(II/II/II) cluster supported by a tris(β-diketimine) cyclophane (1) with CO2 monitored by 1H-NMR and temperature-controlled UV-vis spectroscopy. We found that 1 reacts with CO2 to traverse the reported monoformate (1-CO 2 ) and a diformate complex (1-2CO 2 ) at 298 K in toluene, and ultimately yields the triformate species (1-3CO 2 ) at elevated temperature. The second order rate constant, H/D kinetic isotope effect, ∆H ‡,and ∆S ‡for formation of 1-CO 2 were determined as 8.4(3)×10-4 M-1·s-1, 1.08(9), 11(1) kcal·mol-1, and -3(1)×10 cal·mol-1·K-1, respectively at 298 K. These parameters suggest that CO2 coordination to the iron centers does not coordinate prior to the rate controlling step whereas Fe-H bond cleavage does.
Collapse
|
26
|
Influence of Energy and Electron Availability on In Vivo Methane and Hydrogen Production by a Variant Molybdenum Nitrogenase. Appl Environ Microbiol 2019; 85:AEM.02671-18. [PMID: 30824440 DOI: 10.1128/aem.02671-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/21/2019] [Indexed: 01/16/2023] Open
Abstract
The anoxygenic phototrophic bacterium Rhodopseudomonas palustris produces methane (CH4) from carbon dioxide (CO2) and hydrogen (H2) from protons (H+) when it expresses a variant form of molybdenum (Mo) nitrogenase that has two amino acid substitutions near its active site. We examined the influence of light energy and electron availability on in vivo production of these biofuels. Nitrogenase activity requires large amounts of ATP, and cells exposed to increasing light intensities produced increasing amounts of CH4 and H2 As expected for a phototroph, intracellular ATP increased with increasing light intensity, but there was only a loose correlation between ATP content and CH4 and H2 production. There was a much stronger correlation between decreased intracellular ADP and increased gas production with increased light intensity, suggesting that the rate-limiting step for CH4 and H2 production by R. palustris is inhibition of nitrogenase by ADP. Increasing the amounts of electrons available to nitrogenase by providing cells with organic alcohols, using nongrowing cells, blocking electrons from entering the Calvin cycle, or blocking H2 uptake resulted in higher yields of H2 and, in some cases, CH4 Our results provide a more complete understanding of the constraints on nitrogenase-based production of biofuels.IMPORTANCE A variant form of Mo nitrogenase catalyzes the conversion of CO2 and protons to the biofuels CH4 and H2 A constant supply of electrons and ATP is needed to drive these reduction reactions. The bacterium R. palustris generates ATP from light and has a versatile metabolism that makes it ideal for manipulating electron availability intracellularly. We therefore explored its potential as a biocatalyst for CH4 and H2 production. We found that intracellular ADP had a major effect on biofuel production, more pronounced than the effect caused by ATP. This is probably due to inhibition of nitrogenase activity by ADP. In general, the amount of CH4 produced by the variant nitrogenase in vivo was affected by electron availability much less than was the amount of H2 produced. This study shows the nature of constraints on in vivo biofuel production by variant Mo nitrogenase.
Collapse
|
27
|
Modulating the mechanism of electrocatalytic CO 2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat Commun 2019; 10:1683. [PMID: 30976003 PMCID: PMC6459859 DOI: 10.1038/s41467-019-09626-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/19/2019] [Indexed: 11/24/2022] Open
Abstract
The selective and efficient electrochemical reduction of CO2 to single products is crucial for solar fuels development. Encapsulating molecular catalysts such as cobalt phthalocyanine within coordination polymers such as poly-4-vinylpyridine leads to dramatically increased activity and selectivity for CO2 reduction. In this study, we use a combination of kinetic isotope effect and proton inventory studies to explain the observed increase in activity and selectivity upon polymer encapsulation. We provide evidence that axial-coordination from the pyridyl moieties in poly-4-vinylpyridine to the cobalt phthalocyanine complex changes the rate-determining step in the CO2 reduction mechanism accounting for the increased activity in the catalyst-polymer composite. Moreover, we show that proton delivery to cobalt centers within the polymer is controlled by a proton relay mechanism that inhibits competitive hydrogen evolution. These mechanistic findings provide design strategies for selective CO2 reduction electrocatalysts and serve as a model for understanding the catalytic mechanism of related heterogeneous systems. Understanding the mechanism behind CO2 reduction catalysis is crucial in the development of high efficiency and activity catalysts. Here, authors employ kinetic isotope effects and proton inventory studies to assess catalyst mechanism and proton delivery in molecular CO2 electroreduction materials.
