1
|
Mandal R, Ninawe P, Acharya A, Ballav N. Spin-Frustrated Metal-Organic Frameworks. Chemistry 2025:e202403615. [PMID: 39807902 DOI: 10.1002/chem.202403615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Metal-organic frameworks (MOFs) are a fascinating class of structured materials with diverse functionality originating from their distinctive physicochemical properties. This review focuses on the specific chemical design of geometrically frustrated MOFs along with the origin of the intriguing magnetic properties. We have discussed the arrangement of spin centres (metal and ligand) which are responsible for the unusual magnetic phenomena in MOFs. Both two-dimensional (2D) and three-dimensional (3D) MOFs with frustrated magnetism, their synthetic routes, and evaluation of magnetic properties are highlighted. Such spin-frustrated MOFs may find applications in the field of memory devices, transistors, sensors, and the development of unconventional superconductors.
Collapse
Affiliation(s)
- Rimpa Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Pranay Ninawe
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Aradhana Acharya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Nirmalya Ballav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| |
Collapse
|
2
|
Zhang S, Yang X, Wooten BL, Bag R, Yadav L, Moore CE, Parida S, Trivedi N, Lu Y, Heremans JP, Haravifard S, Wu Y. Two-Dimensional Cobalt(II) Benzoquinone Frameworks for Putative Kitaev Quantum Spin Liquid Candidates. J Am Chem Soc 2024; 146:15061-15069. [PMID: 38787332 DOI: 10.1021/jacs.3c14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The realization and discovery of quantum spin liquid (QSL) candidate materials are crucial for exploring exotic quantum phenomena and applications associated with QSLs. Most existing metal-organic two-dimensional (2D) quantum spin liquid candidates have structures with spins arranged on the triangular or kagome lattices, whereas honeycomb-structured metal-organic compounds with QSL characteristics are rare. Here, we report the use of 2,5-dihydroxy-1,4-benzoquinone (X2dhbq, X = Cl, Br, H) as the linkers to construct cobalt(II) honeycomb lattices (NEt4)2[Co2(X2dhbq)3] as promising Kitaev-type QSL candidate materials. The high-spin d7 Co2+ has pseudospin-1/2 ground-state doublets, and benzoquinone-based linkers not only provide two separate superexchange pathways that create bond-dependent frustrated interactions but also allow for chemical tunability to mediate magnetic coupling. Our magnetization data show antiferromagnetic interactions between neighboring metal centers with Weiss constants from -5.1 to -8.5 K depending on the X functional group in X2dhbq linkers (X = Cl, Br, H). No magnetic transition or spin freezing could be observed down to 2 K. Low-temperature susceptibility (down to 0.3 K) and specific heat (down to 0.055 K) of (NEt4)2[Co2(H2dhbq)3] were further analyzed. Heat capacity measurements confirmed no long-range order down to 0.055 K, evidenced by the broad peak instead of the λ-like anomaly. Our results indicate that these 2D cobalt benzoquinone frameworks are promising Kitaev QSL candidates with chemical tunability through ligands that can vary the magnetic coupling and frustration.
