1
|
Wu YY, Li ZY, Peng S, Zhang ZY, Cheng HM, Su H, Hou WQ, Yang FL, Wu SQ, Sato O, Dai JW, Li W, Bu XH. Two-Dimensional Spin-Crossover Molecular Solid Solutions with Tunable Transition Temperatures across 90 K. J Am Chem Soc 2024; 146:8206-8215. [PMID: 38412246 DOI: 10.1021/jacs.3c12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Spin-crossover (SCO) materials exhibit remarkable potential as bistable switches in molecular devices. However, the spin transition temperatures (Tc) of known compounds are unable to cover the entire ambient temperature spectrum, largely limiting their practical utility. This study reports an exemplary two-dimensional SCO solid solution system, [FeIII(H0.5LCl)2-2x(H0.5LF)2x]·H2O (H0.5LX = 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, X = F or Cl, x = 0 to 1), in which the adjacent layers are adhered via hydrogen bonding. Notably, the Tc of this system can be fine-tuned across 90 K (227-316 K) in a linear manner by modulating the fraction x of the LF ligand. Elevating x results in strengthened hydrogen bonding between adjacent layers, which leads to enhanced intermolecular interactions between adjacent SCO molecules. Single-crystal diffraction analysis and periodic density functional theory calculations revealed that such a special kind of alteration in interlayer interactions strengthens the FeIIIN2O2S2 ligand field and corresponding SCO energy barrier, consequently resulting in increased Tc. This work provides a new pathway for tuning the Tc of SCO materials through delicate manipulation of molecular interactions, which could expand the application of bistable molecular solids to a much wider temperature regime.
Collapse
Affiliation(s)
- Ying-Ying Wu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Shuang Peng
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Zi-Yi Zhang
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Hao-Ming Cheng
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Hang Su
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Wen-Qi Hou
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Feng-Lei Yang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jing-Wei Dai
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wei Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| |
Collapse
|
2
|
Mukhopadhyaya A, Ali ME. Can Iron-Porphyrins Behave as Single-Molecule Magnets? J Phys Chem A 2024. [PMID: 38504619 DOI: 10.1021/acs.jpca.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The study of magnetic properties, especially the magnetic anisotropy of iron-porphyrin complexes employing multiconfigurational methods, is quite challenging due to many strongly correlated electrons in nearly degenerate orbitals. However, a prerequisite for observing the magnetic anisotropy and slow magnetization relaxation, the zero-field splitting parameter, D, was experimentally observed decades ago for halide-based axially ligated penta-coordinate Fe(III)-porphyrins. In these complexes, the signs of D were reported mostly as positive; in a few cases, inconclusive signs of the D parameter were also mentioned. However, no ab initio calculations have been reported to shed light on this. Deciphering the electronic structure of these penta-coordinated complexes employing the complete active space self-consistent field method and N-electron valence second-order perturbation theory, we confirm the positive D values. However, a negative D value is highly desired to observe the single-molecule magnet properties without an external magnetic field, which we observed in the Fe(II)-porphyrin complexes with axial imidazole ligands instead of halide ligands. The detailed analysis of the multireference wave functions unravels the role of axial ligands in determining the sign and magnitude of the D parameters.
Collapse
Affiliation(s)
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Joshi S, Roy Chowdhury S, Mishra S. Spin-state energetics and magnetic anisotropy in penta-coordinated Fe(III) complexes with different axial and equatorial ligand environments. Phys Chem Chem Phys 2023. [PMID: 37367302 DOI: 10.1039/d3cp02182c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The penta-coordinated trigonal-bi-pyramidal (TBP) Fe(III) complex (PMe2Ph)2FeCl3 shows a reduced magnetic anisotropy in its intermediate-spin (IS) state as compared to its methyl-analog (PMe3)2Fe(III)Cl3. In this work, the ligand environment in (PMe2Ph)2FeCl3 is systematically altered by replacing the axial -P with -N and -As, the equatorial -Cl with other halides, and the axial methyl group with an acetyl group. This has resulted in a series of Fe(III) TBP complexes modelled in their IS and high-spin (HS) states. Lighter ligands -N and -F stabilize the complex in the HS state, while the magnetically anisotropic IS state is stabilized by -P and -As at the axial site, and -Cl, -Br, and -I at the equatorial site. Larger magnetic anisotropies appear for complexes with nearly degenerate ground electronic states that are well separated from the higher excited states. This requirement, largely controlled by the d-orbital splitting pattern due to the changing ligand field, is achieved with a certain combination of axial and equatorial ligands, such as -P and -Br, -As and -Br, and -As and -I. In most cases, the acetyl group at the axial site enhances the magnetic anisotropy compared to its methyl counterpart. In contrast, the presence of -I at the equatorial site compromises the uniaxial type of anisotropy of the Fe(III) complex leading to an enhanced rate of quantum tunneling of magnetization.
Collapse
Affiliation(s)
- Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | | | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
4
|
Li Y, Zeng Z, Guo Y, Liu X, Zhang YQ, Ouyang Z, Wang Z, Liu X, Zheng YZ. Synergy of Magnetic Anisotropy and Ferromagnetic Interaction Triggering a Dimeric Cr(II) Zero-Field Single-Molecule Magnet. Inorg Chem 2023; 62:6297-6305. [PMID: 37040590 DOI: 10.1021/acs.inorgchem.2c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
A novel CrII-dimeric complex, [CrIIN(SiiPr3)2(μ-Cl)(THF)]2 (1), has been successfully constructed using a bulky silyl-amide ligand. Single-crystal structure analysis reveals that complex 1 exhibits a binuclear motif, with a Cr2Cl2 rhombus core, where two equivalent tetra-coordinate CrII centers in the centrosymmetric unit display quasi-square planar geometry. The crystal structure has been well simulated and explored by density functional theory calculations. The axial zero-field splitting parameter (D < 0) with a small rhombic (E) value is unambiguously determined by systematic investigations of magnetic measurements, high-frequency electron paramagnetic resonance spectroscopy, and ab initio calculations. Remarkably, ac magnetic susceptibility data unveil that 1 features slow dynamic magnetic relaxation typical of single-molecule magnet behavior with Ueff = 22 K in the absence of a dc field. This increases up to 35 K under a corresponding static field. Moreover, magnetic studies and theoretical calculations point out that a non-negligible ferromagnetic coupling (FMC) exists in the dimeric Cr-Cr units of 1. The coexistence of magnetic anisotropy and FMC contributes to the first case of CrII-based single-molecule magnets (SMMs) under zero dc field.
