1
|
McCormick MJ, Machan CW. Developing homogeneous first row early transition metal catalysts for the oxygen reduction reaction. Dalton Trans 2024; 53:16807-16814. [PMID: 39344902 DOI: 10.1039/d4dt01969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The oxygen reduction reaction (ORR) remains an important fixture in biological and synthetic systems for energy conversion and chemical functionalization. Late transition metals continue to dominate in the development of new catalyst systems, inspired by well-characterized metallocofactors and prior successes. By comparison, metals to the left of Fe on the periodic table are relatively understudied for the ORR. This Frontier article summarizes advancements related to the use of Mn, Cr, and V in homogeneous catalyst systems for the ORR and discusses the implications of these results for the development of catalyst systems from these metals and those earlier in the transition metal series.
Collapse
Affiliation(s)
- Mary Jo McCormick
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
2
|
Jesse KA, Anderson JS. Leveraging ligand-based proton and electron transfer for aerobic reactivity and catalysis. Chem Sci 2024:d4sc03896g. [PMID: 39386904 PMCID: PMC11460188 DOI: 10.1039/d4sc03896g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024] Open
Abstract
While O2 is an abundant, benign, and thermodynamically potent oxidant, it is also kinetically inert. This frequently limits its use in synthetic transformations. Correspondingly, direct aerobic reactivity with O2 often requires comparatively harsh or forcing conditions to overcome this kinetic barrier. Forcing conditions limit product selectivity and can lead to over oxidation. Alternatively, O2 can be activated by a catalyst to facilitate oxidative reactivity, and there are a variety of sophisticated examples where transition metal catalysts facilitate aerobic reactivity. Many efforts have focused on using metal-ligand cooperativity to facilitate the movement of protons and electrons for O2 activation. This approach is inspired by enzyme active sites, which frequently use the secondary sphere to facilitate both the activation of O2 and the oxidation of substrates. However, there has only recently been a focus on harnessing metal-ligand cooperativity for aerobic reactivity and, especially, catalysis. This perspective will discuss recent efforts to channel metal-ligand cooperativity for the activation of O2, the generation and stabilization of reactive metal-oxygen intermediates, and oxidative reactivity and catalysis. While significant progress has been made in this area, there are still challenges to overcome and opportunities for the development of efficient catalysts which leverage this biomimetic strategy.
Collapse
Affiliation(s)
- Kate A Jesse
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - John S Anderson
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|
3
|
Reid AG, Zelenke EA, Moberg ME, Dickie DA, Machan CW. Improving co-electrocatalytic carbon dioxide reduction by optimizing the relative potentials of the redox mediator and catalyst. Chem Commun (Camb) 2024; 60:8208-8211. [PMID: 39015067 DOI: 10.1039/d4cc01988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The effects of fixing the redox mediator (RM) reduction potential relative to a series of Cr-centered complexes capable of the reduction of CO2 to CO are disclosed. The greatest co-electrocatalytic activity enhancement is observed when the reduction potentials of the catalyst and RM are identical, implying that controlling the speciation of the Cr complex relative to RM activation is essential for improving catalytic performance. In all cases, the potential where co-catalytic activity is observed matches the reduction potential of the RM, regardless of the relative reduction potential of the Cr complex.
Collapse
Affiliation(s)
- Amelia G Reid
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | - Ethan A Zelenke
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | - Megan E Moberg
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| |
Collapse
|
4
|
Obisesan SV, Parvin M, Tao M, Ramos E, Saunders AC, Farnum BH, Goldsmith CR. Installing Quinol Proton/Electron Mediators onto Non-Heme Iron Complexes Enables Them to Electrocatalytically Reduce O 2 to H 2O at High Rates and Low Overpotentials. Inorg Chem 2024; 63:14126-14141. [PMID: 39008564 DOI: 10.1021/acs.inorgchem.4c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We prepare iron(II) and iron(III) complexes with polydentate ligands that contain quinols, which can act as electron proton transfer mediators. Although the iron(II) complex with N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (H2qp1) is inactive as an electrocatalyst, iron complexes with N,N'-bis(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H4qp2) and N-(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H2qp3) were found to be much more active and more selective for water production than a previously reported cobalt-H2qp1 electrocatalyst while operating at low overpotentials. The catalysts with H2qp3 can enter the catalytic cycle as either Fe(II) or Fe(III) species; entering the cycle through Fe(III) lowers the effective overpotential. On the basis of their TOF0 values, the successful iron-quinol complexes are better electrocatalysts for oxygen reduction than previously reported iron-porphyrin compounds, with the Fe(III)-H2qp3 arguably being the best homogeneous electrocatalyst for this reaction. With iron, the quinol-for-phenol substitution shifts the product selectivity from H2O2 to water with little impact on the overpotential, but unlike cobalt, this substitution also greatly improves the activity, as assessed by TOFmax, by hastening the protonation and oxygen binding steps. The addition of a second quinol further enhances the activity and selectivity for water but modestly increases the effective overpotential.
Collapse
Affiliation(s)
- Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Maksuda Parvin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Matthew Tao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Eric Ramos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alexander C Saunders
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
Cook EN, Courter IM, Dickie DA, Machan CW. Controlling product selectivity during dioxygen reduction with Mn complexes using pendent proton donor relays and added base. Chem Sci 2024; 15:4478-4488. [PMID: 38516070 PMCID: PMC10952101 DOI: 10.1039/d3sc02611f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
The catalytic reduction of dioxygen (O2) is important in biological energy conversion and alternative energy applications. In comparison to Fe- and Co-based systems, examples of catalytic O2 reduction by homogeneous Mn-based systems is relatively sparse. Motivated by this lack of knowledge, two Mn-based catalysts for the oxygen reduction reaction (ORR) containing a bipyridine-based non-porphyrinic ligand framework have been developed to evaluate how pendent proton donor relays alter activity and selectivity for the ORR, where Mn(p-tbudhbpy)Cl (1) was used as a control complex and Mn(nPrdhbpy)Cl (2) contains a pendent -OMe group in the secondary coordination sphere. Using an ammonium-based proton source, N,N'-diisopropylethylammonium hexafluorophosphate, we analyzed catalytic activity for the ORR: 1 was found to be 64% selective for H2O2 and 2 is quantitative for H2O2, with O2 binding to the reduced Mn(ii) center being the rate-determining step. Upon addition of the conjugate base, N,N'-diisopropylethylamine, the observed catalytic selectivity of both 1 and 2 shifted to H2O as the primary product. Interestingly, while the shift in selectivity suggests a change in mechanism for both 1 and 2, the catalytic activity of 2 is substantially enhanced in the presence of base and the rate-determining step becomes the bimetallic cleavage of the O-O bond in a Mn-hydroperoxo species. These data suggest that the introduction of pendent relay moieties can improve selectivity for H2O2 at the expense of diminished reaction rates from strong hydrogen bonding interactions. Further, although catalytic rate enhancements are observed with a change in product selectivity when base is added to buffer proton activity, the pendent relays stabilize dimer intermediates, limiting the maximum rate.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry University of Virginia PO Box 400319 McCormick Rd Charlottesville VA 22904-4319 USA
| | - Ian M Courter
- Department of Chemistry University of Virginia PO Box 400319 McCormick Rd Charlottesville VA 22904-4319 USA
| | - Diane A Dickie
- Department of Chemistry University of Virginia PO Box 400319 McCormick Rd Charlottesville VA 22904-4319 USA
| | - Charles W Machan
- Department of Chemistry University of Virginia PO Box 400319 McCormick Rd Charlottesville VA 22904-4319 USA
| |
Collapse
|
6
|
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023; 123:6233-6256. [PMID: 36198176 PMCID: PMC10073352 DOI: 10.1021/acs.chemrev.2c00424] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Koellner CA, Reid AG, Machan CW. Co-electrocatalytic CO 2 reduction mediated by a dibenzophosphole oxide and a chromium complex. Chem Commun (Camb) 2023; 59:6359-6362. [PMID: 37139853 DOI: 10.1039/d3cc00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a co-electrocatalytic system for the selective reduction of CO2 to CO, comprised of a previously reported molecular Cr complex and 5-phenylbenzo[b]phosphindole-5-oxide (PhBPO) as a redox mediator. Under protic conditions, the co-electrocatalytic system attains a turnover frequency (TOF) of 15 s-1 and quantitative selectivity for CO. It is proposed that PhBPO interacts with the Cr-based catalyst, coordinating in an axial position trans to an intermediate hydroxycarbonyl species, M-CO2H, mediating electron transfer to the catalyst and lowering the barrier for C-OH bond cleavage.