Collapse
|
28
|
Kagalwala HN, Lalaoui N, Li QL, Liu L, Woods T, Rauchfuss TB. Redox and "Antioxidant" Properties of Fe 2(μ-SH) 2(CO) 4(PPh 3) 2. Inorg Chem 2019; 58:2761-2769. [PMID: 30724559 DOI: 10.1021/acs.inorgchem.8b03344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The chemistry of Fe2(μ-SH)2(CO)4(PPh3)2 (2HH) is described with attention to S-S coupling reactions. Produced by the reduction of Fe2(μ-S2)(CO)4(PPh3)2 (2), 2HH is an analogue of Fe2(μ-SH)2(CO)6 (1HH), which exhibits well-behaved S-centered redox. Both 2HH and the related 2MeH exist as isomers that differ with respect to the stereochemistry of the μ-SR ligands (R = H, Me). Compounds 2HH, 2MeH, and 2 protonate to give rare examples of Fe-SH and Fe-S2 hydrides. Salts of [H2]+, [H2HH]+, and [H2MeH]+ were characterized crystallographically. Complex 2HH reduces O2, H2O2, (PhCO2)2, and Ph2N2, giving 2. Related reactions involving 1HH gave uncharacterizable polymers. The differing behaviors of 2HH and 1HH reflect stabilization of the ferrous intermediates by the PPh3 ligands. When independently generated by the reaction of 2HH with 2,2,6,6-tetramethyl-1-piperidinyloxy, 2* quantitatively converts to 2 or, in the presence of C2H4, is trapped as the ethanedithiolate Fe2(μ-S2C2H4)(CO)4(PPh3)2. Evidence is presented that the Hieber-Gruber synthesis of 1 involves polysulfido intermediates [Fe2(μ-S n)2(CO)6]2- ( n > 1). Two relevant experiments are as follows: (i) protonation of [Fe4(μ-S)2(μ-S2)CO)12]2- gives 1 and 1HH, and (ii) oxidation of 1HH by sulfur gives 1.
Collapse
Affiliation(s)
- Husain N Kagalwala
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Noémie Lalaoui
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Qian-Li Li
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Liang Liu
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Toby Woods
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
29
|
Volgusheva A, Kosourov S, Lynch F, Allahverdiyeva Y. Immobilized heterocysts as microbial factories for sustainable nitrogen fixation. J Biotechnol 2019; 306S:100016. [DOI: 10.1016/j.btecx.2020.100016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
|
30
|
Sherbow TJ, Thompson EJ, Arnold A, Sayler RI, Britt RD, Berben LA. Electrochemical Reduction of N
2
to NH
3
at Low Potential by a Molecular Aluminum Complex. Chemistry 2018; 25:454-458. [DOI: 10.1002/chem.201804454] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Tobias J. Sherbow
- Department of Chemistry University of California 1 Shields Ave Davis CA 95616 USA
| | - Emily J. Thompson
- Department of Chemistry University of California 1 Shields Ave Davis CA 95616 USA
| | - Amela Arnold
- Department of Chemistry University of California 1 Shields Ave Davis CA 95616 USA
| | - Richard I. Sayler
- Department of Chemistry University of California 1 Shields Ave Davis CA 95616 USA
| | - R. David Britt
- Department of Chemistry University of California 1 Shields Ave Davis CA 95616 USA
| | - Louise A. Berben
- Department of Chemistry University of California 1 Shields Ave Davis CA 95616 USA