Collapse
Affiliation(s)
- Yuzhu Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhaopeng Zeng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xingman Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
5
|
Mičová R, Rajnák C, Titiš J, Samoľová E, Zalibera M, Bieńko A, Boča R. Slow magnetic relaxation in two mononuclear Mn(II) complexes not governed by the over-barrier Orbach process. Chem Commun (Camb) 2023; 59:2612-2615. [PMID: 36757181 DOI: 10.1039/d2cc06510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two hexacoordinate Mn(II) complexes containing a chelating residue of hexafluoroacetylacetone and (Cl-substituted) 4-benzylpyridine show DC magnetic functions typical for S = 5/2 spin systems: g ∼ 2, D - small. The AC susceptibility confirms a field supported slow magnetic relaxation in which the over-barrier Orbach relaxation process does not play a role. Both systems possess two or three slow relaxation channels.
Collapse
Affiliation(s)
- Romana Mičová
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Erika Samoľová
- X-Ray Crystallography Facility, UC San Diego, 5128 Urey Hall MC 0358, 9500 Gilman Drive, La Jolla CA, USA.,Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Michal Zalibera
- Department of Physical Chemistry, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| |
Collapse
|
6
|
Khurana R, Ali ME. Single-Molecule Magnetism in Linear Fe(I) Complexes with Aufbau and Non-Aufbau Ground States. Inorg Chem 2022; 61:15335-15345. [PMID: 36129329 DOI: 10.1021/acs.inorgchem.2c00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the ongoing efforts on synthesizing mononuclear single-ion magnets (SIMs) with promising applications in high-density data storage and spintronics devices, the linear or quasi-linear Fe(I) complexes emerge as the enticing candidates possessing large unquenched angular momentum. Herein, we have studied five experimentally synthesized linear Fe(I) complexes to uncover the origin of single-molecule magnetic behavior of these complexes. To begin with, we benchmarked the methodology on the experimentally and theoretically well-studied complex [Fe(C(SiMe3)3)2]-1 (1) (SiMe3 = trimethylsilyl), which is characterized with a large spin-reversal barrier of 226 cm-1. Subsequently, the spin-phonon coupling coefficients are calculated for the low-frequency vibrational modes to understand the relaxation mechanism of the complex. Furthermore, the two Fe(I) complexes, that is, [Fe(cyIDep)2]+1 (2) (cyIDep = 1,3-bis(2',6'-diethylphenyl)-4,5-(CH2)4-imidazole-2-ylidene) and [Fe(sIDep)2]+1 (3) (sIDep = 1,3-bis(2',6'-diethylphenyl)-imidazolin-2-ylidene), are studied that are experimentally reported with no SIM behavior under ac or dc magnetic fields; however, they exhibit large opposite axial zero field splitting (-62.4 and +34.0 cm-1, respectively) from ab initio calculations. We have unwrapped the origin of this contrasting observation between experiment and theory by probing their magnetic relaxation pathways and the pattern of d orbital splitting. Additionally, the two experimentally synthesized Fe(I) complexes, that is, [(η6-C6H6)FeAr*-3,5-Pr2i] (4) (Ar*-3,5-Pr2i = C6H-2,6-(C6H2-2,4,6-Pr3i)2-3,5-Pr2i) and [(CAAC)2Fe]+1 (5) (CAAC = cyclic (alkyl) (amino)carbene), are investigated for SIM behavior, since there is no report on their magnetic anisotropy. To this end, complex 4 presents itself as the possible candidate for SIM.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
7
|
Dakua KK, Rajak K, Mishra S. Spin–vibronic coupling in the quantum dynamics of a Fe(III) trigonal-bipyramidal complex. J Chem Phys 2022; 156:134103. [DOI: 10.1063/5.0080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The presence of a high density of excited electronic states in the immediate vicinity of the optically bright state of a molecule paves the way for numerous photo-relaxation channels. In transition-metal complexes, the presence of heavy atoms results in a stronger spin–orbit coupling, which enables spin forbidden spin-crossover processes to compete with the spin-allowed internal conversion processes. However, no matter how effectively the states cross around the Franck–Condon region, the degree of vibronic coupling, of both relativistic and non-relativistic nature, drives the population distribution among these states. One such case is demonstrated in this work for the intermediate-spin Fe(III) trigonal-bipyramidal complex. A quantum dynamical investigation of the photo-deactivation mechanism in the Fe(III) system is presented using the multi-configurational time-dependent Hartree approach based on the vibronic Hamiltonian whose coupling terms are derived from the state-averaged complete active space self-consistent field/complete active space with second-order perturbation theory (CASPT2) calculations and spin–orbit coupling of the scalar-relativistic CASPT2 states. The results of this study show that the presence of a strong (non-relativistic) vibronic coupling between the optically bright intermediate-spin state and other low-lying states of the same spin-multiplicity overpowers the spin–orbit coupling between the intermediate-spin and high-spin states, thereby lowering the chances of spin-crossover while exhibiting ultrafast relaxation among the intermediate-spin states. In a special case, where the population transfer pathway via the non-relativistic vibronic coupling is blocked, the probability of the spin-crossover is found to increase. This suggests that a careful modification of the complex by incorporation of heavier atoms with stronger relativistic effects can enhance the spin-crossover potential of Fe(III) intermediate-spin complexes.