Collapse
Affiliation(s)
- Connor A Koellner
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | - Amelia G Reid
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| |
Collapse
|
8
|
Reid AG, Moberg ME, Koellner CA, Moreno JJ, Hooe SL, Baugh KR, Dickie DA, Machan CW. Comparisons of bpy and phen Ligand Backbones in Cr-Mediated (Co-)Electrocatalytic CO 2 Reduction. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Amelia G. Reid
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Megan E. Moberg
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Connor A. Koellner
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Juan J. Moreno
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Shelby L. Hooe
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Kira R. Baugh
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Charles W. Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
9
|
Abstract
Homogeneous electrocatalysis has been well studied over the past several decades for the conversion of small molecules to useful products for green energy applications or as chemical feedstocks. However, in order for these catalyst systems to be used in industrial applications, their activity and stability must be improved. In naturally occurring enzymes, redox equivalents (electrons, often in a concerted manner with protons) are delivered to enzyme active sites by small molecules known as redox mediators (RMs). Inspired by this, co-electrocatalytic systems with homogeneous catalysts and RMs have been developed for the conversion of alcohols, nitrogen, unsaturated organic substrates, oxygen, and carbon dioxide. In these systems, the RMs have been shown to both increase the activity of the catalyst and shift selectivity to more desired products by altering catalytic cycles and/or avoiding high-energy intermediates. However, the area is currently underdeveloped and requires additional fundamental advancements in order to become a more general strategy. Here, we summarize the recent examples of homogeneous co-electrocatalysis and discuss possible future directions for the field.
Collapse
Affiliation(s)
- Amelia G Reid
- Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
10
|
Gordon JB, Albert T, Yadav S, Thomas J, Siegler MA, Moënne-Loccoz P, Goldberg DP. Oxygen versus Sulfur Coordination in Cobalt Superoxo Complexes: Spectroscopic Properties, O 2 Binding, and H-Atom Abstraction Reactivity. Inorg Chem 2023; 62:392-400. [PMID: 36538786 PMCID: PMC10194424 DOI: 10.1021/acs.inorgchem.2c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A five-coordinate, disiloxide-ligated cobalt(II) (S = 3/2) complex (1) was prepared as an oxygen-ligated analogue to the previously reported silanedithiolate-ligated CoII(Me3TACN)(S2SiMe2) (J. Am. Chem. Soc., 2019, 141, 3641-3653). The structural and spectroscopic properties of 1 were analyzed by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR), and NMR spectroscopies. The reactivity of 1 with dioxygen was examined, and it was shown to bind O2 reversibly in a range of solvents at low temperatures. A cobalt(III)-superoxo complex, CoIII(O2·-)(Me3TACN)((OSi2Ph)2O) (2), was generated, and was analyzed by UV-vis, EPR, and resonance Raman spectroscopies. Unlike its sulfur-ligated analogue, complex 2 can thermally release O2 to regenerate 1. Vibrational assignments for selective 18O isotopic labeling of both O2 and disiloxide ligands in 2 are consistent with a 6-coordinate, Co(η1-O2·-)("end-on") complex. Complex 2 reacts with the O-H bond of 4-methoxy-2,2,6,6-tetramethylpiperidin-1-ol (4-MeO-TEMPOH) via H-atom abstraction with a rate of 0.58(2) M-1 s-1 at -105 °C, but it is unable to oxidize phenol substrates. This bracketed reactivity suggests that the O-H bond being formed in the putative CoIII(OOH) product has a relatively weak O-H bond strength (BDFE ∼66-74 kcal mol-1). These thermodynamic and kinetic parameters are similar to those seen for the sulfur-ligated Co(O2)(Me3TACN)(S2SiMe2), indicating that the differences in the electronic structure for O versus S ligation do not have a large impact on H-atom abstraction reactivity.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Obisesan SV, Rose C, Farnum BH, Goldsmith CR. Co(II) Complex with a Covalently Attached Pendent Quinol Selectively Reduces O 2 to H 2O. J Am Chem Soc 2022; 144:22826-22830. [DOI: 10.1021/jacs.2c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Christian R. Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
12
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022; 61:e202208143. [PMID: 35730106 DOI: 10.1002/anie.202208143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/10/2022]
Abstract
A cobalt porphyrin complex with a pendant imidazole base ([(L1 )CoII ]) is an efficient catalyst for the homogeneous catalytic two-electron reduction of dioxygen by 1,1'-dimethylferrocene (Me2 Fc) in the presence of triflic acid (HOTf), as compared with a cobalt porphyrin complex without a pendant imidazole base ([(L2 )CoII ]). The pendant imidazole ligand plays a crucial role not only to provide an imidazolinium proton for proton-coupled electron transfer (PCET) from [(L1 )CoII ] to O2 in the presence of HOTf but also to facilitate electron transfer (ET) from [(L1 )CoII ] to O2 in the absence of HOTf. The kinetics analysis and the detection of intermediates in the stoichiometric and catalytic reduction of O2 have provided clues to clarify the crucial roles of the pendant imidazole ligand of [(L1 )CoII ] for the first time.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ni Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaochao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
13
|
Tabaru K, Obora Y. Synergic Palladium Catalysis for Aerobic Oxidative Coupling. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuki Tabaru
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| | - Yasushi Obora
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| |
Collapse
|
14
|
Dey S, Masero F, Brack E, Fontecave M, Mougel V. Electrocatalytic metal hydride generation using CPET mediators. Nature 2022; 607:499-506. [PMID: 35859199 DOI: 10.1038/s41586-022-04874-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Transition metal hydrides (M-H) are ubiquitous intermediates in a wide range of enzymatic processes and catalytic reactions, playing a central role in H+/H2 interconversion1, the reduction of CO2 to formic acid (HCOOH)2 and in hydrogenation reactions. The facile formation of M-H is a critical challenge to address to further improve the energy efficiency of these reactions. Specifically, the easy electrochemical generation of M-H using mild proton sources is key to enable high selectivity versus competitive CO and H2 formation in the CO2 electroreduction to HCOOH, the highest value-added CO2 reduction product3. Here we introduce a strategy for electrocatalytic M-H generation using concerted proton-electron transfer (CPET) mediators. As a proof of principle, the combination of a series of CPET mediators with the CO2 electroreduction catalyst [MnI(bpy)(CO)3Br] (bpy = 2,2'-bipyridine) was investigated, probing the reversal of the product selectivity from CO to HCOOH to evaluate the efficiency of the manganese hydride (Mn-H) generation step. We demonstrate the formation of the Mn-H species by in situ spectroscopic techniques and determine the thermodynamic boundary conditions for this mechanism to occur. A synthetic iron-sulfur cluster is identified as the best CPET mediator for the system, enabling the preparation of a benchmark catalytic system for HCOOH generation.
