1
|
Wang SC, Liu L, Duan M, Xie W, Han J, Xue Y, Wang Y, Wang X, Zhu S. Regio- and Enantioselective Nickel-Catalyzed Ipso- and Remote Hydroamination Utilizing Organic Azides as Amino Sources for the Synthesis of Primary Amines. J Am Chem Soc 2024; 146:30626-30636. [PMID: 39442777 DOI: 10.1021/jacs.4c12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Primary amines serve as key synthetic precursors to most other N-containing compounds, which are important in organic and medicinal chemistry. Herein, we present a NiH-catalyzed mild ipso- and remote hydroamination technique that utilizes organic azides as deprotectable primary amine sources. This strategy offers a highly flexible platform for the efficient construction of α-chiral branched primary amines, as well as linear primary amines.
Collapse
Affiliation(s)
- Shi-Chao Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Lin Liu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Weijia Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jiabin Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuhang Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaotai Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Wang C, Chen Z, Sun J, Tong L, Wang W, Song S, Li J. Sulfonamide-directed site-selective functionalization of unactivated C(sp 3)-H enabled by photocatalytic sequential electron/proton transfer. Nat Commun 2024; 15:5087. [PMID: 38876986 PMCID: PMC11178871 DOI: 10.1038/s41467-024-49337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024] Open
Abstract
The generation of alkyl radical from C(sp3)-H substrates via hydrogen atom abstraction represents a desirable yet underexplored strategy in alkylation reaction since involving common concerns remain adequately unaddressed, such as the harsh reaction conditions, limited substrate scope, and the employment of noble metal- or photo-catalysts and stoichiometric oxidants. Here, we utilize the synergistic strategy of photoredox and hydrogen atom transfer (HAT) catalysis to accomplish a general and practical functionalization of unactived C(sp3)-H centers with broad reaction scope, high functional group compatibility, and operational simplicity. A combination of validation experiments and density functional theory reveals that the N-centered radicals, generated from free N - H bond in a stepwise electron/proton transfer event, are the key intermediates that enable an intramolecular 1,5-HAT or intermolecular HAT process for nucleophilic carbon-centered radicals formation to achieve heteroarylation, alkylation, amination, cyanation, azidation, trifluoromethylthiolation, halogenation and deuteration. The practical value of this protocol is further demonstrated by the gram-scale synthesis and the late-stage functionalization of natural products and drug derivatives.
Collapse
Affiliation(s)
- Chaodong Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. of China
| | - Zhi Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. of China
| | - Jie Sun
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. of China
| | - Luwei Tong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. of China
| | - Wenjian Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. of China
| | - Shengjie Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. of China
| | - Jianjun Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. of China.
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou, P. R. of China.
| |
Collapse
|
3
|
Zhang Y, Chen SS, Li KD, Huang HM. Cyclic Amine Synthesis via Catalytic Radical-Polar Crossover Cycloadditions. Angew Chem Int Ed Engl 2024; 63:e202401671. [PMID: 38418423 DOI: 10.1002/anie.202401671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
The rapid assembly of valuable cyclic amine architectures in a single step from simple precursors has been recognized as an ideal platform in term of efficiency and sustainability. Although a vast number of studies regarding cyclic amine synthesis has been reported, new synthetic disconnection approaches are still high in demand. Herein, we report a catalytic radical-polar crossover cycloaddition to cyclic amine synthesis triggered from primary sulfonamide under photoredox condition. This newly developed disconnection, comparable to established synthetic approaches, will allow to construct β, β-disubstituted cyclic amine and β-monosubstituted cyclic amine derivatives efficiently. This study highlights the unique utility of primary sulfonamide as a bifunctional reagent, which acts as a radical precursor and a nucleophile. The open-shell methodology demonstrates broad tolerance to various functional groups, drug derivatives and natural products in an economically and sustainable fashion.
Collapse
Affiliation(s)
- Ying Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| | - Shu-Sheng Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| | - Kai-Dian Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| |
Collapse
|
4
|
Xiong N, Zhou C, Li S, Wang S, Ke C, Rong Z, Li Y, Zeng R. Iron-Catalyzed Csp 2-Csp 3 Cross-Coupling via Double Decarboxylation: One Step Synthesis of Remote Polar Alkenes. Org Lett 2024; 26:2029-2033. [PMID: 38437519 DOI: 10.1021/acs.orglett.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Herein, we report an efficient photoinduced iron-catalyzed strategy for cross-couplings of alkyl carboxylic and acrylic acids, which provides a powerful tool for the synthesis of a variety of alkenes with polar functional groups. This novel synthetic methodology can also be applied to the preparation of ketones by using α-keto acids. Mechanistic experiments revealed preliminary mechanistic details. Diverse functionalization could be achieved, which may help streamline the synthesis of complex analogues for drug discovery.
Collapse
Affiliation(s)
- Ni Xiong
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo 315100, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chengxiang Zhou
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Shiyi Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Zhouting Rong
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yang Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
5
|
Okamoto K, Shida N, Atobe M. Additive-controlled chemoselective inter-/intramolecular hydroamination via electrochemical PCET process. Beilstein J Org Chem 2024; 20:264-271. [PMID: 38379733 PMCID: PMC10877074 DOI: 10.3762/bjoc.20.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Electrochemically generated amidyl radical species produced distinct inter- or intramolecular hydroamination reaction products via a proton-coupled electron transfer (PCET) mechanism. Cyclic voltammetry (CV) analysis indicated that the chemoselectivity was derived from the size of the hydrogen bond complex, which consisted of the carbamate substrate and phosphate base, and could be controlled using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as an additive. These results provide fundamental insights for the design of PCET-based redox reaction systems under electrochemical conditions.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Graduate School of Engineering, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Naoki Shida
- Graduate School of Engineering, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Mahito Atobe
- Graduate School of Engineering, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| |
Collapse
|
6
|
Wagner-Carlberg N, Rovis T. Rhodium(III)-Catalyzed Remote Hydroamidation of Internal Alkenes via Chain Walking. ACS Catal 2023; 13:16337-16343. [PMID: 39006066 PMCID: PMC11238874 DOI: 10.1021/acscatal.3c05075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hydroamination of terminal alkenes represents a powerful and well-established way to introduce nitrogenous functionality to feedstock chemicals. Remote hydroamination reactions are far less known, and represent a way to functionalize unactivated C(sp3) centers distal to the site of the alkene. These transformations commonly take place via metal hydride-mediated chain walking, and as such, regioselectivity can be challenging. The remote introduction of amides is of particular interest due to their prevalence in pharmaceuticals. Herein we report a Rh(III)-catalyzed hydroamidation procedure to functionalize the terminal position of internal alkenes, using dioxazolones as amidation reagents and i-PrOH as a hydride source. The reaction proceeds with high yield and regioselectivity, and tolerates a variety of functionality. Regioconvergent synthesis of a single linear amide from a mixture of isomeric alkenes is demonstrated. Key to the development of this reaction was determining that inorganic bases poison the catalyst, and identifying a suitable trialkylamine replacement.