Collapse
Affiliation(s)
- Kishan Kumar Dakua
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Karunamoy Rajak
- Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
8
|
Luo QC, Ge N, Zhai YQ, Wang T, Sun L, Sun Q, Li F, Ouyang Z, Wang Z, Zheng YZ. A C,S Bonded Quasi-Two-Coordinate Chromium(II) Complex Showing Field-induced Slow Magnetic Relaxation Behaviour. Dalton Trans 2022; 51:9218-9222. [DOI: 10.1039/d2dt01131j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C,S bonded quasi-two-coordinate Cr(II) complex, Cr(SAr*)2 (HSAr* = HSC6H3-2,6(C6H2-2,4,6-Pri3)2), has been successfully synthesized. Magnetic, high-frequency / field electron paramagnetic resonance (HF-EPR) experiments and ab initio calculation studies show that...
Collapse
|
9
|
Alessio M, Krylov AI. Equation-of-Motion Coupled-Cluster Protocol for Calculating Magnetic Properties: Theory and Applications to Single-Molecule Magnets. J Chem Theory Comput 2021; 17:4225-4241. [PMID: 34191507 DOI: 10.1021/acs.jctc.1c00430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present a new computational protocol for computing macroscopic magnetic properties of transition-metal complexes using the equation-of-motion coupled-cluster (EOM-CC) framework. The approach follows a two-step state-interaction scheme: we first compute zero-order states using nonrelativistic EOM-CC and then use these states to evaluate matrix elements of the spin-orbit and Zeeman operators. Diagonalization of the resulting Hamiltonian yields spin-orbit- and field-perturbed eigenstates. Temperature- and field-dependent magnetization and susceptibility are computed by numerical differentiation of the partition function. To compare with powder-sample experiments, these quantities are numerically averaged over field orientations. We applied this protocol to several single-molecule magnets (SMMs) with Fe(II) and Fe(III) in trigonal pyramidal, linear, and trigonal bipyramidal coordination environments. We described the underlying electronic structure by the electron-attachment (EOM-EA) and spin-flip (EOM-SF) variants of EOM-CC. The computed energy barriers for spin inversion, and macroscopic magnetization and susceptibility agree well with experimental data. Trends in magnetic anisotropy and spin-reversal energy barriers are explained in terms of a molecular orbital picture rigorously distilled from spinless transition density matrices between many-body states. The results illustrate excellent performances of EOM-CC in describing magnetic behavior of mononuclear transition-metal SMMs.
Collapse
Affiliation(s)
- Maristella Alessio
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
10
|
Antkowiak M, Majee MC, Maity M, Mondal D, Kaj M, Lesiów M, Bieńko A, Kronik L, Chaudhury M, Kamieniarz G. Generalized Heisenberg-Type Magnetic Phenomena in Coordination Polymers with Nickel–Lanthanide Dinuclear Units. THE JOURNAL OF PHYSICAL CHEMISTRY C 2021; 125:11182-11196. [DOI: 10.1021/acs.jpcc.1c01947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Affiliation(s)
- Michał Antkowiak
- Faculty of Physics, A. Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Mithun Chandra Majee
- Banwarilal Bhalotia College, Kazi Nazrul University, Asansol, West Bengal-713303, India
| | - Manoranjan Maity
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Dhrubajyoti Mondal
- Department of Chemistry, Government General Degree College Mangalkote, University of Burdwan, Burdwan, West Bengal-713143, India
| | - Michalina Kaj
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Monika Lesiów
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610000, Israel
| | - Muktimoy Chaudhury
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Grzegorz Kamieniarz
- Faculty of Physics, A. Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610000, Israel
| |
Collapse
|
11
|
Wang P, Saber MR, VanNatta PE, Yap GPA, Popescu CV, Scarborough CC, Kieber-Emmons MT, Dunbar KR, Riordan CG. Molecular and Electronic Structures and Single-Molecule Magnet Behavior of Tris(thioether)-Iron Complexes Containing Redox-Active α-Diimine Ligands. Inorg Chem 2021; 60:6480-6491. [PMID: 33840189 DOI: 10.1021/acs.inorgchem.1c00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporating radical ligands into metal complexes is one of the emerging trends in the design of single-molecule magnets (SMMs). While significant effort has been expended to generate multinuclear transition metal-based SMMs with bridging radical ligands, less attention has been paid to mononuclear transition metal-radical SMMs. Herein, we describe the first α-diiminato radical-containing mononuclear transition metal SMM, namely, [κ2-PhTttBu]Fe(AdNCHCHNAd) (1), and its analogue [κ2-PhTttBu]Fe(CyNCHCHNCy) (2) (PhTttBu = phenyltris(tert-butylthiomethyl)borate, Ad = adamantyl, and Cy = cyclohexyl). 1 and 2 feature nearly identical geometric and electronic structures, as shown by X-ray crystallography and electronic absorption spectroscopy. A more detailed description of the electronic structure of 1 was obtained through EPR and Mössbauer spectroscopies, SQUID magnetometry, and DFT, TD-DFT, and CAS calculations. 1 and 2 are best described as high-spin iron(II) complexes with antiferromagnetically coupled α-diiminato radical ligands. A strong magnetic exchange coupling between the iron(II) ion and the ligand radical was confirmed in 1, with an estimated coupling constant J < -250 cm-1 (J = -657 cm-1, DFT). Calibrated CAS calculations revealed that the ground-state Fe(II)-α-diiminato radical configuration has significant ionic contributions, which are weighted specifically toward the Fe(I)-neutral α-diimine species. Experimental data and theoretical calculations also suggest that 1 possesses an easy-axis anisotropy, with an axial zero-field splitting parameter D in the range from -4 to-1 cm-1. Finally, dynamic magnetic studies show that 1 exhibits slow magnetic relaxation behavior with an energy barrier close to the theoretical maximum, 2|D|. These results demonstrate that incorporating strongly coupled α-diiminato radicals into mononuclear transition metal complexes can be an effective strategy to prepare SMMs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Mohamed R Saber