Collapse
Affiliation(s)
- Subal Dey
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris, France
| | - Fabio Masero
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland
| | - Enzo Brack
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris, France
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
15
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jindou Yang
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Ping Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xialiang Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Lisi Xie
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ni Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Lei
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chaochao Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yong-Min Lee
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Weiqiang Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Rui Cao
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Shunichi Fukuzumi
- Osaka University Department of Material and Life Science 2-1 Yamada-oka 565-0871 Suita JAPAN
| | - Wonwoo Nam
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| |
Collapse
|
16
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
17
|
Bates JS, Biswas S, Suh SE, Johnson MR, Mondal B, Root TW, Stahl SS. Chemical and Electrochemical O 2 Reduction on Earth-Abundant M-N-C Catalysts and Implications for Mediated Electrolysis. J Am Chem Soc 2022; 144:922-927. [PMID: 34985869 PMCID: PMC8833842 DOI: 10.1021/jacs.1c11126] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
M-N-C catalysts, incorporating non-precious-metal ions (e.g. M = Fe, Co) within a nitrogen-doped carbon support, have been the focus of broad interest for electrochemical O2 reduction and aerobic oxidation reactions. The present study explores the mechanistic relationship between the O2 reduction mechanism under electrochemical and chemical conditions. Chemical O2 reduction is investigated via the aerobic oxidation of a hydroquinone, in which the O-H bonds supply the protons and electrons needed for O2 reduction to water. Mechanistic studies have been conducted to elucidate whether the M-N-C catalyst couples two independent half-reactions (IHR), similar to electrode-mediated processes, or mediates a direct inner-sphere reaction (ISR) between O2 and the organic molecule. Kinetic data support the latter ISR pathway. This conclusion is reinforced by rate/potential correlations that reveal significantly different Tafel slopes, implicating different mechanisms for chemical and electrochemical O2 reduction.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Sourav Biswas
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Biswajit Mondal
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Drive, Madison, WI 53706, USA,Corresponding Authors: ;
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA,Corresponding Authors: ;
| |
Collapse
|
18
|
Hooe SL, Moreno JJ, Reid AG, Cook EN, Machan CW. Mediated Inner-Sphere Electron Transfer Induces Homogeneous Reduction of CO 2 via Through-Space Electronic Conjugation. Angew Chem Int Ed Engl 2022; 61:e202109645. [PMID: 34695281 DOI: 10.1002/anie.202109645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/24/2021] [Indexed: 11/11/2022]
Abstract
The electrocatalytic reduction of CO2 is an appealing method for converting renewable energy sources into value-added chemical feedstocks. We report a co-electrocatalytic system for the reduction of CO2 to CO comprised of a molecular Cr complex and dibenzothiophene-5,5-dioxide (DBTD) as a redox mediator, which achieves high activity (TOF=1.51-2.84×105 s-1 ) and quantitative selectivity. Under aprotic or protic conditions, DBTD produces a co-electrocatalytic response with 1 by coordinating trans to the site of CO2 binding and mediating electron transfer from the electrode with quantitative efficiency for CO. This assembly is reliant on through-space electronic conjugation between the π frameworks of DBTD and the bpy fragment of the catalyst ligand, with contributions from dispersive interactions and weak sulfone coordination.
Collapse
Affiliation(s)
- Shelby L Hooe
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319, USA
| | - Juan J Moreno
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319, USA
| | - Amelia G Reid
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319, USA
| | - Emma N Cook
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319, USA
| | - Charles W Machan
- Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA, 22904-4319, USA
| |
Collapse
|
19
|
Hooe SL, Moreno JJ, Reid AG, Cook EN, Machan CW. Mediated Inner‐Sphere Electron Transfer Induces Homogeneous Reduction of CO
2
via Through‐Space Electronic Conjugation**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shelby L. Hooe
- Department of Chemistry University of Virginia McCormick Road, PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Juan J. Moreno
- Department of Chemistry University of Virginia McCormick Road, PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Amelia G. Reid
- Department of Chemistry University of Virginia McCormick Road, PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Emma N. Cook
- Department of Chemistry University of Virginia McCormick Road, PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Charles W. Machan
- Department of Chemistry University of Virginia McCormick Road, PO Box 400319 Charlottesville VA 22904-4319 USA
| |
Collapse
|
20
|
Reid AG, Moreno JJ, Hooe SL, Baugh KR, Thomas IH, Dickie DA, Machan CW. Inverse Potential Scaling in Co-Electrocatalytic Activity for CO 2 Reduction Through Redox Mediator Tuning and Catalyst Design. Chem Sci 2022; 13:9595-9606. [PMID: 36091894 PMCID: PMC9400620 DOI: 10.1039/d2sc03258a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Electrocatalytic CO2 reduction is an attractive strategy to mitigate the continuous rise in atmospheric CO2 concentrations and generate value-added chemical products. A possible strategy to increase the activity of molecular...