Collapse
Affiliation(s)
- Noah Wagner-Carlberg
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Tanaka N, Zhu JL, Valencia OL, Schull CR, Scheidt KA. Cooperative Carbene Photocatalysis for β-Amino Ester Synthesis. J Am Chem Soc 2023. [PMID: 37906227 DOI: 10.1021/jacs.3c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
β-Amino acids are useful building blocks of bioactive molecules, including peptidomimetics and pharmaceutical compounds. The current limited accessibility to β2,2-type amino acids which bear an α-quaternary center has limited their use in chemical synthesis and biological investigations. Disclosed herein is the development of a new N-heterocyclic carbene/photocatalyzed aminocarboxylation of olefins, affording β2,2-amino esters with high regioselectivity. The generation of nitrogen-centered radicals derived from simple imides via a sequence of deprotonation and single-electron oxidation allows for the subsequent addition to geminal-disubstituted olefins regioselectively. The intermediate tertiary radicals then cross-couple with a stabilized azolium-based radical generated in situ to efficiently construct the quaternary centers. Mechanistic studies, including Stern-Volmer fluorescence quenching experiments, support the proposed catalytic cycle.
Collapse
Affiliation(s)
- Nao Tanaka
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joshua L Zhu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Oniya L Valencia
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cullen R Schull
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Hu K, He YX, Lei ZY, Ran Y, Geng S, Chen LN, Pan L, Li YL, Huang F. Photocatalytic Intramolecular Alkene Hydroamination of N-Alkoxy Ureas: An Approach to Imidazolinones. J Org Chem 2023; 88:12727-12737. [PMID: 37596973 DOI: 10.1021/acs.joc.3c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Imidazolinones were obtained in good yields by intramolecular hydroamination of N-alkoxy ureas in the presence of an organic photocatalyst and an inorganic base. In this reaction, the N-alkoxy urea anion generated by deprotonation undergoes photocatalyzed single-electron-transfer oxidation to generate the corresponding radical, which cyclizes to afford the imidazolinone ring. This new protocol grants access to an array of complex molecules containing a privileged imidazolinone core.
Collapse
Affiliation(s)
- Kui Hu
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Yuan-Xiang He
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Zhen-Yao Lei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Yu Ran
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Shu Geng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Li-Na Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Li Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Feng Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| |
Collapse
|
9
|
Zhang CC, Wu HL, Yu XC, Wang LT, Zhou Y, Sun YB, Wei WT. Photoinduced Copper-Catalyzed Aminoalkylation of Amino-Pendant Olefins. Org Lett 2023; 25:5862-5868. [PMID: 37534703 DOI: 10.1021/acs.orglett.3c02119] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The combination of photo and copper catalysts has emerged as a novel paradigm in organic catalysis, which provides access to the acceleration of chemical synthesis. Herein, we describe an aminoalkylation of amino-dependent olefins with maleimides through a cooperative photo/copper catalytic system. In this report, the strategy allows the generation of a broad complex of functionalized nitrogenous molecules including oxazolidinones, 2-pyrrolidones, imidazolidinones, thiazolidinones, pyridines, and piperidines in the absence of an external photosensitizer and base. The approach is achieved through a photoinduced Cu(I)/Cu(II)/Cu(III) complex species of nitrogen nucleophiles, intermolecular radical addition, and hydrogen atom transfer (HAT) processes. The plausible mechanism is investigated by a series of control experiments and theoretical tests, including radical scavenging experiments, deuterium labeling experiments, ultraviolet-visible absorption, and cyclic voltammetry (CV) tests.