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States.,Department of Chemistry, Fayoum University, Fayoum 63514, Egypt
| | - Peter E VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Codrina V Popescu
- Department of Chemistry, University of Saint Thomas, 2115 Summit Avenue, Saint Paul, Minnesota 55105, United States
| | - Christopher C Scarborough
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.,Syngenta Crop Protection AG, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| | | | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Charles G Riordan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Khurana R, Gupta S, Ali ME. First-Principles Investigations of Magnetic Anisotropy and Spin-Crossover Behavior of Fe(III)-TBP Complexes. J Phys Chem A 2021; 125:2197-2207. [PMID: 33617261 DOI: 10.1021/acs.jpca.1c00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the ongoing effort to obtain mononuclear 3d-transition-metal complexes that manifest slow relaxation of magnetization and, hence, can behave as single-molecule magnets (SMMs), we have modeled 14 Fe(III) complexes based on an experimentally synthesized (PMe3)2FeCl3 complex [J. Am. Chem. Soc. 2017, 139 (46), 16474-16477], by varying the axial ligands with group XV elements (N, P, and As) and equatorial halide ligands from F, Cl, Br, and I. Out of these, nine complexes possess large zero field splitting (ZFS) parameter D in the range of -40 to -60 cm-1. The first-principles investigation of the ground-spin state applying density functional theory (DFT) and wave function-based multiconfigurations methods, e.g., SA-CASSCF/NEVPT2, are found to be quite consistent except for few delicate cases with near-degenerate spin states. In such cases, the hybrid B3LYP functional is found to be biased toward high-spin (HS) state. Altering the percentage of exact exchange admixed in the B3LYP functional leads to intermediate-spin (IS) ground state consistent with the multireference calculations. The origin of large zero field splitting (ZFS) in the Fe(III)-based trigonal bipyramidal (TBP) complexes is investigated. Furthermore, a number of complexes are identified with very small ΔGHS-ISadia. values indicating the possible spin-crossover phenomenon between the bistable spin states.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Sameer Gupta
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
13
|
Kong QR, Li D, Liu XL, Zhao HX, Ren YP, Long LS, Zheng LS. Magnetodielectric Response in a Layered Mixed-Valence Ferrimagnetic Molecular Compound. Inorg Chem 2021; 60:3565-3571. [PMID: 33619966 DOI: 10.1021/acs.inorgchem.0c02549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The magnetodielectric effect is closely related to multiferroic or magnetoelectric coupling; thus, it can be used to predict magnetoelectric coupling, especially in compounds with special magnetic properties. The magnetodielectric response can often be used to predict many interesting and meaningful physical coupling mechanisms. Therefore, fabricating magnetodielectric materials is an effective step toward the development of magnetoelectric materials. Herein, we synthesize the mixed-valence layered ferrimagnetic molecular compound (C6N2H14)FeIII2FeIIF8(HCOO)2 (1) and demonstrate that it exhibits both slow magnetic relaxation behavior and long-range magnetic order. This long-range order occurs because of the coexistence and competition between two typical magnetic interactions, namely, an FeIII-F-FeII superexchange and a long-distance superexchange FeII-O-C-O-FeIII-F-FeIII path in the interlayer and interchain spin frustration. Notably, this compound also demonstrates two abnormal dielectric relaxation processes: the first process is dominated by dynamic guest cations, while the other process is related to the increasing magnetic correlation. Over a wide temperature range below 170 K, the magnetodielectric effect reveals that the magnetic correlation maybe promotes electron dynamics and leads to magnetodielectric coupling. These findings pave a novel path for designing magnetodielectric molecular materials.
Collapse
Affiliation(s)
- Qing-Rong Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Dong Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiao-Lin Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hai-Xia Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yan-Ping Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
14
|
Su QQ, Yuan Q, Wu XF, Chen SH, Xiang J, Jin XX, Wang LX, Wang BW, Gao S, Lau TC. Slow magnetic relaxation in structurally similar mononuclear 8-coordinate Fe(II) and Fe(III) compounds. Chem Commun (Camb) 2021; 57:781-784. [PMID: 33355553 DOI: 10.1039/d0cc07004a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A pair of structurally-similar and stable 8-coordinate high-spin Fe(ii) and Fe(iii) compounds have been obtained. Both compounds exhibit field-induced slow magnetic relaxation behaviour. The Fe(iii) compound represents the first example of 8-coordinate Fe(iii) single-molecule magnets (SMM).
Collapse
Affiliation(s)
- Qian-Qian Su
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Qiong Yuan
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Si-Huai Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, P. R. China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Li-Xin Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China.