Collapse
Affiliation(s)
- Amelia G Reid
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Juan J Moreno
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Shelby L Hooe
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Kira R Baugh
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Isobel H Thomas
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Charles W Machan
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| |
Collapse
|
21
|
Cook EN, Dickie DA, Machan CW. Catalytic Reduction of Dioxygen to Water by a Bioinspired Non-Heme Iron Complex via a 2+2 Mechanism. J Am Chem Soc 2021; 143:16411-16418. [PMID: 34606274 DOI: 10.1021/jacs.1c04572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a bioinspired non-heme Fe complex with a tripodal [N3O]- ligand framework (Fe(PMG)(Cl)2) that is electrocatalytically active toward dioxygen reduction with acetic acid as a proton source in acetonitrile solution. Under electrochemical and chemical conditions, Fe(PMG)(Cl)2 selectively produces water via a 2+2 mechanism, where H2O2 is generated as a discrete intermediate species before further reduction to two equivalents of H2O. Mechanistic studies support a catalytic cycle for dioxygen reduction where an off-cycle peroxo dimer species is the resting state of the catalyst. Spectroscopic analysis of the reduced complex FeII(PMG)Cl shows the stoichiometric formation of an Fe(III)-hydroxide species following exposure to H2O2; no catalytic activity for H2O2 disproportionation is observed, although the complex is electrochemically active for H2O2 reduction to H2O. Electrochemical studies, spectrochemical experiments, and DFT calculations suggest that the carboxylate moiety of the ligand is sensitive to hydrogen-bonding interactions with the acetic acid proton donor upon reduction from Fe(III)/(II), favoring chloride loss trans to the tris-alkyl amine moiety of the ligand framework. These results offer insight into how mononuclear non-heme Fe active sites in metalloproteins distribute added charge and poise proton donors during reactions with dioxygen.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
22
|
Nichols AW, Cook EN, Gan YJ, Miedaner PR, Dressel JM, Dickie DA, Shafaat HS, Machan CW. Pendent Relay Enhances H 2O 2 Selectivity during Dioxygen Reduction Mediated by Bipyridine-Based Co-N 2O 2 Complexes. J Am Chem Soc 2021; 143:13065-13073. [PMID: 34380313 DOI: 10.1021/jacs.1c03381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Generally, cobalt-N2O2 complexes show selectivity for hydrogen peroxide during electrochemical dioxygen (O2) reduction. We recently reported a Co(III)-N2O2 complex with a 2,2'-bipyridine-based ligand backbone which showed alternative selectivity: H2O was observed as the primary reduction product from O2 (71 ± 5%) with decamethylferrocene as a chemical reductant and acetic acid as a proton donor in methanol solution. We hypothesized that the key selectivity difference in this case arises in part from increased favorability of protonation at the distal O position of the key intermediate Co(III)-hydroperoxide species. To interrogate this hypothesis, we have prepared a new Co(III) compound that contains pendent -OMe groups poised to direct protonation toward the proximal O atom of this hydroperoxo intermediate. Mechanistic studies in acetonitrile (MeCN) solution reveal two regimes are possible in the catalytic response, dependent on added acid strength and the presence of the pendent proton donor relay. In the presence of stronger acids, the activity of the complex containing pendent relays becomes O2 dependent, implying a shift to Co(III)-superoxide protonation as the rate-determining step. Interestingly, the inclusion of the relay results in primarily H2O2 production in MeCN, despite minimal difference between the standard reduction potentials of the three complexes tested. EPR spectroscopic studies indicate the formation of Co(III)-superoxide species in the presence of exogenous base, with greater O2 reactivity observed in the presence of the pendent -OMe groups.
Collapse
Affiliation(s)
- Asa W Nichols
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Emma N Cook
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Yunqiao J Gan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, Ohio 43210, United States
| | - Peter R Miedaner
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Julia M Dressel
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, Ohio 43210, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
23
|
Wang N, Ma S, Zuo P, Duan J, Hou B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100076. [PMID: 34047062 PMCID: PMC8336511 DOI: 10.1002/advs.202100076] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Shifting electrochemical oxygen reduction reaction (ORR) via two-electron pathway becomes increasingly crucial as an alternative/green method for hydrogen peroxide (H2 O2 ) generation. Here, the development of 2e- ORR catalysts in recent years is reviewed, in aspects of reaction mechanism exploration, types of high-performance catalysts, factors to influence catalytic performance, and potential applications of 2e- ORR. Based on the previous theoretical and experimental studies, the underlying 2e- ORR catalytic mechanism is firstly unveiled, in aspect of reaction pathway, thermodynamic free energy diagram, limiting potential, and volcano plots. Then, various types of efficient catalysts for producing H2 O2 via 2e- ORR pathway are summarized. Additionally, the catalytic active sites and factors to influence catalysts' performance, such as electronic structure, carbon defect, functional groups (O, N, B, S, F etc.), synergistic effect, and others (pH, pore structure, steric hindrance effect, etc.) are discussed. The H2 O2 electrogeneration via 2e- ORR also has various potential applications in wastewater treatment, disinfection, organics degradation, and energy storage. Finally, potential future directions and prospects in 2e- ORR catalysts for electrochemically producing H2 O2 are examined. These insights may help develop highly active/selective 2e- ORR catalysts and shape the potential application of this electrochemical H2 O2 producing method.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Shaobo Ma
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Pengjian Zuo
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| |
Collapse
|
24
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University 410082 Changsha China
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Arnar Guðmundsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
- Department of Natural Sciences Mid Sweden University Holmgatan 10 SE-85170 Sundsvall Sweden
| |
Collapse
|
25
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021; 60:15686-15704. [PMID: 33368909 PMCID: PMC9545650 DOI: 10.1002/anie.202012707] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/17/2022]
Abstract
This Minireview presents recent important homogenous aerobic oxidative reactions which are assisted by electron transfer mediators (ETMs). Compared with direct oxidation by molecular oxygen (O2 ), the use of a coupled catalyst system with ETMs leads to a lower overall energy barrier via stepwise electron transfer. This cooperative catalytic process significantly facilitates the transport of electrons from the reduced form of the substrate-selective redox catalyst (SSRCred ) to O2 , thereby increasing the efficiency of the aerobic oxidation. In this Minireview, we have summarized the advances accomplished in recent years in transition-metal-catalyzed as well as metal-free aerobic oxidations of organic molecules in the presence of ETMs. In addition, the recent progress of photochemical and electrochemical oxidative functionalization using ETMs and O2 as the terminal oxidant is also highlighted. Furthermore, the mechanisms of these transformations are showcased.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University410082ChangshaChina
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10SE-85170SundsvallSweden
| |
Collapse
|
26
|
Hooe SL, Cook EN, Reid AG, Machan CW. Non-covalent assembly of proton donors and p-benzoquinone anions for co-electrocatalytic reduction of dioxygen. Chem Sci 2021; 12:9733-9741. [PMID: 34349945 PMCID: PMC8293985 DOI: 10.1039/d1sc01271a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