Collapse
Affiliation(s)
- Songwei Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xu Yang
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brandi L Wooten
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rabindranath Bag
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Lalit Yadav
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Smrutimedha Parida
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nandini Trivedi
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuanming Lu
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph P Heremans
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sara Haravifard
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Yiying Wu
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Wang Y, Fu P, Takatsu H, Tassel C, Hayashi N, Cao J, Bataille T, Koo HJ, Ouyang Z, Whangbo MH, Kageyama H, Lu H. Construction of Ideal One-Dimensional Spin Chains by Topochemical Dehydration/Rehydration Route. J Am Chem Soc 2024; 146:8320-8326. [PMID: 38489763 DOI: 10.1021/jacs.3c13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
One-dimensional (1D) Heisenberg antiferromagnets are of great interest due to their intriguing quantum phenomena. However, the experimental realization of such systems with large spin S remains challenging because even weak interchain interactions induce long-range ordering. In this study, we present an ideal 1D S = 5/2 spin chain antiferromagnet achieved through a multistep topochemical route involving dehydration and rehydration. By desorbing three water molecules from (2,2'-bpy)FeF3(H2O)·2H2O (2,2'-bpy = 2,2'-bipyridyl) at 150 °C and then intercalating two water molecules at room temperature (giving (2,2'-bpy)FeF3·2H2O 1), the initially isolated FeF3ON2 octahedra combine to form corner-sharing FeF4N2 octahedral chains, which are effectively separated by organic and added water molecules. Mössbauer spectroscopy reveals significant dynamical fluctuations down to 2.7 K, despite the presence of strong intrachain interactions. Moreover, results from electron spin resonance (ESR) and heat capacity measurements indicate the absence of long-range order down to 0.5 K. This controlled topochemical dehydration/rehydration approach is further extended to (2,2'-bpy)CrF3·2H2O with S = 3/2 1D chains, thus opening the possibility of obtaining other low-dimensional spin lattices.
Collapse
Affiliation(s)
- Yanhong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Fu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hiroshi Takatsu
- Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Cédric Tassel
- Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Naoaki Hayashi
- Research Institute for Production Development, Shimogamo, Sakyo, Kyoto 606-0805, Japan
| | - Jiaojiao Cao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Thierry Bataille
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS, UBL, Ecole Nationale Supérieure de Chimie de Rennes, 11, allée de Beaulieu, Rennes F-35708, France
| | - Hyun-Joo Koo
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Myung-Hwan Whangbo
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Hiroshi Kageyama
- Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Burzurí E, Martínez-Pérez MJ, Martí-Gastaldo C, Evangelisti M, Mañas-Valero S, Coronado E, Martínez JI, Galan-Mascaros JR, Luis F. A quantum spin liquid candidate isolated in a two-dimensional Co IIRh III bimetallic oxalate network. Chem Sci 2023; 14:3899-3906. [PMID: 37035710 PMCID: PMC10074444 DOI: 10.1039/d2sc06407c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/05/2023] [Indexed: 04/11/2023] Open
Abstract
A quantum spin liquid (QSL) is an elusive state of matter characterized by the absence of long-range magnetic order, even at zero temperature, and by the presence of exotic quasiparticle excitations. In spite of their relevance for quantum communication, topological quantum computation and the understanding of strongly correlated systems, like high-temperature superconductors, the unequivocal experimental identification of materials behaving as QSLs remains challenging. Here, we present a novel 2D heterometallic oxalate complex formed by high-spin Co(ii) ions alternating with diamagnetic Rh(iii) in a honeycomb lattice. This complex meets the key requirements to become a QSL: a spin ½ ground state for Co(ii), determined by spin-orbit coupling and crystal field, a magnetically-frustrated triangular lattice due to the presence of antiferromagnetic correlations, strongly suppressed direct exchange interactions and the presence of equivalent interfering superexchange paths between Co centres. A combination of electronic paramagnetic resonance, specific heat and ac magnetic susceptibility measurements in a wide range of frequencies and temperatures shows the presence of strong antiferromagnetic correlations concomitant with no signs of magnetic ordering down to 15 mK. These results show that bimetallic oxalates are appealing QSL candidates as well as versatile systems to chemically fine tune key aspects of a QSL, like magnetic frustration and superexchange path geometries.