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China. and South China University of Technology, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
15
|
Rajnák C, Titiš J, Moncol’ J, Valigura D, Boča R. Effect of the Distant Substituent to Slow Magnetic Relaxation of Pentacoordinate Fe(III) Complexes. Inorg Chem 2020; 59:14871-14878. [DOI: 10.1021/acs.inorgchem.0c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Ján Moncol’
- Institute of Inorganic Chemistry, FCHPT, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Dušan Valigura
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| |
Collapse
|
16
|
Sarkar A, Dey S, Rajaraman G. Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe II , Co II , and Ni II Single-Ion Magnets. Chemistry 2020; 26:14036-14058. [PMID: 32729641 DOI: 10.1002/chem.202003211] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Since the last decade, the focus in the area of single-molecule magnets (SMMs) has been shifting constructively towards the development of single-ion magnets (SIMs) based on transition metals and lanthanides. Although ground-breaking results have been witnessed for DyIII -based SIMs, significant results have also been obtained for some mononuclear transition metal SIMs. Among others, studies based on CoII ion are very prominent as they often exhibit high magnetic anisotropy or zero-field splitting parameters and offer a large barrier height for magnetisation reversal. Although CoII possibly holds the record for having the largest number of zero-field SIMs known for any transition metal ion, controlling the magnetic anisotropy in these systems are is still a challenge. In addition to the modern spectroscopic techniques, theoretical studies, especially ab initio CASSCF/NEVPT2 approaches, have been used to uncover the electronic structure of various CoII SIMs. In this article, with some selected examples, the aim is to showcase how varying the coordination number from two to eight, and the geometry around the CoII centre alters the magnetic anisotropy. This offers some design principles for the experimentalists to target new generation SIMs based on the CoII ion. Additionally, some important FeII /FeIII and NiII complexes exhibiting large magnetic anisotropy and SIM properties are also discussed.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
17
|
Viciano‐Chumillas M, Blondin G, Clémancey M, Krzystek J, Ozerov M, Armentano D, Schnegg A, Lohmiller T, Telser J, Lloret F, Cano J. Single‐Ion Magnetic Behaviour in an Iron(III) Porphyrin Complex: A Dichotomy Between High Spin and 5/2–3/2 Spin Admixture. Chemistry 2020; 26:14242-14251. [DOI: 10.1002/chem.202003052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 11/09/2022]
Affiliation(s)
| | - Geneviève Blondin
- CNRS, CEA, IRIG, CBM Université Grenoble Alpes, CEA-Grenoble 38000 Grenoble France
| | - Martin Clémancey
- CNRS, CEA, IRIG, CBM Université Grenoble Alpes, CEA-Grenoble 38000 Grenoble France
| | - Jurek Krzystek
- National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC) Università della Calabria 87030 Rende, Cosenza Italy
| | - Alexander Schnegg
- EPR Research Group MPI for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim Ruhr Germany
| | - Thomas Lohmiller
- EPR4Energy Joint Lab Department Spins in Energy Conversion and Quantum Information Science Helmholtz-Zentrum Berlin für Materialien und Energie Kekuléstrasse 5 12489 Berlin Germany
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences Roosevelt University 430 S. Michigan Avenue Chicago IL 60605 USA
| | - Francesc Lloret
- Institut de Ciència Molecular (ICMol) Universitat de València 46980 Paterna Spain
| | - Joan Cano
- Institut de Ciència Molecular (ICMol) Universitat de València 46980 Paterna Spain
| |
Collapse
|
18
|
Yao B, Lu F, Gan DX, Liu S, Zhang YQ, Deng YF, Zhang YZ. Incorporating Trigonal-Prismatic Cobalt(II) Blocks into an Exchange-Coupled [Co 2Cu] System. Inorg Chem 2020; 59:10389-10394. [PMID: 32700532 DOI: 10.1021/acs.inorgchem.0c01151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taking advantage of a rigid tetradentate ligand of bis(pyrazoly)(3-pyrazolypyridinyl)methane (PyPz3) and the [CuII(opba)]2- unit [opba4- = o-phenylenebis(oxamato)], the trinuclear complex [{CoII(PyPz3)}2CuII(opba)][ClO4]2·5MeCN·MeOH (1) was constructed, in which the CoII centers adopt a trigonal-prismatic geometry, while considerable intramolecular magnetic coupling was successfully introduced through the oxamido bridges, representing another very first example of single-molecule magnets marrying both selected coordination geometry and magnetic exchanges.
Collapse
Affiliation(s)
- Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Fang Lu
- Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - De-Xuan Gan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
19
|
Yao B, Singh MK, Deng YF, Wang YN, Dunbar KR, Zhang YZ. Trigonal Prismatic Cobalt(II) Single-Ion Magnets: Manipulating the Magnetic Relaxation Through Symmetry Control. Inorg Chem 2020; 59:8505-8513. [DOI: 10.1021/acs.inorgchem.0c00950] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Mukesh Kumar Singh
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi-Nuo Wang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Kim R. Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
20
|
Deng YF, Singh MK, Gan D, Xiao T, Wang Y, Liu S, Wang Z, Ouyang Z, Zhang YZ, Dunbar KR. Probing the Axial Distortion Effect on the Magnetic Anisotropy of Octahedral Co(II) Complexes. Inorg Chem 2020; 59:7622-7630. [DOI: 10.1021/acs.inorgchem.0c00531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mukesh Kumar Singh
- Department of Chemistry, Texas A & M University, College Station, Texas 77842, United States
| | - Dexuan Gan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tongtong Xiao
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yinuo Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kim R. Dunbar
- Department of Chemistry, Texas A & M University, College Station, Texas 77842, United States
| |
Collapse
|
21
|
Mondal A, Wu S, Sato O, Konar S. Effect of Axial Ligands on Easy‐Axis Anisotropy and Field‐Induced Slow Magnetic Relaxation in Heptacoordinated Fe
II
Complexes. Chemistry 2020; 26:4780-4789. [DOI: 10.1002/chem.201905166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Arpan Mondal