The two-electron and two-proton p-hydroquinone/p-benzoquinone (H2Q/BQ) redox couple has mechanistic parallels to the function of ubiquinone in the electron transport chain. This proton-dependent redox behavior has shown applicability in catalytic aerobic oxidation reactions, redox flow batteries, and co-electrocatalytic oxygen reduction. Under nominally aprotic conditions in non-aqueous solvents, BQ can be reduced by up to two electrons in separate electrochemically reversible reactions. With weak acids (AH) at high concentrations, potential inversion can occur due to favorable hydrogen-bonding interactions with the intermediate monoanion [BQ(AH)m]˙−. The solvation shell created by these interactions can mediate a second one-electron reduction coupled to proton transfer at more positive potentials ([BQ(AH)m]˙− + nAH + e− ⇌ [HQ(AH)(m+n)−1(A)]2−), resulting in an overall two electron reduction at a single potential at intermediate acid concentrations. Here we show that hydrogen-bonded adducts of reduced quinones and the proton donor 2,2,2-trifluoroethanol (TFEOH) can mediate the transfer of electrons to a Mn-based complex during the electrocatalytic reduction of dioxygen (O2). The Mn electrocatalyst is selective for H2O2 with only TFEOH and O2 present, however, with BQ present under sufficient concentrations of TFEOH, an electrogenerated [H2Q(AH)3(A)2]2− adduct (where AH = TFEOH) alters product selectivity to 96(±0.5)% H2O in a co-electrocatalytic fashion. These results suggest that hydrogen-bonded quinone anions can function in an analogous co-electrocatalytic manner to H2Q. Non-covalent interactions between reduced p-benzoquinone species and weak acids stabilize intermediates which can switch dioxygen reduction selectivity from H2O2 to H2O for a molecular Mn catalyst.![]()
Collapse
Affiliation(s)
- Shelby L Hooe
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Emma N Cook
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Amelia G Reid
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| | - Charles W Machan
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904-4319 USA
| |
Collapse
|
27
|
Kozack CV, Tereniak SJ, Jaworski JN, Li B, Bruns DL, Knapp SMM, Landis CR, Stahl SS. Benzoquinone Cocatalyst Contributions to DAF/Pd(OAc) 2-Catalyzed Aerobic Allylic Acetoxylation in the Absence and Presence of a Co(salophen) Cocatalyst. ACS Catal 2021; 11:6363-6370. [PMID: 34422447 DOI: 10.1021/acscatal.1c01074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Palladium(II)-catalyzed allylic acetoxylation has been the focus of extensive development and investigation. Methods that use molecular oxygen (O2) as the terminal oxidant typically benefit from the use of benzoquinone (BQ) and a transition-metal (TM) cocatalyst, such as Co(salophen), to support oxidation of Pd0 during catalytic turnover. We previously showed that Pd(OAc)2 and 4,5-diazafluoren-9-one (DAF) as an ancillary ligand catalyze allylic oxidation with O2 in the absence of cocatalysts. Herein, we show that BQ enhances DAF/Pd(OAc)2 catalytic activity, nearly matching the performance of reactions that include both BQ and Co(salophen). These observations are complemented by mechanistic studies of DAF/Pd(OAc)2 catalyst systems under three different oxidation conditions: (1) O2 alone, (2) O2 with cocatalytic BQ, and (3) O2 with cocatalytic BQ and Co(salophen). The beneficial effect of BQ in the absence of Co(salophen) is traced to synergistic roles of O2 and BQ, both of which are capable of oxidizing Pd0 to PdII The reaction of O2 generates H2O2 as a byproduct, which can oxidize hydroquinone to quinone in the presence of PdII NMR spectroscopic studies, however, show that hydroquinone is the predominant redox state of the quinone cocatalyst in the absence of Co(salophen), while inclusion of Co(salophen) maintains oxidized quinone throughout the reaction, resulting in better reaction performance.
Collapse
Affiliation(s)
- Caitlin V. Kozack
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Stephen J. Tereniak
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jonathan N. Jaworski
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Bao Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David L. Bruns
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Spring M. M. Knapp
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Clark R. Landis
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Lv B, Li X, Guo K, Ma J, Wang Y, Lei H, Wang F, Jin X, Zhang Q, Zhang W, Long R, Xiong Y, Apfel UP, Cao R. Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two-Electron and Four-Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers. Angew Chem Int Ed Engl 2021; 60:12742-12746. [PMID: 33742485 DOI: 10.1002/anie.202102523] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/26/2023]
Abstract
Achieving a selective 2 e- or 4 e- oxygen reduction reaction (ORR) is critical but challenging. Herein, we report controlling ORR selectivity of Co porphyrins by tuning only steric effects. We designed Co porphyrin 1 with meso-phenyls each bearing a bulky ortho-amido group. Due to the resulted steric hinderance, 1 has four atropisomers with similar electronic structures but dissimilar steric effects. Isomers αβαβ and αααα catalyze ORR with n=2.10 and 3.75 (n is the electron number transferred per O2 ), respectively, but ααββ and αααβ show poor selectivity with n=2.89-3.10. Isomer αβαβ catalyzes 2 e- ORR by preventing a bimolecular O2 activation path, while αααα improves 4 e- ORR selectivity by improving O2 binding at its pocket, a feature confirmed by spectroscopy methods, including O K-edge near-edge X-ray absorption fine structure. This work represents an unparalleled example to improve 2 e- and 4 e- ORR by tuning only steric effects without changing molecular and electronic structures.
Collapse
Affiliation(s)
- Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jun Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Fang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
29
|
Lv B, Li X, Guo K, Ma J, Wang Y, Lei H, Wang F, Jin X, Zhang Q, Zhang W, Long R, Xiong Y, Apfel U, Cao R. Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two‐Electron and Four‐Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jun Ma
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovative Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Fang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovative Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230026 China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovative Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230026 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie, Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
30
|
Nichols AW, Kuehner JS, Huffman BL, Miedaner PR, Dickie DA, Machan CW. Reduction of dioxygen to water by a Co(N 2O 2) complex with a 2,2'-bipyridine backbone. Chem Commun (Camb) 2021; 57:516-519. [PMID: 33331837 DOI: 10.1039/d0cc06763f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report a Co-based complex for the reduction of O2 to H2O utilizing decamethylferrocene as chemical reductant and acetic acid as a proton donor in methanol solution. Despite structural similarities to previously reported Co(N2O2) complexes capable of catalytic O2 reduction, this system shows selectivity for the four-electron/four-proton reduction product, H2O, instead of the two-electron/two-proton reduction product, H2O2. Mechanistic studies show that the overall rate law is analogous to previous examples, suggesting that the key selectivity difference arises in part from increased favorability of protonation at the distal O position of the key intermediate Co(iii)-hydroperoxide, instead of the proximal one. Interestingly, no product selectivity dependence is observed with respect to the presence of pyridine, which is proposed to bind trans to O2 during catalysis.
Collapse
Affiliation(s)
- Asa W Nichols
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Choi H, Kim MC, Park Y, Lee S, Ahn W, Hong J, Inn Sohn J, Jang AR, Lee YW. Electrochemically active hydroquinone-based redox mediator for flexible energy storage system with improved charge storing ability. J Colloid Interface Sci 2020; 588:62-69. [PMID: 33388587 DOI: 10.1016/j.jcis.2020.12.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
Electrochemically active redox mediators have been widely investigated in energy conversion/storage system to improve overall catalytic activities and energy storing ability by inducing favorable surface redox reactions. However, the enhancement of electrochemical activity from the utilization of redox mediators (RMs) is only confirmed through theoretical computation and laboratory-scale experiment. The use of RMs for practical, wearable, and flexible applications has been scarcely researched. Herein, for the first time, a wearable fiber-based flexible energy storage system (f-FESS) with hydroquinone (HQ) composites as a catalytically active RM is introduced to demonstrate its energy-storing roles. The as-prepared f-FESS-HQ shows the superior electrochemical performance, such as the improved energy storage ability (211.16 F L-1 and 29.3 mWh L-1) and long-term cyclability with a capacitance retention of 95.1% over 5000 cycles. Furthermore, the f-FESS-HQ can well maintain its original electrochemical properties under harsh mechanical stress (bending, knotting, and weaving conditions) as well as humid conditions in water and detergent solutions. Thus, the strategical use of electrochemically active RMs can provide the advanced solution for future wearable energy storage system.