Collapse
Affiliation(s)
- Can-Can Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Hong-Li Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Xuan-Chi Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Ling-Tao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, P. R. China
| |
Collapse
|
10
|
Escorihuela J, Lledós A, Ujaque G. Anti-Markovnikov Intermolecular Hydroamination of Alkenes and Alkynes: A Mechanistic View. Chem Rev 2023; 123:9139-9203. [PMID: 37406078 PMCID: PMC10416226 DOI: 10.1021/acs.chemrev.2c00482] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 07/07/2023]
Abstract
Hydroamination, the addition of an N-H bond across a C-C multiple bond, is a reaction with a great synthetic potential. Important advances have been made in the last decades concerning catalysis of these reactions. However, controlling the regioselectivity in the amine addition toward the formation of anti-Markovnikov products (addition to the less substituted carbon) still remains a challenge, particularly in intermolecular hydroaminations of alkenes and alkynes. The goal of this review is to collect the systems in which intermolecular hydroamination of terminal alkynes and alkenes with anti-Markovnikov regioselectivity has been achieved. The focus will be placed on the mechanistic aspects of such reactions, to discern the step at which regioselectivity is decided and to unravel the factors that favor the anti-Markovnikov regioselectivity. In addition to the processes entailing direct addition of the amine to the C-C multiple bond, alternative pathways, involving several reactions to accomplish anti-Markovnikov regioselectivity (formal hydroamination processes), will also be discussed in this review. The catalysts gathered embrace most of the metal groups of the Periodic Table. Finally, a section discussing radical-mediated and metal-free approaches, as well as heterogeneous catalyzed processes, is also included.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departament
de Química Orgànica, Universitat
de València, 46100 Burjassot, Valencia, Spain
| | - Agustí Lledós
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Gregori Ujaque
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Hejna BG, Ganley JM, Shao H, Tian H, Ellefsen JD, Fastuca NJ, Houk KN, Miller SJ, Knowles RR. Catalytic Asymmetric Hydrogen Atom Transfer: Enantioselective Hydroamination of Alkenes. J Am Chem Soc 2023; 145:16118-16129. [PMID: 37432783 PMCID: PMC10544660 DOI: 10.1021/jacs.3c04591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
We report a highly enantioselective radical-based hydroamination of enol esters with sulfonamides jointly catalyzed by an Ir photocatalyst, Brønsted base, and tetrapeptide thiol. This method is demonstrated for the formation of 23 protected β-amino-alcohol products, achieving selectivities up to 97:3 er. The stereochemistry of the product is set through selective hydrogen atom transfer from the chiral thiol catalyst to a prochiral C-centered radical. Structure-selectivity relationships derived from structural variation of both the peptide catalyst and olefin substrate provide key insights into the development of an optimal catalyst. Experimental and computational mechanistic studies indicate that hydrogen-bonding, π-π stacking, and London dispersion interactions are contributing factors for substrate recognition and enantioinduction. These findings further the development of radical-based asymmetric catalysis and contribute to the understanding of the noncovalent interactions relevant to such transformations.
Collapse
Affiliation(s)
- Benjamin G. Hejna
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Huiling Shao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Haowen Tian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jonathan D. Ellefsen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Nicholas J. Fastuca
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Ariyarathna JP, Baskaran P, Chhikara A, Kaur N, Nguyen AM, Premathilaka SM, Huynh MM, Truong JT, Li W. Tunable [3+2] and [4+2] annulations for pyrrolidine and piperidine synthesis. Chem Commun (Camb) 2023; 59:6418-6421. [PMID: 37161704 PMCID: PMC10297810 DOI: 10.1039/d3cc01400b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
N-heterocycles are privileged pharmaceutical scaffolds in drug discovery and development. We disclose here divergent intermolecular coupling strategies that can access diverse N-heterocycles directly from olefins. The radical-to-polar mechanistic switching is key for the divergent cyclization processes. These distinctive annulations result in the coupling of alkenes with simple bifunctional reagents for divergent N-heterocycle syntheses.
Collapse
Affiliation(s)
- Jeewani P Ariyarathna
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Prabagar Baskaran
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Akanksha Chhikara
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Navdeep Kaur
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Alex M Nguyen
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Shashini M Premathilaka
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Michelle M Huynh
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Jonathon T Truong
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| | - Wei Li
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, USA.
| |
Collapse
|
13
|
Zhang G, He H, Chen X, Ni SF, Zeng R. Photoinduced Disulfide-Catalyzed Intramolecular Anti-Markovnikov Hydroamination through in Situ N-S Species. Org Lett 2023; 25:1600-1604. [PMID: 36853119 DOI: 10.1021/acs.orglett.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The photoinduced anti-Markovnikov hydroamination of olefins typically required photocatalysts with a high oxidative ability to initiate the single-electron process. Herein, we alternatively utilize bis(2,4,6-triisopropylphenyl) disulfide, an inexpensive reagent with relatively low oxidative ability, as a photo and hydrogen atom transfer catalyst to achieve intramolecular hydroamination. The mechanistic studies as well as the DFT calculations are consistent with a novel process involving N-centered radical generation through the homolysis of the in situ formed N-S species and subsequent cyclization. An array of diverse nitrogen-containing cycles could be obtained.
Collapse
Affiliation(s)
- Guoxiang Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hui He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, P. R. China
| | - Xiaoxiao Chen
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, P. R. China
| | - Rong Zeng
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
14
|
Pozhydaiev V, Vayer M, Fave C, Moran J, Lebœuf D. Synthesis of Unprotected β-Arylethylamines by Iron(II)-Catalyzed 1,2-Aminoarylation of Alkenes in Hexafluoroisopropanol. Angew Chem Int Ed Engl 2023; 62:e202215257. [PMID: 36541580 DOI: 10.1002/anie.202215257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
β-Arylethylamines are prevalent structural motifs in molecules exhibiting biological activity. Here we report a sequential one-pot protocol for the 1,2-aminoarylation of alkenes with hydroxylammonium triflate salts and (hetero)arenes. Unlike existing methods, this reaction provides a direct entry to unprotected β-arylethylamines with remarkable functional group tolerance, allowing key drug-oriented functional groups to be installed in a two-step process. The use of hexafluoroisopropanol as a solvent in combination with an iron(II) catalyst proved essential to reaching high-value nitrogen-containing molecules.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Marie Vayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, 75013, Paris, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
15
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
16
|
Wagner-Carlberg N, Rovis T. Rhodium(III)-Catalyzed Anti-Markovnikov Hydroamidation of Unactivated Alkenes Using Dioxazolones as Amidating Reagents. J Am Chem Soc 2022; 144:22426-22432. [PMID: 36453859 PMCID: PMC10583218 DOI: 10.1021/jacs.2c10552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The amide is one of the most prevalent functional groups in all of pharmaceuticals, and for this reason, reactions that introduce the amide moiety are of particular value. Intermolecular hydroamidation of alkenes remains an underexplored method for the synthesis of amide-containing compounds. The majority of hydroamidation procedures exhibit Markovnikov regioselectivity, while current methods for anti-Markovnikov hydroamidation are somewhat limited to activated alkene substrates or radical processes. Herein, we report a general method for the intermolecular anti-Markovnikov hydroamidation of unactivated alkenes under mild conditions, utilizing Rh(III) catalysis in conjunction with dioxazolone amidating reagents and isopropanol as an environmentally friendly hydride source. The reaction tolerates a wide range of functional groups and efficiently converts electron-deficient alkenes, styrenes, and 1,1-disubstituted alkenes, in addition to unactivated alkenes, to their corresponding linear amides. Mechanistic studies reveal a reversible rhodium hydride migratory insertion step, leading to exquisite selectivity for the anti-Markovnikov product.