- Department of ChemistryIndian Institute of, Science Education and Research, Bhopal Bhopal By-pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Shu‐Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCSKyushu University 744 Motooka Nishi-ku 819-0395 Fukuoka Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCSKyushu University 744 Motooka Nishi-ku 819-0395 Fukuoka Japan
| | - Sanjit Konar
- Department of ChemistryIndian Institute of, Science Education and Research, Bhopal Bhopal By-pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
22
|
Schoch A, Burkhardt L, Schoch R, Stührenberg K, Bauer M. Hard X-ray spectroscopy: an exhaustive toolbox for mechanistic studies (?). Faraday Discuss 2020; 220:113-132. [PMID: 31532420 DOI: 10.1039/c9fd00070d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Established and recent hard X-ray spectroscopic methods in the form of conventional X-ray absorption near edge structure spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS), and the photon-in/photon-out techniques high energy resolution fluorescence detection XANES and valence-to-core X-ray emission spectroscopy (VtC-XES) provide unique opportunities to study mechanisms in metal-organic reactions. The combination of these techniques allows the determination of the local geometric and electronic structures in the form of the numbers of nearest neighbours, their types and distances around an X-ray absorbing atom and the highest occupied and lowest unoccupied molecular levels. Different sample cells for this purpose, which allow high pressure, electrochemical or multi-spectroscopic measurements under inert conditions, are presented and discussed. The potential of HERFD-XANES and VtC-XES to eliminate limitations of conventional EXAFS spectroscopy is established with case studies on the Hieber anion [Fe(CO)3(NO)]- and the iron hydride complex [Fe(CO)H(NO)(PPh3)2]. With VtC-XES the formation of an allyl complex by reaction of [Fe(CO)3(NO)]- in a catalytic nucleophilic substitution reaction can be followed. Combination of HERFD-XANES and VtC-XES allows the identification and investigation of hydride species, as well as their fate in chemical reactions. On the other hand, in order to investigate the active species formation in iron-catalysed cross coupling reactions, conventional XANES and EXAFS are the method of choice for the moment. For all examples, the advantages and limitations of the hard X-ray toolbox are commented on and the value of the individual methods are compared.
Collapse
Affiliation(s)
- Anke Schoch
- Paderborn University, Department of Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | | | | | | | | |
Collapse
|
23
|
Zheng LL, Wang JF, Wang J, Zhou AJ, Liao CX, Hu S. Cu2+-promoted nucleophilic addition of pyrazole to cyano group. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Huang XC, Xu R, Chen YZ, Zhang YQ, Shao D. Two Four-Coordinate and Seven-Coordinate Co II Complexes Based on the Bidentate Ligand 1, 8-Naphthyridine Showing Slow Magnetic Relaxation Behavior. Chem Asian J 2019; 15:279-286. [PMID: 31793204 DOI: 10.1002/asia.201901395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/30/2019] [Indexed: 12/11/2022]
Abstract
For a long time, the cobalt(II) complex ([Co(napy)4 ](ClO4 )2 ) (napy=1, 8-naphthyridine) has been considered as an eight-coordinate complex without any structural proof. After careful considerations, two complexes [Co(napy)2 Cl2 ] (1) and [Co(napy)4 ](ClO4 )2 (2) based on the bidentate ligand napy were synthesized and structurally characterized. X-ray single-crystal structural determination showed that the cobalt(II) center in [Co(napy)2 Cl2 ] (1) is four-coordinate with a tetrahedral geometry (Td ), while [Co(napy)4 ](ClO4 )2 (2) is seven-coordinate rather than eight-coordinate with a capped trigonal prism geometry (C2v ). Direct-current (dc) magnetic data revealed that complexes 1 and 2 possess positive zero-field splitting (ZFS) parameters of 11.08 and 25.30 cm-1 , respectively, with easy-plane magnetic anisotropy. Alternating current(ac) susceptibility measurements revealed that both complexes showed slow magnetic relaxation behaviour. Theoretical calculations demonstrated that the presence of easy-plane magnetic anisotropy (D>0) for complexes 1 and 2 is in agreement with the experimental data. Furthermore, these results pave the way to obtain four-coordinate and seven-coordinate cobalt(II) single-ion magnets (SIMs) by using a bidentate ligand.
Collapse
Affiliation(s)
- Xing-Cai Huang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Rui Xu
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Yong-Zhi Chen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Dong Shao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
25
|
Roy Chowdhury S, Mishra S. Light-Induced Spin Crossover in an Intermediate-Spin Penta-Coordinated Iron(III) Complex. J Phys Chem A 2019; 123:9883-9892. [PMID: 31663743 DOI: 10.1021/acs.jpca.9b06490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
(PMe3)2FeCl3 is an Fe(III) complex that exists in the intermediate-spin ground state in a distorted trigonal bipyramidal geometry. An electronic state with high-spin configuration lies in close vicinity to the ground state, making it a potential spin crossover candidate. A mechanistic account of the spin crossover from the lowest quartet state (Q0) to the lowest sextet state (S1) of this complex is provided by exploring both thermal and light-induced pathways. The presence of a large barrier between the two spin states suggests a possible thermal spin crossover at a rather high temperature. The light-induced spin crossover is investigated by employing complete active space self-consistent field calculations together with dynamic correlation and spin-orbit coupling for the lowest seven quartet and lowest five sextet states. The system in the Q0 state upon light absorption is excited to the optically bright Q4 LMCT state. By following minimum energy pathways along the electronic states, two light-induced pathways for spin crossover are identified. From the Q4 state, the system can photo-regenerate the ground intermediate-spin state (Q0) through an internal conversion of Q4/Q3 followed by Q3/S1 and S1/Q0 intersystem crossings. In an alternate route, through Q4/S2 intersystem crossing followed by S2/S1 internal conversion, the system can complete the spin crossover from the Q0 to S1 state.