Collapse
Affiliation(s)
- Enrique Burzurí
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid E-28049 Madrid Spain
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid E-28049 Madrid Spain
- IMDEA Nanociencia C\Faraday 9, Ciudad Universitaria de Cantoblanco Madrid Spain
| | - María José Martínez-Pérez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Calle Catedrático José Beltrán 2 Paterna 46980 Spain
| | - Marco Evangelisti
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Calle Catedrático José Beltrán 2 Paterna 46980 Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Calle Catedrático José Beltrán 2 Paterna 46980 Spain
| | - Jesús I Martínez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| | - Jose Ramon Galan-Mascaros
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST) Av. Paisos Catalans 16 Tarragona 43007 Spain
- ICREA Passeig Lluís Companys 23 Barcelona 08010 Spain
| | - Fernando Luis
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| |
Collapse
|
5
|
Zhang Q, Zhang Y, Matsuda M, Garlea VO, Yan J, McGuire MA, Tennant DA, Okamoto S. Hidden Local Symmetry Breaking in a Kagome-Lattice Magnetic Weyl Semimetal. J Am Chem Soc 2022; 144:14339-14350. [PMID: 35901238 DOI: 10.1021/jacs.2c05665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exploring the relationship between intriguing physical properties and structural complexity is a central topic in studying modern functional materials. Co3Sn2S2, a newly discovered kagome-lattice magnetic Weyl semimetal, has triggered intense interest owing to the intimate coupling between topological semimetallic states and peculiar magnetic properties. However, the origins of the magnetic phase separation and spin glass state below TC in this ordered compound are two unresolved yet important puzzles in understanding its magnetism. Here, we report the discovery of local symmetry breaking surprisingly co-emerges with the onset of ferromagnetic order in Co3Sn2S2, by a combined use of neutron total scattering and half-polarized neutron diffraction. An anisotropic distortion of the cobalt kagome lattice at the atomic/nano level is also found, with distinct distortion directions among the two Co1 and four Co2 atoms. The mismatch of local and average symmetries occurs below TC, indicating that Co3Sn2S2 evolves to an intrinsically lattice disordered system when the ferromagnetic order is established. The local symmetry breaking with intrinsic lattice disorder provides new understanding of the puzzling magnetic properties. Our density functional theory (DFT) calculation indicates that the local symmetry breaking is expected to reorient local ferromagnetic moments, unveiling the existence of the ferromagnetic instability associated with the lattice instability. Furthermore, DFT calculation unveils that the local symmetry breaking could affect the Weyl property by breaking the mirror plane. Our findings highlight the fundamentally important role that the local symmetry breaking plays in advancing our understanding on the magnetic and topological properties in Co3Sn2S2, which may draw attention to explore the overlooked local symmetry breaking in Co3Sn2S2, its derivatives and more broadly in other topological Dirac/Weyl semimetals and kagome-lattice magnets.
Collapse
Affiliation(s)
- Qiang Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yuanpeng Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Masaaki Matsuda
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vasile Ovidiu Garlea
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jiaqiang Yan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael A McGuire
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - D Alan Tennant
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Quantum Science Center, Oak Ridge, Tennessee 37831, United States.,Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Satoshi Okamoto
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Keerthisinghe N, Berseneva AA, Klepov VV, Morrison G, Zur Loye HC. A Geometrically Frustrated Family of M IIM IIIF 5(H 2O) 2 Mixed-Metal Fluorides with Complex Magnetic Interactions. Inorg Chem 2021; 60:14318-14329. [PMID: 34468135 DOI: 10.1021/acs.inorgchem.1c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inverse weberites are of interest as geometrically frustrated magnetic materials due to their unique cation arrangement. We have synthesized nine isostructural materials that adopt the inverse weberite crystal structure, which consists of cross-linked kagome layers. These materials, having the general formula MIIMIIIF5(H2O)2 (MII = Co, Mn, Ni, Zn; MIII = Ga, Cr, Fe, V), were synthesized using mild hydrothermal conditions, which yielded phase-pure samples after optimization of the reaction conditions. Their crystal structures and optical, thermal, and magnetic behavior were characterized using single-crystal X-ray diffraction, UV-vis spectroscopy, thermogravimetric analysis, and measurement of the magnetic susceptibility and isothermal magnetization data, respectively. Three distinct types of magnetism were observed, including simple paramagnetism, antiferromagnetism, and canted antiferromagnetism; the last type is accompanied by a high frustration index fin the range 4.16-8.09. We demonstrated that the magnetic behavior of inverse weberites depends on the presence or absence of unpaired-electron-containing cations on the two distinct crystallographic sites, which can be employed for the prediction of the magnetic properties of other compounds in this rich and diverse family.