Collapse
Affiliation(s)
- Noah Wagner-Carlberg
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
17
|
Xu EY, Werth J, Roos CB, Bendelsmith AJ, Sigman MS, Knowles RR. Noncovalent Stabilization of Radical Intermediates in the Enantioselective Hydroamination of Alkenes with Sulfonamides. J Am Chem Soc 2022; 144:18948-18958. [PMID: 36197450 PMCID: PMC9668373 DOI: 10.1021/jacs.2c07099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Noncovalent interactions (NCIs) are critical elements of molecular recognition in a wide variety of chemical contexts. While NCIs have been studied extensively for closed-shell molecules and ions, very little is understood about the structures and properties of NCIs involving free radical intermediates. In this report, we describe a detailed mechanistic study of the enantioselective radical hydroamination of alkenes with sulfonamides and present evidence suggesting that the basis for asymmetric induction in this process arises from attractive NCIs between a neutral sulfonamidyl radical intermediate and a chiral phosphoric acid (CPA). We describe experimental, computational, and data science-based evidence that identifies the specific radical NCIs that form the basis for the enantioselectivity. Kinetic studies support that C-N bond formation determines the enantioselectivity. Density functional theory investigations revealed the importance of both strong H-bonding between the CPA and the N-centered radical and a network of aryl-based NCIs that serve to stabilize the favored diastereomeric transition state. The contributions of these specific aryl-based NCIs to the selectivity were further confirmed through multivariate linear regression analysis by comparing the measured enantioselectivity to computed descriptors. These results highlight the power of NCIs to enable high levels of enantioselectivity in reactions involving uncharged open-shell intermediates and expand our understanding of radical-molecule interactions.
Collapse
Affiliation(s)
- Eve Y. Xu
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, United States
| | - Jacob Werth
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, United States
| | - Andrew J. Bendelsmith
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, United States
| |
Collapse
|
18
|
Wang H, Tian YM, König B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat Rev Chem 2022; 6:745-755. [PMID: 37117495 DOI: 10.1038/s41570-022-00421-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Endergonic photocatalysis is the use of light to perform catalytic reactions that are thermodynamically unfavourable. While photocatalysis has become a powerful tool in facilitating chemical transformations, the light-energy efficiency of these processes has not gathered much attention. Exergonic photocatalysis does not take full advantage of the light energy input, producing low-energy products and heat, whereas endergonic photocatalysis incorporates a portion of the photon energy into the reaction, yielding products that are higher in free energy than the reactants. Such processes can enable catalytic, atom-economic syntheses of reactive compounds from bench-stable materials. With respect to environmental friendliness and carbon neutrality, endergonic photocatalysis is also of interest to large-scale industrial manufacturing, where better energy efficiency, less waste and value addition are highly sought. We therefore assess here the thermochemistry of several classes of reported photocatalytic transformations to showcase current advances in endergonic photocatalysis and point to their industrial potential.
Collapse
|
19
|
Jia SM, Huang YH, Wang ZL, Fan FX, Fan BH, Sun HX, Wang H, Wang F. Hydroamination of Unactivated Alkenes with Aliphatic Azides. J Am Chem Soc 2022; 144:16316-16324. [PMID: 36047787 DOI: 10.1021/jacs.2c07643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report here an efficient and highly diastereoselective intermolecular anti-Markovnikov hydroamination of unactivated alkenes with aliphatic azides in the presence of silane. The system tolerates a wide range of azides and alkenes and operates with alkene as limiting reagent. Mechanistic studies suggest a radical chain pathway that involves aminium radical formation, radical addition to alkenes and HAT from silane to β-aminium alkyl radical. The use of sterically bulky silane is proposed to contribute to the excellent diastereoselectivity for HAT. Computational analysis uncovers the reaction pathway of aliphatic azide activation with silyl radical for aminyl radical formation.
Collapse
Affiliation(s)
- Si-Ming Jia
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Hang Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhan-Lin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fang-Xu Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo-Han Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao-Xiang Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Li N, Li J, Qin M, Li J, Han J, Zhu C, Li W, Xie J. Highly selective single and multiple deuteration of unactivated C(sp 3)-H bonds. Nat Commun 2022; 13:4224. [PMID: 35869077 PMCID: PMC9307835 DOI: 10.1038/s41467-022-31956-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
Selective deuteration of unactivated C(sp3)-H bonds is a highly attractive but challenging subject of research in pharmaceutical chemistry, material science and synthetic chemistry. Reported herein is a practical, highly selective and economical efficient hydrogen/deuterium (H/D) exchange of unactivated C(sp3)-H bonds by synergistic photocatalysis and hydrogen atom transfer (HAT) catalysis. With the easily prepared PMP-substituted amides as nitrogen-centered radical precursors, a wide range of structurally diverse amides can undergo predictable radical H/D exchange smoothly with inexpensive D2O as the sole deuterium source, giving rise to the distal tertiary, secondary and primary C(sp3)-H bonds selectively deuterated products in yields of up to 99% and excellent D-incorporations. In addition to precise monodeuteration, this strategy can also achieve multideuteration of the substrates contain more than one remote C(sp3)-H bond, which opens a method to address multi-functionalization of distal unactivated C(sp3)-H bonds.