| |
Collapse
|
31
|
Harris DF, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM. Kinetic Understanding of N 2 Reduction versus H 2 Evolution at the E 4(4H) Janus State in the Three Nitrogenases. Biochemistry 2018; 57:5706-5714. [PMID: 30183278 DOI: 10.1021/acs.biochem.8b00784] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme nitrogenase catalyzes the reduction of N2 to ammonia but also that of protons to H2. These reactions compete at the mechanistically central 'Janus' intermediate, denoted E4(4H), which has accumulated 4e-/4H+ as two bridging Fe-H-Fe hydrides on the active-site cofactor. This state can lose e-/H+ by hydride protonolysis (HP) or become activated by reductive elimination ( re) of the two hydrides and bind N2 with H2 loss, yielding an E4(2N2H) state that goes on to generate two NH3 molecules. Thus, E4(4H) represents the key branch point for these competing reactions. Here, we present a steady-state kinetic analysis that precisely describes this competition. The analysis demonstrates that steady-state, high-electron flux turnover overwhelmingly populates the E4 states at the expense of less reduced states, quenching HP at those states. The ratio of rate constants for E4(4H) hydride protonolysis ( kHP) versus reductive elimination ( kre) provides a sensitive measure of competition between these two processes and thus is a central parameter of nitrogenase catalysis. Analysis of measurements with the three nitrogenase variants (Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase) reveals that at a fixed N2 pressure their tendency to productively react with N2 to produce two NH3 molecules and an accompanying H2, rather than diverting electrons to the side reaction, HP production of H2, decreases with their ratio of rate constants, k re/ kHP: Mo-nitrogenase, 5.1 atm-1; V-nitrogenase, 2 atm-1; and Fe-nitrogenase, 0.77 atm-1 (namely, in a 1:0.39:0.15 ratio). Moreover, the lower catalytic effectiveness of the alternative nitrogenases, with more H2 production side reaction, is not caused by a higher kHP but by a significantly lower k re.
Collapse
Affiliation(s)
- Derek F Harris
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Dennis R Dean
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Brian M Hoffman
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
32
|
Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Darensbourg MY, Holland PL, Hoffman B, Janik MJ, Jones AK, Kanatzidis MG, King P, Lancaster KM, Lymar SV, Pfromm P, Schneider WF, Schrock RR. Beyond fossil fuel-driven nitrogen transformations. Science 2018; 360:360/6391/eaar6611. [PMID: 29798857 DOI: 10.1126/science.aar6611] [Citation(s) in RCA: 864] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. A key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review.
Collapse
Affiliation(s)
- Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA. .,Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Richard M Crooks
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84332, USA.