Collapse
Affiliation(s)
- Sabyasachi Roy Chowdhury
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| | - Sabyashachi Mishra
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| |
Collapse
|
26
|
Cui H, Lv W, Tong W, Chen X, Xue Z. Slow Magnetic Relaxation in a Mononuclear Five‐Coordinate Cu(II) Complex. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hui‐Hui Cui
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Wei Tong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions High Magnetic Field Laboratory of the Chinese Academy of Science Hefei 230031 Anhui China
| | - Xue‐Tai Chen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Zi‐Ling Xue
- Department of Chemistry University of Tennessee 37996 Knoxville Tennessee USA
| |
Collapse
|
27
|
Ma D, Peng G, Zhang YY, Li B. Field-induced slow magnetic relaxation in two-dimensional and three-dimensional Co(ii) coordination polymers. Dalton Trans 2019; 48:15529-15536. [PMID: 31314024 DOI: 10.1039/c9dt02070e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two coordination polymers formulated as [Co(1,4-bimb)0.5(5-aip)(H2O)]n (1) and [Co(1,4-bib)1.5(5-hip)(H2O)]n (2) (1,4-bimb = 1,4-bis(imidazol-1-ylmethyl)benzene, 5-aip = 5-aminoisophthalic acid, 1,4-bib = 1,4-bis(1-imidazolyl)benzene and 5-hip = 5-hydroxyisophthalic acid) have been prepared and structurally characterized. Complex 1 is a two-dimensional (2D) network where Co(ii) is six coordinate in a CoO4N2 coordination environment, while the structure of 2 consists of a three-dimensional (3D) framework built from mononuclear Co(ii) units with distorted octahedral geometry as nodes. Static magnetic studies show that first-order orbital angular momentum may play an important role in the magnetic properties of 1, whereas strong easy-axis anisotropy (D = -102 cm-1) was observed in 2. Alternating current (ac) susceptibility measurements demonstrate that both the complexes display field-induced single ion magnet (SIM) behavior.
Collapse
Affiliation(s)
- Deyun Ma
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, P. R. China
| | - Guo Peng
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China. and Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Ying-Ying Zhang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.
| |
Collapse
|
28
|
Ishizaki T, Fukuda T, Akaki M, Fuyuhiro A, Hagiwara M, Ishikawa N. Synthesis of a Neutral Mononuclear Four-Coordinate Co(II) Complex Having Two Halved Phthalocyanine Ligands That Shows Slow Magnetic Relaxations under Zero Static Magnetic Field. Inorg Chem 2019; 58:5211-5220. [DOI: 10.1021/acs.inorgchem.9b00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mitsuru Akaki
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Fuyuhiro
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Hagiwara
- Center for Advanced High Magnetic Field Science (AHMF), Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
29
|
Rajnák C, Titiš J, Moncoľ J, Renz F, Boča R. Slow magnetic relaxation in a high-spin pentacoordinate Fe(iii) complex. Chem Commun (Camb) 2019; 55:13868-13871. [DOI: 10.1039/c9cc06610a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mononuclear pentacoordinate iron(iii) complex shows slow magnetic relaxation with three relaxation channels.
Collapse
Affiliation(s)
- Cyril Rajnák
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- SK-917 01 Trnava
- Slovakia
| | - Ján Titiš
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- SK-917 01 Trnava
- Slovakia
| | - Ján Moncoľ
- Institute of Inorganic Chemistry
- Slovak University of Technology
- SK-812 37 Bratislava
- Slovakia
| | - Franz Renz
- Institute of Inorganic Chemistry
- Leibniz University
- D-30167 Hannover
- Germany
| | - Roman Boča
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- SK-917 01 Trnava
- Slovakia
| |
Collapse
|
30
|
Roy Chowdhury S, Mishra S. Ab initioinvestigation of magnetic anisotropy in intermediate spin iron(iii) complexes. J Chem Phys 2018; 149:234302. [DOI: 10.1063/1.5050037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
31
|
Chen L, Song J, Zhao W, Yi G, Zhou Z, Yuan A, Song Y, Wang Z, Ouyang ZW. A mononuclear five-coordinate Co(ii) single molecule magnet with a spin crossover between the S = 1/2 and 3/2 states. Dalton Trans 2018; 47:16596-16602. [PMID: 30417917 DOI: 10.1039/c8dt03783c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although a great number of single-ion magnets (SIMs) and spin-crossover (SCO) compounds have been discovered, multifunctional materials with the combination of SCO and SIM properties are extremely scarce. Here magnetic studies have been carried out for a mononuclear, five-coordinate cobalt(ii) complex [Co(3,4-lut)4Br]Br (1) with square pyramidal geometry. Direct-current magnetic measurement confirms the spin transition between the S = 1/2 and 3/2 states in the range of 150-290 K with a small hysteresis loop. Frequency- and temperature-dependent alternating-current magnetic susceptibility reveals slow magnetization relaxation under an applied dc field of 3000 Oe. The work here presents the first instance of the five-coordinate mononuclear cobalt(ii)-based SIM exhibiting the thermally induced complete SCO.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Simon A. Cotton
- School of Chemistry, University of Birmingham, Birmingham, UK
| |
Collapse
|
33
|
Stucke N, Näther C, Tuczek F. Crystal structure of [{FeCl 3} 2(μ-PC HP) 2] [PC HP = 1,3-bis-(2-di-phenyl-phosphanyleth-yl)-3 H-imidazol-1-ium] with an unknown solvent. Acta Crystallogr E Crystallogr Commun 2018; 74:1686-1690. [PMID: 30443407 PMCID: PMC6218919 DOI: 10.1107/s205698901801472x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022]
Abstract
The crystal structure of the title compound, bis-{μ-1,3-bis-[2-(di-phenyl-phosphan-yl)eth-yl]-1H-imidazole-κ2 P:P'}bis-[tri-chlorido-iron(III)], [Fe2Cl6(C31H31N2P2)2] or [{FeCl3}2(μ-PCHP)2] (PCHP = C31H31N2P2), consists of dinuclear complexes that are located about centres of inversion. The FeIII cation is in a distorted trigonal-bipyramidal coordination with three chloride ligands located in the trigonal plane and two P atoms of symmetry-related PCHP ligands occupying the axial positions. Within the centrosymmetric complex, a pair of intra-molecular C-H⋯Cl hydrogen bonds between aromatic CH groups and chloride ligands are found. Individual complexes are linked into layers parallel to (01) by inter-molecular C-H⋯Cl hydrogen bonds. No pronounced inter-molecular inter-actions occur between these layers. This arrangement leaves space for disordered solvent mol-ecules. Electron density associated with these additional solvent mol-ecules was removed with the SQUEEZE procedure in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9-18]. The given chemical formula and other crystal data do not take into account the unknown solvent mol-ecule(s).