Collapse
Affiliation(s)
- Nian Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jinhang Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mingzhe Qin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiajun Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
21
|
Abstract
Synthetic chemists have long focused on selective C(sp 3)-N bond-forming approaches in response to the high value of this motif in natural products, pharmaceutical agents and functional materials. In recent years, visible light-induced protocols have become an important synthetic platform to promote this transformation under mild reaction conditions. These photo-driven methods rely on converting visible light into chemical energy to generate reactive but controllable radical species. This Review highlights recent advances in this area, mostly after 2014, with an emphasis placed on C(sp 3)-H bond activations, including amination of olefins and carbonyl compounds, and cross-coupling reactions.
Collapse
|
22
|
Allen AR, Poon JF, McAtee RC, Watson NB, Pratt DA, Stephenson CR. Mechanism of Visible Light-Mediated Alkene Aminoarylation with Arylsulfonylacetamides. ACS Catal 2022; 12:8511-8526. [DOI: 10.1021/acscatal.2c02577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anthony R. Allen
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, Ontario K1N 6N5, Canada
| | - Rory C. McAtee
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Nicholas B. Watson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, Ontario K1N 6N5, Canada
| | - Corey R.J. Stephenson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Li Q, Fang X, Pan R, Yao H, Lin A. Palladium-Catalyzed Asymmetric Sequential Hydroamination of 1,3-Enynes: Enantioselective Syntheses of Chiral Imidazolidinones. J Am Chem Soc 2022; 144:11364-11376. [PMID: 35687857 DOI: 10.1021/jacs.2c03620] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pd-catalyzed sequential hydroamination of readily available 1,3-enynes is reported. The redox-neutral process provides an efficient route to synthesize a broad scope of imidazolidinones, thiadiazolidines, and imidazolidines. Asymmetric sequential hydroamination generates a series of synthetically valuable, enantioenriched imidazolidinones. Mechanistic studies revealed that the transformation occurred via an intermolecular enyne hydroamination pathway to give an allene intermediate. Subsequent intramolecular hydroamination of the allene intermediate proceeded under the Curtin-Hammett principle to provide enantioenriched imidazolidinone products.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinxin Fang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Pan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
24
|
DiPucchio RC, Rosca SC, Schafer LL. Hydroaminoalkylation for the Catalytic Addition of Amines to Alkenes or Alkynes: Diverse Mechanisms Enable Diverse Substrate Scope. J Am Chem Soc 2022; 144:11459-11481. [PMID: 35731810 DOI: 10.1021/jacs.1c10397] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydroaminoalkylation is a powerful, atom-economic catalytic reaction for the reaction of amines with alkenes and alkynes. This C-H functionalization reaction allows for the atom-economic alkylation of amines using simple alkenes or alkynes as the alkylating agents. This transformation has significant potential for transformative approaches in the pharmaceutical, agrochemical, and fine chemical industries in the preparation of selectively substituted amines and N-heterocycles and shows promise in materials science for the synthesis of functional and responsive aminated materials. Different early transition-metal, late transition-metal, and photoredox catalysts mediate hydroaminoalkylation by distinct mechanistic pathways. These mechanistic insights have resulted in the development of new catalysts and reaction conditions to realize hydroaminoalkylation with a broad range of substrates: activated and unactivated, terminal and internal, C-C double and triple bonds with aryl or alkyl primary, secondary, or tertiary amines, including N-heterocyclic amines. By deploying select catalysts with specific substrate combinations, control over regioselectivity, diastereoselectivity, and enantioselectivity has been realized. Key barriers to widespread adoption of this reaction include air and moisture sensitivity for early transition-metal catalysts as well as a heavy dependence on amine protecting or directing groups for late transition-metal or photocatalytic routes. Advances in improved catalyst robustness, substrate scope, and regio-/stereoselective reactions with early- and late transition-metal catalysts, as well as photoredox catalysis, are highlighted, and opportunities for further catalyst and reaction development are included. This perspective shows that hydroaminoalkylation has the potential to be a disruptive and transformative strategy for the synthesis of selectively substituted amines and N-heterocycles from simple amines and alkenes.
Collapse
Affiliation(s)
- Rebecca C DiPucchio
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Sorin-Claudiu Rosca
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Laurel L Schafer
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| |
Collapse
|
25
|
Tilby MJ, Dewez DF, Pantaine LRE, Hall A, Martínez-Lamenca C, Willis MC. Photocatalytic Late-Stage Functionalization of Sulfonamides via Sulfonyl Radical Intermediates. ACS Catal 2022; 12:6060-6067. [PMID: 35633900 PMCID: PMC9127806 DOI: 10.1021/acscatal.2c01442] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Indexed: 01/01/2023]
Abstract
![]()
A plethora of drug
molecules and agrochemicals contain the sulfonamide
functional group. However, sulfonamides are seldom viewed as synthetically
useful functional groups. To confront this limitation, a late-stage
functionalization strategy is described, which allows sulfonamides
to be converted to pivotal sulfonyl radical intermediates. This methodology
exploits a metal-free photocatalytic approach to access radical chemistry,
which is harnessed by combining pharmaceutically relevant sulfonamides
with an assortment of alkene fragments. Additionally, the sulfinate
anion can be readily obtained, further broadening the options for
sulfonamide functionalization. Mechanistic studies suggest that energy-transfer
catalysis (EnT) is in operation.