Collapse
Affiliation(s)
- Hyeonggeun Choi
- Department of Energy Systems Engineering, Soonchunhyang University, Chungcheongnam-do 31538, Republic of Korea
| | - Min-Cheol Kim
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Yeonsu Park
- Department of Energy Systems Engineering, Soonchunhyang University, Chungcheongnam-do 31538, Republic of Korea
| | - Suok Lee
- Department of Energy Systems Engineering, Soonchunhyang University, Chungcheongnam-do 31538, Republic of Korea
| | - Wook Ahn
- Department of Energy Systems Engineering, Soonchunhyang University, Chungcheongnam-do 31538, Republic of Korea
| | - John Hong
- School of Materials Science and Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Jung Inn Sohn
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - A-Rang Jang
- Department of Electrical Engineering, Semyung University, Chungcheongbuk-do 27136, Republic of Korea.
| | - Young-Woo Lee
- Department of Energy Systems Engineering, Soonchunhyang University, Chungcheongnam-do 31538, Republic of Korea.
| |
Collapse
|
32
|
Bruns DL, Musaev DG, Stahl SS. Can Donor Ligands Make Pd(OAc) 2 a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Redox Equilibria. J Am Chem Soc 2020; 142:19678-19688. [PMID: 33167610 DOI: 10.1021/jacs.0c09464] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Palladium(II)-catalyzed oxidation reactions represent an important class of methods for selective modification and functionalization of organic molecules. This field has benefitted greatly from the discovery of ancillary ligands that expand the scope, reactivity, and selectivity in these reactions; however, ancillary ligands also commonly poison these reactions. The different influences of ligands in these reactions remain poorly understood. For example, over the 60-year history of this field, the PdII/0 redox potentials for catalytically relevant Pd complexes have never been determined. Here, we report the unexpected discovery of (L)PdII(OAc)2-mediated oxidation of hydroquinones, the microscopic reverse of quinone-mediated oxidation of Pd0 commonly employed in PdII-catalyzed oxidation reactions. Analysis of redox equilibria arising from the reaction of (L)Pd(OAc)2 and hydroquinones (L = bathocuproine, 4,5-diazafluoren-9-one), generating reduced (L)Pd species and benzoquinones, provides the basis for determination of (L)PdII(OAc)2 reduction potentials. Experimental results are complemented by density functional theory calculations to show how a series of nitrogen-based ligands modulate the (L)PdII(OAc)2 reduction potential, thereby tuning the ability of PdII to serve as an effective oxidant of organic molecules in catalytic reactions.
Collapse
Affiliation(s)
- David L Bruns
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, Wisconsin 53706, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, Wisconsin 53706, United States
| |
Collapse
|
33
|
Chowdhury SN, Biswas S, Das P, Paul S, Biswas AN. Oxygen Reduction Assisted by the Concert of Redox Activity and Proton Relay in a Cu(II) Complex. Inorg Chem 2020; 59:14012-14022. [PMID: 32916051 DOI: 10.1021/acs.inorgchem.0c01776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A copper complex, [Cu(dpaq)](ClO4) (1), of a monoanionic pentadentate amidate ligand (dpaq) has been isolated and characterized to study its efficacy toward electrocatalytic reduction of oxygen in neutral aqueous medium. The Cu(II) mononuclear complex, poised in a distorted trigonal bipyramidal structure, reduces oxygen at an onset potential of 0.50 V vs RHE. Kinetics study by hydrodynamic voltammetry and chronoamperometry suggests a stepwise mechanism for sequential reduction of O2 to H2O2 to H2O at a single-site Cu-catalyst. The foot-of-the-wave analysis records a turnover frequency of 5.65 × 102 s-1. At pH 7.0, complex 1 undergoes a quasi-reversible mixed metal-ligand-based reduction and triggers the reduction of dioxygen to water. Electrochemical studies in tandem with quantum chemical investigation, conducted at different redox states, portray the active participation of ligand in completing the process of proton-coupled electron transfer internally. The protonated carboxamido moiety acts as a proton relay, while the quinoline-based orbital supplies the necessary redox equivalent for the conversion of complex 1 to Cu(II)-hydroperoxo species. Thus, a suitable combination of redox non-innocence and proton shuttling functionality in the ligand makes it an effective electron-proton-transfer mediator and subsequently assists the process of oxygen reduction.
Collapse
Affiliation(s)
- Srijan Narayan Chowdhury
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla, South Sikkim 737139, India
| | - Sachidulal Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla, South Sikkim 737139, India
| | - Purak Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati 743165, India
| | - Satadal Paul
- Department of Science and Humanities, Darjeeling Polytechnic, Kurseong 734203, India
| | - Achintesh N Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla, South Sikkim 737139, India
| |
Collapse
|
34
|
Zhu J, Liu C, Sun J, Xing Y, Quan B, Li D, Jiang D. Interfacial engineering of Co3FeN embedded N-doped carbon nanoarray derived from metal–organic frameworks for enhanced oxygen evolution reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Li Y, Wei Y, Zhang W. Oxidation behavior of N-hydroxyphthalimide (NHPI) and its electrocatalytic ability toward benzyl alcohol: Proton acceptor effect. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Smith PT, Weng S, Chang CJ. An NADH-Inspired Redox Mediator Strategy to Promote Second-Sphere Electron and Proton Transfer for Cooperative Electrochemical CO2 Reduction Catalyzed by Iron Porphyrin. Inorg Chem 2020; 59:9270-9278. [DOI: 10.1021/acs.inorgchem.0c01162] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter T. Smith
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Christopher J. Chang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Wise CF, Agarwal RG, Mayer JM. Determining Proton-Coupled Standard Potentials and X–H Bond Dissociation Free Energies in Nonaqueous Solvents Using Open-Circuit Potential Measurements. J Am Chem Soc 2020; 142:10681-10691. [DOI: 10.1021/jacs.0c01032] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Catherine F. Wise
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Rishi G. Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
38
|
Anson CW, Stahl SS. Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O 2 and Oxidation of H 2, Alcohols, Biomass, and Complex Fuels. Chem Rev 2020; 120:3749-3786. [PMID: 32216295 PMCID: PMC7357856 DOI: 10.1021/acs.chemrev.9b00717] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mediated fuel cells are electrochemical devices that produce power in a manner similar to that of conventional proton exchange membrane fuel cells (PEMFCs). They differ from PEMFCs in their use of redox mediators dissolved in liquid electrolyte to conduct oxidation of the fuel or reduction of the oxidant, typically O2, in bulk solution. The mediators transport electrons (and often protons) between the electrode and the catalysts or chemical reagents in solution. This strategy can help overcome many of the challenges associated with conventional fuel cells, including managing complex multiphase reactions (as in O2 reduction) or the use of challenging or heterogeneous fuels, such as hydrocarbons, polyols, and biomass. Mediators are also commonly used in enzymatic fuel cells, where direct electron transfer from the electrode to the enzymatic active site can be slow. This review provides a comprehensive survey of historical and recent mediated fuel cell efforts, including applications using chemical and enzymatic catalysts.