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | - Brian Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Michael J Janik
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne K Jones
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85282, USA
| | | | - Paul King
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853, USA
| | - Sergei V Lymar
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Peter Pfromm
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, USA
| | - William F Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
33
|
Slater JW, Marguet SC, Monaco HA, Shafaat HS. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases. J Am Chem Soc 2018; 140:10250-10262. [PMID: 30016865 DOI: 10.1021/jacs.8b05194] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jeffrey W. Slater
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C. Marguet
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Haleigh A. Monaco
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Cai R, Milton RD, Abdellaoui S, Park T, Patel J, Alkotaini B, Minteer SD. Electroenzymatic C–C Bond Formation from CO2. J Am Chem Soc 2018; 140:5041-5044. [DOI: 10.1021/jacs.8b02319] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rong Cai
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ross D. Milton
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Sofiene Abdellaoui
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Terry Park
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Janki Patel
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Bassam Alkotaini
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
35
|
Lukoyanov DA, Khadka N, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM. Hydride Conformers of the Nitrogenase FeMo-cofactor Two-Electron Reduced State E 2(2H), Assigned Using Cryogenic Intra Electron Paramagnetic Resonance Cavity Photolysis. Inorg Chem 2018; 57:6847-6852. [PMID: 29575898 PMCID: PMC6008734 DOI: 10.1021/acs.inorgchem.8b00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Early studies in which nitrogenase was freeze-trapped during enzymatic turnover revealed the presence of high-spin ( S = 3/2) electron paramagnetic resonance (EPR) signals from the active-site FeMo-cofactor (FeMo-co) in electron-reduced intermediates of the MoFe protein. Historically denoted as 1b and 1c, each of the signals is describable as a fictitious spin system, S' = 1/2, with anisotropic g' tensor, 1b with g' = [4.21, 3.76, ?] and 1c with g' = [4.69, ∼3.20, ?]. A clear discrepancy between the magnetic properties of 1b and 1c and the kinetic analysis of their appearance during pre-steady-state turnover left their identities in doubt, however. We subsequently associated 1b with the state having accumulated 2[e-/H+], denoted as E2(2H), and suggested that the reducing equivalents are stored on the catalytic FeMo-co cluster as an iron hydride, likely an [Fe-H-Fe] hydride bridge. Intra-EPR cavity photolysis (450 nm; temperature-independent from 4 to 12 K) of the E2(2H)/1b state now corroborates the identification of this state as storing two reducing equivalents as a hydride. Photolysis converts E2(2H)/1b to a state with the same EPR spectrum, and thus the same cofactor structure as pre-steady-state turnover 1c, but with a different active-site environment. Upon annealing of the photogenerated state at temperature T = 145 K, it relaxes back to E2(2H)/1b. This implies that the 1c signal comes from an E2(2H) hydride isomer of E2(2H)/1b that stores its two reducing equivalents either as a hydride bridge between a different pair of iron atoms or an Fe-H terminal hydride.
Collapse
Affiliation(s)
- Dmitriy A Lukoyanov
- Departments of Chemistry and Molecular Biosciences , Northwestern University , Evanston , Illinois 60208 , United States
| | - Nimesh Khadka
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Dennis R Dean
- Department of Biochemistry , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24061 , United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Brian M Hoffman
- Departments of Chemistry and Molecular Biosciences , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
36
|
Geng Y, Zhu M, Liang A, Niu C, Li J, Zou D, Wu Y, Wu Y. O-Difluorodeuteromethylation of phenols using difluorocarbene precursors and deuterium oxide. Org Biomol Chem 2018; 16:1807-1811. [DOI: 10.1039/c7ob03088f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient synthesis of difluorodeuteromethyl aryl ethers using difluorocarbene precursors and deuterium oxide is described.
Collapse
Affiliation(s)
- Yang Geng
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Mingxiang Zhu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Apeng Liang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Chengshan Niu
- Tetranov Biopharm
- LLC. And Collaborative Innovation Center of New Drug Research and Safety Evaluation
- Zhengzhou
- P. R. China
| | - Jingya Li
- Tetranov Biopharm
- LLC. And Collaborative Innovation Center of New Drug Research and Safety Evaluation
- Zhengzhou
- P. R. China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yusheng Wu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
- Tetranov Biopharm
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|
37
|
Hu B, Harris DF, Dean DR, Liu TL, Yang ZY, Seefeldt LC. Electrocatalytic CO 2 reduction catalyzed by nitrogenase MoFe and FeFe proteins. Bioelectrochemistry 2017; 120:104-109. [PMID: 29223886 DOI: 10.1016/j.bioelechem.2017.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/26/2022]
Abstract
Nitrogenases catalyze biological dinitrogen (N2) reduction to ammonia (NH3), and also reduce a number of non-physiological substrates, including carbon dioxide (CO2) to formate (HCOO-) and methane (CH4). Three versions of nitrogenase are known (Mo-, V-, and Fe-nitrogenase), each showing different reactivities towards various substrates. Normally, electrons for substrate reduction are delivered by the Fe protein component of nitrogenase, with energy coming from the hydrolysis of 2 ATP to 2 ADP+2 Pi for each electron transferred. Recently, it has been demonstrated that energy and electrons can be delivered from an electrode to the catalytic nitrogenase MoFe-protein without the need for Fe protein or ATP hydrolysis. Here, it is demonstrated that both the MoFe- and FeFe-protein can be immobilized as a polymer layer on an electrode and that electron transfer mediated by cobaltocene can drive CO2 reduction to formate in this system. It was also found that the FeFe-protein diverts a greater percentage of electrons to CO2 reduction versus proton reduction compared to the MoFe-protein. Quantification of electron flow to products exhibited Faradaic efficiencies of CO2 conversion to formate of 9% for MoFe protein and 32% for FeFe-protein, with the remaining electrons going to proton reduction to make H2.