Collapse
Affiliation(s)
- Michael J. Tilby
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Damien F. Dewez
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Loïc R. E. Pantaine
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Adrian Hall
- UCB Biopharma SPRL, 1420 Braine-l’Alleud, 1070 Brussels, Belgium
| | | | - Michael C. Willis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
26
|
Acceptorless dehydrogenative amination of alkenes for the synthesis of N-heterocycles. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Reddy MB, Prasanth K, Anandhan R. Controlled Photochemical Synthesis of Substituted Isoquinoline-1,3,4(2 H)-triones, 3-Hydroxyisoindolin-1-ones, and Phthalimides via Amidyl Radical Cyclization Cascade. Org Lett 2022; 24:3674-3679. [PMID: 35549291 DOI: 10.1021/acs.orglett.2c01296] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a controlled radical cyclization cascade of isoquinoline-1,3,4(2H)-triones, 3-hydroxyisoindolin-1-ones, and phthalimides from o-alkynylated benzamides by metal-free photoredox catalyzed amidyl N-centered radical addition to the C-C triple bond using the proton-coupled electron transfer (PCET) process under mild reaction conditions. A time tunable synthesis of 3-hydroxyisoindolin-1-ones and phthalimides via β-carbonyl-C(sp3) bond cleavage was also achieved under visible light irradiation. A mechanistic rationale for the radical cyclization cascade is supported by various control and quenching experiments as well as EPR studies.
Collapse
Affiliation(s)
| | - Kesavan Prasanth
- Department of Organic Chemistry, University of Madras, Chennai-600025, Tamilnadu, India
| | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Chennai-600025, Tamilnadu, India
| |
Collapse
|
28
|
Wang B, Zhou MJ, Zhou QL. Visible-Light-Induced α,γ-C(sp 3)-H Difunctionalization of Piperidines. Org Lett 2022; 24:2894-2898. [PMID: 35416677 DOI: 10.1021/acs.orglett.2c00831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we describe a novel protocol for visible-light-induced α,γ-C(sp3)-H difunctionalization of piperidines. This redox-neutral, atom-economical protocol, which exhibits a broad substrate scope and good functional group compatibility, constitutes a concise, practical method for constructing piperidine-containing bridged-ring molecules. Preliminary mechanistic studies indicated that highly regioselective activation of the inert γ-C(sp3)-H bond of piperidines was achieved through a 1,5-hydrogen atom transfer reaction of a nitrogen radical generated in situ.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Min-Jie Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
29
|
Salaverri N, Carli B, Díaz-Tendero S, Marzo L, Alemán J. Enantioselective Addition of Remote Alkyl Radicals to Double Bonds by Photocatalytic Proton-Coupled Electron Transfer (PCET) Deconstruction of Unstrained Cycloalkanols. Org Lett 2022; 24:3123-3127. [PMID: 35362991 PMCID: PMC9087350 DOI: 10.1021/acs.orglett.2c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Herein, we report
the enantioselective addition of remote alkyl
radicals, generated from the ring opening of unstrained cycloalkanols
by a proton-coupled electron transfer (PCET) process, to 2-acyl imidazoles
previously coordinated to a rhodium-based chiral Lewis acid. High
yields and enantioselectivites up to 99% are achieved in 1 h. Mechanistic
investigations support the formation of the remote alkyl radical by
a PCET process, and theoretical studies explain the observed stereochemistry
in the addition step.
Collapse
Affiliation(s)
- Noelia Salaverri
- Departamento de Química Orgánica (Módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Benedetta Carli
- Departamento de Química Orgánica (Módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Sergio Díaz-Tendero
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.,Departamento de Química (Módulo 13), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Leyre Marzo
- Departamento de Química Orgánica (Módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - José Alemán
- Departamento de Química Orgánica (Módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
30
|
Pratley C, Fenner S, Murphy JA. Nitrogen-Centered Radicals in Functionalization of sp 2 Systems: Generation, Reactivity, and Applications in Synthesis. Chem Rev 2022; 122:8181-8260. [PMID: 35285636 DOI: 10.1021/acs.chemrev.1c00831] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chemistry of nitrogen-centered radicals (NCRs) has plentiful applications in organic synthesis, and they continue to expand as our understanding of these reactive species increases. The utility of these reactive intermediates is demonstrated in the recent advances in C-H amination and the (di)amination of alkenes. Synthesis of previously challenging structures can be achieved by efficient functionalization of sp2 moieties without prefunctionalization, allowing for faster and more streamlined synthesis. This Review addresses the generation, reactivity, and application of NCRs, including, but not limited to, iminyl, aminyl, amidyl, and aminium species. Contributions from early discovery up to the most recent examples have been highlighted, covering radical initiation, thermolysis, photolysis, and, more recently, photoredox catalysis. Radical-mediated intermolecular amination of (hetero)arenes can occur with a variety of complex amine precursors, generating aniline derivatives, an important class of structures for drug discovery and development. Functionalization of olefins is achievable in high anti-Markovnikov regioselectivity and allows access to difunctionalized structures when the intermediate carbon radicals are trapped. Additionally, the reactivity of NCRs can be harnessed for the rapid construction of N-heterocycles such as pyrrolidines, phenanthridines, quinoxalines, and quinazolinones.
Collapse
Affiliation(s)
- Cassie Pratley
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.,GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - Sabine Fenner
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
31
|
Padma Priya V, Natarajan K, Nandi GC. Advances in the photoredox catalysis of S(VI) compounds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Ohmatsu K, Fujimori H, Minami K, Nomura K, Kiyokawa M, Ooi T. Thioamidate Ion as Effective Cocatalyst for Photoinduced C−H Alkylation via Multisite Proton-Coupled Electron Transfer. CHEM LETT 2022. [DOI: 10.1246/cl.220026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Haruka Fujimori
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Kodai Minami
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Kosuke Nomura
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Mari Kiyokawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| |
Collapse
|
33
|
Kwon K, Simons RT, Nandakumar M, Roizen JL. Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem Rev 2022; 122:2353-2428. [PMID: 34623809 PMCID: PMC8792374 DOI: 10.1021/acs.chemrev.1c00444] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.