Collapse
Affiliation(s)
- Colin W. Anson
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
39
|
Wang F, Stahl SS. Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electron-Proton Transfer Mediators. Acc Chem Res 2020; 53:561-574. [PMID: 32049487 DOI: 10.1021/acs.accounts.9b00544] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electrochemical organic oxidation reactions are highly appealing because protons are often effective terminal electron acceptors, thereby avoiding undesirable stoichiometric oxidants. These reactions are often plagued by high overpotentials, however, that greatly limit their utility. Single-electron transfer (SET) from organic molecules generates high-energy radical-cations. Formation of such intermediates often requires electrode potentials far above the thermodynamic potentials of the reaction and frequently causes decomposition and/or side reactions of ancillary functional groups. In this Account, we show how electrocatalytic electron-proton transfer mediators (EPTMs) address this challenge. EPTMs bypass the formation of radical-cation intermediates by supporting mechanisms that operate at electrode potentials much lower (≥1 V) than those of analogous direct electrolysis reactions.The stable aminoxyl radical TEMPO (2,2,6,6-tetramethylpiperidine N-oxyl) is an effective mediator for electrochemical alcohol oxidation, and we have employed such processes for applications ranging from pharmaceutical synthesis to biomass conversion. A complementary electrochemical alcohol oxidation method employs a cooperative Cu/TEMPO mediator system that operates at 0.5 V lower electrode potential than the TEMPO-only mediated process. This difference, which arises from a different catalytic mechanism, rationalizes the broad functional group tolerance of Cu/TEMPO-based aerobic alcohol oxidation catalysts.Aminoxyl mediators address long-standing challenges in the "Shono oxidation," an important method for α-C-H oxidation of tertiary amides and carbamates. Shono oxidations are initiated by a high-potential SET step that limits their utility. Aminoxyl-mediated Shono-type oxidations have been developed that operate at much lower potentials and tolerate diverse functional groups. Analogous reactivity underlies α-C-H cyanation of secondary cyclic amines, a new method that enables efficient diversification of piperidine-based pharmaceutical building blocks and preparation of non-natural amino acids.Electrochemical oxidations of benzylic C-H bonds are commonly initiated by SET to generate arene radical cations, but such methods are again plagued by large overpotentials. Mediated electrolysis methods that promote hydrogen-atom-transfer (HAT) from benzylic C-H bonds to Fe-oxo species and phthalimide N-oxyl (PINO) support C-H oxygenation, iodination, and oxidative-coupling reactions. A complementary method merges photochemistry with electrochemistry to achieve amidation of C(sp3)-H bonds. This unique process operates at much lower overpotentials compatible with diverse functional groups.These results have broad implications for organic electrochemistry, highlighting the importance of "overpotential" considerations and the prospects for expanding synthetic utility by using mediators to bypass high-energy outer-sphere electron-transfer mechanisms. Principles demonstrated here for oxidation are equally relevant to electrochemical reductions.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
40
|
Affiliation(s)
- Charles W. Machan
- University of Virginia, McCormick Road,
PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
41
|
Optical, electrochemical, thermal, biological and theoretical studies of some chloro and bromo based metal-salophen complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Wild U, Hübner O, Himmel H. Redox-Active Guanidines in Proton-Coupled Electron-Transfer Reactions: Real Alternatives to Benzoquinones? Chemistry 2019; 25:15988-15992. [PMID: 31535741 PMCID: PMC7065378 DOI: 10.1002/chem.201903438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/24/2023]
Abstract
Guanidino-functionalized aromatics (GFAs) are readily available, stable organic redox-active compounds. In this work we apply one particular GFA compound, 1,2,4,5-tetrakis(tetramethylguanidino)benzene, in its oxidized form in a variety of oxidation/oxidative coupling reactions to demonstrate the scope of its proton-coupled electron transfer (PCET) reactivity. Addition of an excess of acid boosts its oxidation power, enabling the oxidative coupling of substrates with redox potentials of at least +0.77 V vs. Fc+ /Fc. The green recyclability by catalytic re-oxidation with dioxygen is also shown. Finally, a direct comparison indicates that GFAs are real alternatives to toxic halo- or cyano-substituted benzoquinones.
Collapse
Affiliation(s)
- Ute Wild
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Olaf Hübner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
43
|
Wang YH, Schneider PE, Goldsmith ZK, Mondal B, Hammes-Schiffer S, Stahl SS. Brønsted Acid Scaling Relationships Enable Control Over Product Selectivity from O 2 Reduction with a Mononuclear Cobalt Porphyrin Catalyst. ACS CENTRAL SCIENCE 2019; 5:1024-1034. [PMID: 31263762 PMCID: PMC6598176 DOI: 10.1021/acscentsci.9b00194] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 05/11/2023]
Abstract
The selective reduction of O2, typically with the goal of forming H2O, represents a long-standing challenge in the field of catalysis. Macrocyclic transition-metal complexes, and cobalt porphyrins in particular, have been the focus of extensive study as catalysts for this reaction. Here, we show that the mononuclear Co-tetraarylporphyrin complex, Co(porOMe) (porOMe = meso-tetra(4-methoxyphenyl)porphyrin), catalyzes either 2e-/2H+ or 4e-/4H+ reduction of O2 with high selectivity simply by changing the identity of the Brønsted acid in dimethylformamide (DMF). The thermodynamic potentials for O2 reduction to H2O2 or H2O in DMF are determined and exhibit a Nernstian dependence on the acid pK a, while the CoIII/II redox potential is independent of the acid pK a. The reaction product, H2O or H2O2, is defined by the relationship between the thermodynamic potential for O2 reduction to H2O2 and the CoIII/II redox potential: selective H2O2 formation is observed when the CoIII/II potential is below the O2/H2O2 potential, while H2O formation is observed when the CoIII/II potential is above the O2/H2O2 potential. Mechanistic studies reveal that the reactions generating H2O2 and H2O exhibit different rate laws and catalyst resting states, and these differences are manifested as different slopes in linear free energy correlations between the log(rate) versus pK a and log(rate) versus effective overpotential for the reactions. This work shows how scaling relationships may be used to control product selectivity, and it provides a mechanistic basis for the pursuit of molecular catalysts that achieve low overpotential reduction of O2 to H2O.
Collapse
Affiliation(s)
- Yu-Heng Wang
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Patrick E. Schneider
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zachary K. Goldsmith
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Biswajit Mondal
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| | - Shannon S. Stahl
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- E-mail:
| |
Collapse
|
44
|
Hooe SL, Machan CW. Dioxygen Reduction to Hydrogen Peroxide by a Molecular Mn Complex: Mechanistic Divergence between Homogeneous and Heterogeneous Reductants. J Am Chem Soc 2019; 141:4379-4387. [PMID: 30712355 DOI: 10.1021/jacs.8b13373] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The selective electrocatalytic reduction of dioxygen (O2) to hydrogen peroxide (H2O2) could be an alternative to the anthraquinone process used industrially, as well as enable the on-demand production of a useful chemical oxidant, obviating the need for long-term storage. There are challenges associated with this, since the two-proton/two-electron reduction of H2O2 to two equivalents of water (H2O) or disproportionation to O2 and H2O can be competing reactions. Recently, we reported a Mn(III) Schiff base-type complex, Mn(tbudhbpy)Cl, where 6,6'-di(3,5-di- tert-butyl-2-phenolate)-2,2'-bipyridine = [tbudhbpy]2-, which is active for the electrocatalytic reduction of O2 to H2O2 (ca. 80% selectivity). The less-than-quantitative selectivity could be attributed in part to a thermal disproportionation reaction of H2O2 to O2 and H2O. To understand the mechanism in greater detail, spectrochemical stopped-flow and electrochemical techniques were employed to examine the catalytic rate law and kinetic reaction parameters. Under electrochemical conditions, the catalyst produces H2O2 by an ECCEC mechanism with appreciable rates down to overpotentials of 20 mV and exhibits a catalytic response with a strong dependence on proton donor p Ka. Mechanistic studies suggest that under spectrochemical conditions, where the homogeneous reductant decamethylferrocene (Cp*2Fe) is used, H2O2 is instead produced via a disproportionation pathway, which does not show a strong acid dependence. These results demonstrate that differences in mechanistic pathways can occur for homogeneous catalysts in redox processes, dependent on whether an electrode or homogeneous reductant is used.