Collapse
Affiliation(s)
- Nadja Stucke
- Institut für Anorganische Chemie, Universität Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Universität Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie, Universität Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| |
Collapse
|
34
|
Minato T, Aravena D, Ruiz E, Yamaguchi K, Mizuno N, Suzuki K. Effect of Heteroatoms on Field-Induced Slow Magnetic Relaxation of Mononuclear FeIII (S = 5/2) Ions within Polyoxometalates. Inorg Chem 2018; 57:6957-6964. [DOI: 10.1021/acs.inorgchem.8b00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuo Minato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla
40, Correo 33, Santiago, Chile
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Liu MJ, Yuan J, Tao J, Zhang YQ, Liu CM, Kou HZ. Rhodamine Salicylaldehyde Hydrazone Dy(III) Complexes: Fluorescence and Magnetism. Inorg Chem 2018; 57:4061-4069. [DOI: 10.1021/acs.inorgchem.8b00219] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mei-Jiao Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Juan Yuan
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jin Tao
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
36
|
Feng M, Tong ML. Single Ion Magnets from 3d to 5f: Developments and Strategies. Chemistry 2018; 24:7574-7594. [PMID: 29385282 DOI: 10.1002/chem.201705761] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 12/21/2022]
Abstract
Single-ion magnets (SIMs), exhibiting slow magnetization relaxation in the absence of the magnetic field, originate from their single spin-carrier centre. In pursuit of high-performance magnetic properties, such as high spin-reversal barrier and high blocking temperature, various metal centres were investigated to establish SIMs, including 3d and 5d transition metal ions, 4f lanthanide ions, and 5f actinide ions, which possess unique zero-field splitting and magnetic properties. Therefore, proper ligand field is of great importance to different types of metals. In the given great breakthroughs since the first SIM, [Pc2 Tb]- (Pc=dianion of phthalocyanine), was reported, strategies of ligand field design have emerged. In this review, the developments of SIMs with different metal centres are summarized, as well as the possible strategies.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
37
|
Huang XC, Qi ZY, Ji CL, Guo YM, Yan SC, Zhang YQ, Shao D, Wang XY. High-coordinate CoII and FeII compounds constructed from an asymmetric tetradentate ligand show slow magnetic relaxation behavior. Dalton Trans 2018; 47:8940-8948. [DOI: 10.1039/c8dt01829d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A seven-coordinate CoII compound and an eight-coordinate FeII compound based on an asymmetric tetradentate ligand have been reported, and both of them exhibited slow magnetic relaxation behaviour.
Collapse
Affiliation(s)
- Xing-Cai Huang
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Zi-Yi Qi
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Cheng-Long Ji
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Yi-Ming Guo
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Shi-Chang Yan
- School of Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng
- China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Dong Shao
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Centre of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Centre of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
38
|
Ge N, Zhai YQ, Deng YF, Ding YS, Wu T, Wang ZX, Ouyang Z, Nojiri H, Zheng YZ. Rationalization of single-molecule magnet behavior in a three-coordinate Fe(iii) complex with a high-spin state (S = 5/2). Inorg Chem Front 2018. [DOI: 10.1039/c8qi00701b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A trigonal-planar Fe(iii) complex Fe[N(SiMe3)2]3 with a high spin state (S = 5/2) was investigated by magnetic and HF-EPR measurements, exhibiting distinct dynamic magnetic behaviour.
Collapse
Affiliation(s)
- Ning Ge
- Frontier Institute of Science and Technology (FIST)
- State Key Laboratory of Mechanical Behavior for Materials
- MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter
- Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of Science
- Xi'an Jiaotong University
| | - Yuan-Qi Zhai
- Frontier Institute of Science and Technology (FIST)
- State Key Laboratory of Mechanical Behavior for Materials
- MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter
- Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of Science
- Xi'an Jiaotong University
| | - Yi-Fei Deng
- Frontier Institute of Science and Technology (FIST)
- State Key Laboratory of Mechanical Behavior for Materials
- MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter
- Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of Science
- Xi'an Jiaotong University
| | - You-Song Ding
- Frontier Institute of Science and Technology (FIST)
- State Key Laboratory of Mechanical Behavior for Materials
- MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter
- Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of Science
- Xi'an Jiaotong University
| | - Tao Wu
- Frontier Institute of Science and Technology (FIST)
- State Key Laboratory of Mechanical Behavior for Materials
- MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter
- Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of Science
- Xi'an Jiaotong University
| | - Zhen-Xing Wang
- National High Magnetic Field Center
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Zhongwen Ouyang
- National High Magnetic Field Center
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Hiroyuki Nojiri
- Institute for Materials Research (IMR)
- Tohoku University
- Tohoku 980-8577
- Japan
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology (FIST)
- State Key Laboratory of Mechanical Behavior for Materials
- MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter
- Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of Science
- Xi'an Jiaotong University
| |
Collapse
|