Collapse
Affiliation(s)
- Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - R Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Jennifer L Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| |
Collapse
|
34
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
35
|
Sun P, Zhang Z, Wang X, Li L, Li Y, Li Z. Cobalt‐catalyzed Intermolecular Hydroamination of Unactivated Alkenes Using
NFSI
as Nitrogen Source. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng‐Wei Sun
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ze Zhang
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Xinyao Wang
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Linshan Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yuxin Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zhengming Li
- State Key Laboratory of Elemento‐Organic Chemistry, Research Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
36
|
Noten EA, McAtee RC, Stephenson CRJ. Catalytic Intramolecular Aminoarylation of Unactivated Alkenes with Aryl Sulfonamides. Chem Sci 2022; 13:6942-6949. [PMID: 35774166 PMCID: PMC9200115 DOI: 10.1039/d2sc01228f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Arylethylamines are abundant motifs in myriad natural products and pharmaceuticals, so efficient methods to synthesize them are valuable in drug discovery. In this work, we disclose an intramolecular alkene aminoarylation cascade that exploits the electrophilicity of a nitrogen-centered radical to form a C–N bond, then repurposes the nitrogen atom's sulfonyl activating group as a traceless linker to form a subsequent C–C bond. This photoredox catalysis protocol enables the preparation of densely substituted arylethylamines from commercially abundant aryl sulfonamides and unactivated alkenes under mild conditions. Reaction optimization, scope, mechanism, and synthetic applications are discussed. A photochemical assembly of cyclic arylethylamines occurs by cascade radical annulation and desulfonylative rearrangement in N-acyl sulfonamides. This aminoarylation is made possible through judicious design intended to thwart undesired reactivity.![]()
Collapse
Affiliation(s)
- Efrey A Noten
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Rory C McAtee
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Corey R J Stephenson
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| |
Collapse
|
37
|
Shen GB, Qian BC, Zhang GS, Luo GZ, Fu YH, Zhu XQ. Thermodynamics regulated organic hydride/acid pairs as novel organic hydrogen reductants. Org Chem Front 2022. [DOI: 10.1039/d2qo01605b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Organic hydride/acid pairs could realize transformation of N-substituted organic hydrides from hydride reductants to thermodynamics regulated hydrogen reductants on conveniently choosing suitable organic hydrides and acids with various acidities.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Gao-Shuai Zhang
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Guang-Ze Luo
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Wang YZ, Lin WJ, Liu HC, Yu W. Visible-light-promoted radical amidoarylation of arylacrylamides towards amidated oxindoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00127f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-promoted intermolecular radical amidation/cyclization of arylacrylamides was realized by using N-aminopyridinium salts as the source of primary amidyl radicals. The reaction exhibits a broad scope and good functionality tolerance,...
Collapse
|
39
|
Tang W, Yan DY, Liang KC, Su M, Liu F. Radical-mediated alkene carboamination/dearomatization of arylsulfonyl- o-allylanilines via photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo01221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A mild and redox-neutral protocol is developed for the synthesis of 1,4-cyclohexadiene-containing indoline-fused heterocycles via photoredox catalysis.
Collapse
Affiliation(s)
- Wan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Duan-Yang Yan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Kai-Cheng Liang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
- Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
40
|
Adamovich SN, Ushakov IA, Oborina EN, Vashchenko AV. Silatrane-sulfonamide hybrids: Synthesis, characterization, and evaluation of biological activity. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Zheng YN, Zheng H, Li T, Wei WT. Recent Advances in Copper-Catalyzed C-N Bond Formation Involving N-Centered Radicals. CHEMSUSCHEM 2021; 14:5340-5358. [PMID: 34750973 DOI: 10.1002/cssc.202102243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
C-N bonds are pervasive throughout organic-based materials, natural products, pharmaceutical compounds, and agricultural chemicals. Considering the widespread importance of C-N bonds, the development of greener and more convenient ways to form C-N bonds, especially in late-stage synthesis, has become one of the hottest research goals in synthetic chemistry. Copper-catalyzed radical reactions involving N-centered radicals have emerged as a sustainable and promising approach to build C-N bonds. As a chemically popular and diverse radical species, N-centered radicals have been used for all kinds of reactions for C-N bond formation by taking advantage of their inherently incredible reactive flexibility. Copper is also the most abundant and economic catalyst with the most relevant activity for facilitating the synthesis of valuable compounds. Therefore, the aim of the present Review was to illustrate recent and significant advances in C-N bond formation methods and to understand the unique advantages of copper catalysis in the generation of N-centered radicals since 2016. To provide an ease of understanding for the readers, this Review was organized based on the types of nitrogen sources (amines, amides, sulfonamides, oximes, hydrazones, azides, and tert-butyl nitrite).
Collapse
Affiliation(s)
- Yan-Nan Zheng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
42
|
Qin T, Lv G, Meng Q, Zhang G, Xiong T, Zhang Q. Cobalt-Catalyzed Radical Hydroamination of Alkenes with N-Fluorobenzenesulfonimides. Angew Chem Int Ed Engl 2021; 60:25949-25957. [PMID: 34562047 DOI: 10.1002/anie.202110178] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/11/2021] [Indexed: 11/10/2022]
Abstract
An efficient and general radical hydroamination of alkenes using Co(salen) as catalyst, N-fluorobenzenesulfonimide (NFSI) and its analogues as both nitrogen source and oxidant was successfully disclosed. A variety of alkenes, including aliphatic alkenes, styrenes, α, β-unsaturated esters, amides, acids, as well as enones, were all compatible to provide desired amination products. Mechanistic experiments suggest that the reaction underwent a metal-hydride-mediated hydrogen atom transfer (HAT) with alkene, followed by a pivotal catalyst controlled SN 2-like pathway between in situ generated organocobalt(IV) species and nitrogen-based nucleophiles. Moreover, by virtue of modified chiral cobalt(II)-salen catalyst, an unprecedented asymmetric version was also achieved with good to excellent level of enantiocontrol. This novel asymmetric radical C-N bond construction opens a new door for the challenging asymmetric radical hydrofunctionalization.