Collapse
Affiliation(s)
- Shelby L Hooe
- Department of Chemistry , University of Virginia , PO Box 400319, Charlottesville , Virginia 22904-4319 , United States
| | - Charles W Machan
- Department of Chemistry , University of Virginia , PO Box 400319, Charlottesville , Virginia 22904-4319 , United States
| |
Collapse
|
45
|
Henke AH, Saunders TP, Pedersen JA, Hamers RJ. Enhancing Electrochemical Efficiency of Hydroxyl Radical Formation on Diamond Electrodes by Functionalization with Hydrophobic Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2153-2163. [PMID: 30550713 DOI: 10.1021/acs.langmuir.8b04030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemical formation of high-energy species such as hydroxyl radicals in aqueous media is inefficient because oxidation of H2O to form O2 is a more thermodynamically favorable reaction. Boron-doped diamond (BDD) is widely used as an electrode material for generating •OH radicals because it has a very large kinetic overpotential for O2 production, thus increasing electrochemical efficiency for •OH production. Yet, the underlying mechanisms of O2 and •OH production at diamond electrodes are not well understood. We demonstrate that boron-doped diamond surfaces functionalized with hydrophobic, polyfluorinated molecular ligands (PF-BDD) have significantly higher electrochemical efficiency for •OH production compared with hydrogen-terminated (H-BDD), oxidized (O-BDD), or poly(ethylene ether)-functionalized (E-BDD) boron-doped diamond samples. Our measurements show that •OH production is nearly independent of surface functionalization and pH (pH = 7.4 vs 9.2), indicating that •OH is produced by oxidation of H2O in an outer-sphere electron-transfer process. In contrast, the total electrochemical current, which primarily produces O2, differs strongly between samples with different surface functionalizations, indicating an inner-sphere electron-transfer process. X-ray photoelectron spectroscopy measurements show that although both H-BDD and PF-BDD electrodes are oxidized over time, PF-BDD showed longer stability (≈24 h of use) than H-BDD. This work demonstrates that increasing surface hydrophobicity using perfluorinated ligands selectively inhibits inner-sphere oxidation to O2 and therefore provides a pathway to increased efficiency for formation of •OH via an outer-sphere process. The use of hydrophobic electrodes may be a general approach to increasing selectivity toward outer-sphere electron-transfer processes in aqueous media.
Collapse
|
46
|
Nurdin L, Spasyuk DM, Fairburn L, Piers WE, Maron L. Oxygen-Oxygen Bond Cleavage and Formation in Co(II)-Mediated Stoichiometric O 2 Reduction via the Potential Intermediacy of a Co(IV) Oxyl Radical. J Am Chem Soc 2018; 140:16094-16105. [PMID: 30398331 DOI: 10.1021/jacs.8b07726] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In reactions of significance to alternative energy schemes, metal catalysts are needed to overcome kinetically and thermodynamically difficult processes. Often, high-oxidation-state, high-energy metal oxo intermediates are proposed as mediators in elementary steps involving O-O bond cleavage and formation, but the mechanisms of these steps are difficult to study because of the fleeting nature of these species. Here we utilized a novel dianionic pentadentate ligand system that enabled a detailed mechanistic investigation of the protonation of a cobalt(III)-cobalt(III) peroxo dimer, a known intermediate in oxygen reduction catalysis to hydrogen peroxide. It was shown that double protonation occurs rapidly and leads to a low-energy O-O bond cleavage step that generates a Co(III) aquo complex and a highly reactive Co(IV) oxyl cation. The latter was probed computationally and experimentally implicated through chemical interception and isotope labeling experiments. In the absence of competing chemical reagents, it dimerizes and eliminates dioxygen in a step highly relevant to O-O bond formation in the oxygen evolution step in water oxidation. Thus, the study demonstrates both facile O-O bond cleavage and formation in the stoichiometric reduction of O2 to H2O with 2 equiv of Co(II) and suggests a new pathway for selective reduction of O2 to water via Co(III)-O-O-Co(III) peroxo intermediates.
Collapse
Affiliation(s)
- Lucie Nurdin
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Denis M Spasyuk
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Laura Fairburn
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Warren E Piers
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA, UPS, LPCNO , 135 avenue de Rangueil , F-31077 Toulouse , France , and CNRS, LPCNO, F-31077 Toulouse, France
| |
Collapse
|
47
|
Chambers GM, Wiedner ES, Bullock RM. H
2
Oxidation Electrocatalysis Enabled by Metal‐to‐Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Geoffrey M. Chambers
- Center for Molecular Electrocatalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Eric S. Wiedner
- Center for Molecular Electrocatalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - R. Morris Bullock
- Center for Molecular Electrocatalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
48
|
Chambers GM, Wiedner ES, Bullock RM. H
2
Oxidation Electrocatalysis Enabled by Metal‐to‐Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction. Angew Chem Int Ed Engl 2018; 57:13523-13527. [DOI: 10.1002/anie.201807510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Geoffrey M. Chambers
- Center for Molecular Electrocatalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Eric S. Wiedner
- Center for Molecular Electrocatalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - R. Morris Bullock
- Center for Molecular Electrocatalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
49
|
Zhou S, Yan BW, Fan SX, Tian JS, Loh TP. Regioselective Formal [4 + 2] Cycloadditions of Enaminones with Diazocarbonyls through Rh III-Catalyzed C-H Bond Functionalization. Org Lett 2018; 20:3975-3979. [PMID: 29888603 DOI: 10.1021/acs.orglett.8b01540] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A regioselective formal [4 + 2] cycloaddition for the assembly of highly functionalized benzene rings was successfully developed. In this reaction, olefinic C-H bond functionalization/cyclization cascade reaction followed by rearomatization led to the desired molecules in one step under mild reaction conditions. This protocol also displays a broad substrate scope and good tolerance to a wide range of functional groups. Additionally, the potential utility for the synthesis of highly conjugated polybenzenes and diversification of natural products was also demonstrated.
Collapse
Affiliation(s)
- Shuguang Zhou
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Bi-Wei Yan
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Shuai-Xin Fan
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Jie-Sheng Tian
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|