Collapse
Affiliation(s)
- Navindra Keerthisinghe
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Anna A Berseneva
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Vladislav V Klepov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
7
|
Jacko AC, Powell BJ. Quasi-one dimensional magnetic interactions in the three-dimensional hyper-honeycomb framework [(C 2H 5) 3NH] 2Cu 2(C 2O 4) 3. Phys Chem Chem Phys 2021; 23:5012-5019. [PMID: 33624644 DOI: 10.1039/d0cp05999d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu(ii) ions in [(C2H5)3NH]2Cu2(C2O4)3 form a hyperhoneycomb lattice and show no indication of long-range magnetic order down to 60 mK. It has therefore been suggested that [(C2H5)3NH]2Cu2(C2O4)3 is a three dimensional quantum spin liquid. We construct a tight-binding model of [(C2H5)3NH]2Cu2(C2O4)3 from Wannier orbital overlaps. Including interactions within the Jahn-Teller distorted Cu-centered eg Wannier orbitals leads to a highly anisotropic effective Heisenberg model. We show that this anisotropy arrises from interference between different superexchange pathways. This demonstrates that when two (or more) orbitals contribute to the localised spin superexchange can be significantly richer than in the textbook single orbital case. The hyper-honeycomb lattice contains two symmetry distinct sublattices of Cu atoms arranged in coupled chains. We show that one sublattice is strongly dimerized, the other forms isotropic antiferromagnetic chains. Integrating out the strongest (intradimer) exchange interactions leaves extremely weakly coupled Heisenberg chains.
Collapse
Affiliation(s)
- Anthony C Jacko
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
8
|
Misumi Y, Yamaguchi A, Zhang Z, Matsushita T, Wada N, Tsuchiizu M, Awaga K. Quantum Spin Liquid State in a Two-Dimensional Semiconductive Metal-Organic Framework. J Am Chem Soc 2020; 142:16513-16517. [PMID: 32623880 DOI: 10.1021/jacs.0c05472] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two-dimensional metal-organic frameworks (2D MOFs) have attracted much attention, as they are the crystalline materials that exhibit both conductivity and microporosity. Numerous efforts have been made to advance their application as chemiresistive sensors or electrochemical capacitors. However, the intrinsic physical properties and spin states of these materials remain poorly understood. Most of these 2D MOFs possess a honeycomb lattice, with a Kagomé lattice arrangement of metal cations. These structural characteristics suggest that these MOFs would be candidates for geometrically frustrated spin systems with unprecedented magnetic phenomena. Herein, by performing magnetic susceptibility and specific heat measurements at an ultralow temperature down to 38mK on a 2D semiconductive MOF, Cu3(HHTP)2, a quantum spin liquid state that arises from the geometrical frustration was suggested. This result illustrates the potential of strongly correlated MOFs as systems with emergent phenomena induced by unusual structural topologies.