Collapse
Affiliation(s)
- Tao Qin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Guowei Lv
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qi Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
43
|
Qin T, Lv G, Meng Q, Zhang G, Xiong T, Zhang Q. Cobalt‐Catalyzed Radical Hydroamination of Alkenes with
N
‐Fluorobenzenesulfonimides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Qin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Guowei Lv
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qi Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
44
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
45
|
Shi J, Guo LY, Hu QP, Liu YT, Li Q, Pan F. Photoredox-Catalyzed Difunctionalization of Unactivated Olefins for Synthesizing Lactam-Substituted gem-Difluoroalkenes. Org Lett 2021; 23:8822-8827. [PMID: 34723553 DOI: 10.1021/acs.orglett.1c03329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, the synthesis of lactam-substituted gem-difluoroalkenes has been developed through a photoredox-catalyzed radical cascade reaction. This developed photoredox-catalyzed, Brønsted base-assisted intramolecular 5-exo-trig cyclization/intermolecular radical addition/β-fluoride elimination reaction offers a simple method for producing lactam, carbamate, or urea-substituted gem-difluoroalkenes with good functional group tolerance and high yields.
Collapse
Affiliation(s)
- Jie Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Li-Yun Guo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qu-Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
46
|
Chinn AJ, Sedillo K, Doyle AG. Phosphine/Photoredox Catalyzed Anti-Markovnikov Hydroamination of Olefins with Primary Sulfonamides via α-Scission from Phosphoranyl Radicals. J Am Chem Soc 2021; 143:18331-18338. [PMID: 34672192 DOI: 10.1021/jacs.1c09484] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
New strategies to access radicals from common feedstock chemicals hold the potential to broadly impact synthetic chemistry. We report a dual phosphine and photoredox catalytic system that enables direct formation of sulfonamidyl radicals from primary sulfonamides. Mechanistic investigations support that the N-centered radical is generated via α-scission of the P-N bond of a phosphoranyl radical intermediate, formed by sulfonamide nucleophilic addition to a phosphine radical cation. As compared to the recently well-explored β-scission chemistry of phosphoranyl radicals, this strategy is applicable to activation of N-based nucleophiles and is catalytic in phosphine. We highlight application of this activation strategy to an intermolecular anti-Markovnikov hydroamination of unactivated olefins with primary sulfonamides. A range of structurally diverse secondary sulfonamides can be prepared in good to excellent yields under mild conditions.
Collapse
Affiliation(s)
- Alex J Chinn
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kassandra Sedillo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
47
|
Meng L, Yang J, Duan M, Wang Y, Zhu S. Facile Synthesis of Chiral Arylamines, Alkylamines and Amides by Enantioselective NiH-Catalyzed Hydroamination. Angew Chem Int Ed Engl 2021; 60:23584-23589. [PMID: 34449971 DOI: 10.1002/anie.202109881] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Regio- and enantioselective hydroarylamination, hydroalkylamination and hydroamidation of styrenes have been developed by NiH catalysis with a simple bioxazoline ligand under mild conditions. A wide range of enantioenriched benzylic arylamines, alkylamines and amides can be easily accessed by nitroarenes, hydroxylamines and dioxazolones, respectively as amination reagents. The chiral induction in these reactions is proposed to proceed through an enantiodifferentiating syn-hydronickellation step.
Collapse
Affiliation(s)
- Lingpu Meng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jingjie Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
48
|
Chang L, An Q, Duan L, Feng K, Zuo Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem Rev 2021; 122:2429-2486. [PMID: 34613698 DOI: 10.1021/acs.chemrev.1c00256] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alkoxy radicals are highly reactive species that have long been recognized as versatile intermediates in organic synthesis. However, their development has long been impeded due to a lack of convenient methods for their generation. Thanks to advances in photoredox catalysis, enabling facile access to alkoxy radicals from bench-stable precursors and free alcohols under mild conditions, research interest in this field has been renewed. This review comprehensively summarizes the recent progress in alkoxy radical-mediated transformations under visible light irradiation. Elementary steps for alkoxy radical generation from either radical precursors or free alcohols are central to reaction development; thus, each section is categorized and discussed accordingly. Throughout this review, we have focused on the different mechanisms of alkoxy radical generation as well as their impact on synthetic utilizations. Notably, the catalytic generation of alkoxy radicals from abundant alcohols is still in the early stage, providing intriguing opportunities to exploit alkoxy radicals for diverse synthetic paradigms.
Collapse
Affiliation(s)
- Liang Chang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China.,School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China
| |
Collapse
|
49
|
Meng L, Yang J, Duan M, Wang Y, Zhu S. Facile Synthesis of Chiral Arylamines, Alkylamines and Amides by Enantioselective NiH‐Catalyzed Hydroamination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lingpu Meng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jingjie Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - You Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
50
|
Zhong T, Yi JT, Chen ZD, Zhuang QC, Li YZ, Lu G, Weng J. Photoredox-catalyzed aminofluorosulfonylation of unactivated olefins. Chem Sci 2021; 12:9359-9365. [PMID: 34349907 PMCID: PMC8278970 DOI: 10.1039/d1sc02503a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
The development of efficient approaches to access sulfonyl fluorides is of great significance because of the widespread applications of these structural motifs in many areas, among which the emerging sulfur(vi) fluoride exchange (SuFEx) click chemistry is the most prominent. Here, we report the first three-component aminofluorosulfonylation of unactivated olefins by merging photoredox-catalyzed proton-coupled electron transfer (PCET) activation with radical relay processes. Various aliphatic sulfonyl fluorides featuring a privileged 5-membered heterocyclic core have been efficiently afforded under mild conditions with good functional group tolerance. The synthetic potential of the sulfonyl fluoride products has been examined by diverse transformations including SuFEx reactions and transition metal-catalyzed cross-coupling reactions. Mechanistic studies demonstrate that amidyl radicals, alkyl radicals and sulfonyl radicals are involved in this difunctionalization transformation.
Collapse
Affiliation(s)
- Tao Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zhi-Da Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Quan-Can Zhuang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yong-Zhao Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|