Collapse
Affiliation(s)
- Bo Hu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Derek F Harris
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
38
|
Manz DH, Duan PC, Dechert S, Demeshko S, Oswald R, John M, Mata RA, Meyer F. Pairwise H 2/D 2 Exchange and H 2 Substitution at a Bimetallic Dinickel(II) Complex Featuring Two Terminal Hydrides. J Am Chem Soc 2017; 139:16720-16731. [PMID: 29037034 DOI: 10.1021/jacs.7b08629] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A compartmental ligand scaffold HL with two β-diketiminato binding sites spanned by a pyrazolate bridge gave a series of dinuclear nickel(II) dihydride complexes M[LNi2(H)2], M = Na (Na·2) and K (K·2), which were isolated after reacting the precursor complex [LNi2(μ-Br)] (1) with MHBEt3 (M = Na and K). Crystallographic characterization showed the two hydride ligands to be directed into the bimetallic pocket, closely interacting with the alkali metal cation. Treatment of K·2 with dibenzo(18-crown-6) led to the separated ion pair [LNi2(H)2][K(DB18C6)] (2[K(DB18C6)]). Reaction of Na·2 or K·2 with D2 was investigated by a suite of 1H and 2H NMR experiments, revealing an unusual pairwise H2/D2 exchange process that synchronously involves both Ni-H moieties without H/D scrambling. A mechanistic picture was provided by DFT calculations which suggested facile recombination of the two terminal hydrides within the bimetallic cleft, with a moderate enthalpic barrier of ∼62 kJ/mol, to give H2 and an antiferromagnetically coupled [LNiI2]- species. This was confirmed by SQUID monitoring during H2 release from solid 2[K(DB18C6)]. Interaction with the Lewis acid cation (Na+ or K+) significantly stabilizes the dihydride core. Kinetic data for the M[L(Ni-H)2] → H2 transition derived from 2D 1H EXSY spectra confirmed first-order dependence of H2 release on M·2 concentration and a strong effect of the alkali metal cation M+. Treating [LNi2(D)2]- with phenylacetylene led to D2 and dinickel(II) complex 3- with a twice reduced styrene-1,2-diyl bridging unit in the bimetallic pocket. Complexes [LNiII2(H)2]- having two adjacent terminal hydrides thus represent a masked version of a highly reactive dinickel(I) core. Storing two reducing equivalents in adjacent metal hydrides that evolve H2 upon substrate binding is reminiscent of the proposed N2 binding step at the FeMo cofactor of nitrogenase, suggesting the use of the present bimetallic scaffold for reductive bioinspired activation of a range of inert small molecules.
Collapse
Affiliation(s)
- Dennis-Helmut Manz
- Institut für Anorganische Chemie, Universität Göttingen , Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Peng-Cheng Duan
- Institut für Anorganische Chemie, Universität Göttingen , Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie, Universität Göttingen , Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen , Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Rainer Oswald
- Institut für Physikalische Chemie, Universität Göttingen , Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Michael John
- Institut für Anorganische Chemie, Universität Göttingen , Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Universität Göttingen , Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen , Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
39
|
Schilter D. Metalloenzymes: Fast delivery delivers mechanism. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|