Collapse
Affiliation(s)
- Yuki Misumi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Akira Yamaguchi
- Department of Material Science, Graduate School and Faculty of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Zhongyue Zhang
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Taku Matsushita
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Nobuo Wada
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Masahisa Tsuchiizu
- Department of Physics, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Kunio Awaga
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan.,Integrated Research Consortium on Chemical Sciences, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
9
|
Otsuka A, Shimizu Y, Saito G, Maesato M, Kiswandhi A, Hiramatsu T, Yoshida Y, Yamochi H, Tsuchiizu M, Nakamura Y, Kishida H, Ito H. Canting Antiferromagnetic Spin-Order ( TN = 102 K) in a Monomer Mott Insulator (ET)Ag 4(CN) 5 with a Diamond Spin-Lattice. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akihiro Otsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiro Shimizu
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Gunzi Saito
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
- Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
| | - Mitsuhiko Maesato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Andhika Kiswandhi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takaaki Hiramatsu
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Yukihiro Yoshida
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Hideki Yamochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | - Yuto Nakamura
- Department of Applied Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hideo Kishida
- Department of Applied Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hiroshi Ito
- Department of Applied Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
10
|
Fang YW, Yang R, Chen H. The complex non-collinear magnetic orderings in Ba 2YOsO 6: a new approach to tuning spin-lattice interactions and controlling magnetic orderings in frustrated complex oxides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:445803. [PMID: 31300630 DOI: 10.1088/1361-648x/ab31e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Frustrated magnets are one class of fascinating materials that host many intriguing phases such as spin ice, spin liquid and complex long-range magnetic orderings at low temperatures. In this work we use first-principles calculations to find that in a wide range of magnetically frustrated oxides, at zero temperature a number of non-collinear magnetic orderings are more stable than the type-I collinear ordering that is observed at finite temperatures. The emergence of non-collinear orderings in those complex oxides is due to higher-order exchange interactions that originate from second-row and third-row transition metal elements. This implies a collinear-to-noncollinear spin transition at sufficiently low temperatures in those frustrated complex oxides. Furthermore, we find that in a particular oxide Ba2YOsO6, experimentally feasible uniaxial strain can tune the material between two different non-collinear magnetic orderings. Our work predicts new non-collinear magnetic orderings in frustrated complex oxides at very low temperatures and provides a mechanical route to tuning complex non-collinear magnetic orderings in those materials.
Collapse
Affiliation(s)
- Yue-Wen Fang
- Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan. NYU-ECNU Institute of Physics, New York University, Shanghai, People's Republic of China
| | | | | |
Collapse
|
11
|
Kanižaj L, Androš Dubraja L, Torić F, Pajić D, Molčanov K, Wenger E, Jurić M. Dimensionality controlled by light exposure: 1D versus 3D oxalate-bridged [CuFe] coordination polymers based on an [Fe(C2O4)3]3− metallotecton. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00926d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The studied heterometallic [CuFe] compounds, based on an [Fe(C2O4)3]3− building block and containing a 3D network or 1D ladder-like chains, were synthesized depending on whether the test tube with the same reaction layers was exposed to daylight or not.
Collapse
Affiliation(s)
| | | | - Filip Torić
- Department of Physics
- Faculty of Science
- University of Zagreb
- 10000 Zagreb
- Croatia
| | - Damir Pajić
- Department of Physics
- Faculty of Science
- University of Zagreb
- 10000 Zagreb
- Croatia
| | | | - Emmanuel Wenger
- CRM2 CNRS
- UMR 7036
- Institut Jean Barriol
- Université de Lorraine
- Vandoeuvre-lès-Nancy
| | | |
Collapse
|
12
|
Dazem CLF, Amombo Noa FM, Nenwa J, Öhrström L. Natural and synthetic metal oxalates – a topology approach. CrystEngComm 2019. [DOI: 10.1039/c9ce01187k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Network topology analysis is applied to a large number of mineral and synthetic oxalates, and is shown to be a superior method in describing and communicating the structure of these materials, including the first natural MOF weddellite.
Collapse
Affiliation(s)
- Cyrielle L. F. Dazem
- Inorganic Chemistry Department
- Faculty of Science
- University of Yaoundé I
- Yaoundé
- Cameroon
| | - Francoise M. Amombo Noa
- Chemistry and Biochemistry
- Dept. of Chemistry and Chemical Engineering
- Chalmers University of Technology
- SE-41296 Göteborg
- Sweden
| | - Justin Nenwa
- Inorganic Chemistry Department
- Faculty of Science
- University of Yaoundé I
- Yaoundé
- Cameroon
| | - Lars Öhrström
- Chemistry and Biochemistry
- Dept. of Chemistry and Chemical Engineering
- Chalmers University of Technology
- SE-41296 Göteborg
- Sweden
| |
Collapse
|
13
|
|