1
|
Georgiou K, Kolocouris A. Conformational heterogeneity and structural features for function of the prototype viroporin influenza AM2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184387. [PMID: 39424094 DOI: 10.1016/j.bbamem.2024.184387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The 97-residue influenza A matrix 2 (ΑM2) protein, a prototype for viroporins, transports protons through water molecules and His37. We discuss structural biology and molecular biophysics experiments and some functional assays that have transformed over 40 years our understanding of the structure and function of AM2. The structural studies on ΑM2 have been performed with different conditions (pH, temperature, lipid, constructs) and using various protein constructs, e.g., AM2 transmembrane (AM2TM) domain, AM2 conductance domain (AM2CD), ectodomain-containing or ectodomain-truncated, AM2 full length (AM2FL) and aimed to describe the different conformations and structural details that are necessary for the stability and function of AM2. However, the conclusions from these experiments appeared sometimes ambiguous and caused exciting debates. This was not due to inaccurate measurements, but instead because of the different membrane mimetic environment used, e.g., detergent, micelles or phospholipid bilayer, the method (e.g., X-ray crystallography, solid state NMR, solution NMR, native mass spectrometry), the used protein construct (e.g., AM2TM or AM2CD), or the amino acids residues to follow observables (e.g., NMR chemical shifts). We present these results according to the different used biophysical methods, the research groups and often by keeping a chronological order for presenting the progress in the research. We discuss ideas for additional research on structural details of AM2 and how the present findings can be useful to explore new routes of influenza A inhibition. The AM2 research can provide inspiration to study other viroporins as drug targets.
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece.
| |
Collapse
|
2
|
Tan H, Zhao W, Duan M, Zhao Y, Zhang Y, Xie H, Tong Q, Yang J. Native Cellular Membranes Facilitate Channel Activity of MscL by Enhancing Slow Collective Motions of Its Transmembrane Helices. J Am Chem Soc 2024; 146:31472-31485. [PMID: 39503730 DOI: 10.1021/jacs.4c07779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Mechanosensitive channels of large conductance (MscL) serve as a mechanoelectrical valve of cells in response to the membrane tension. The influence of membrane environments on the MscL channel activity and the underlying mechanism remains unclear. Herein, we developed a new sample preparation protocol that allows for the detection of high-quality 1H-detected solid-state NMR spectra of MscL in cellular membranes, enabling site-specific analysis of its dynamics. Dipolar order parameters and spin relaxation rates are measured for 51 residues of MscL in synthetic and native membranes. The dynamics data reveal that while MscL maintains a similar rigidity in both membrane environments, it exhibits enhanced slow collective motions in the native cellular membranes. Molecular dynamics simulations demonstrate the critical role of slow motions in the mechanosensitivity of MscL by promoting protein-membrane interactions. This study examines atomic-resolution dynamics of a membrane-protein in cellular membranes and provides novel insights into the functional significance of membrane-protein dynamics.
Collapse
Affiliation(s)
- Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Weijing Zhao
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Mojie Duan
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Huayong Xie
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Qiong Tong
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
3
|
Pankratova Y, McKay MJ, Ma C, Tan H, Wang J, Hong M. Structure and dynamics of the proton-selective histidine and the gating tryptophan in an inward rectifying hybrid influenza B and A virus M2 proton channel. Phys Chem Chem Phys 2024; 26:20629-20644. [PMID: 39037444 PMCID: PMC11290064 DOI: 10.1039/d4cp01648c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The M2 proteins of influenza A and B viruses form acid-activated proton channels that are essential for the virus lifecycle. Proton selectivity is achieved by a transmembrane (TM) histidine whereas gating is achieved by a tryptophan residue. Although this functional apparatus is conserved between AM2 and BM2 channels, AM2 conducts protons exclusively inward whereas BM2 conducts protons in either direction depending on the pH gradient. Previous studies showed that in AM2, mutations of D44 abolished inward rectification of AM2, suggesting that the tryptophan gate is destabilized. To elucidate how charged residues C-terminal to the tryptophan regulates channel gating, here we investigate the structure and dynamics of H19 and W23 in a BM2 mutant, GDR-BM2, in which three BM2 residues are mutated to the corresponding AM2 residues, S16G, G26D and H27R. Whole-cell electrophysiological data show that GDR-BM2 conducts protons with inward rectification, identical to wild-type (WT) AM2 but different from WT-BM2. Solid-state NMR 15N and 13C spectra of H19 indicate that the mutant BM2 channel contains higher populations of cationic histidine and neutral τ tautomers compared to WT-BM2 at acidic pH. Moreover, 19F NMR spectra of 5-19F-labeled W23 resolve three peaks at acidic pH, suggesting three tryptophan sidechain conformations. Comparison of these spectra with the tryptophan spectra of other M2 peptides suggests that these indole sidechain conformations arise from interactions with the C-terminal charged residues and with the N-terminal cationic histidine. Taken together, these solid-state NMR data show that inward rectification in M2 proton channels is accomplished by tryptophan interactions with charged residues on both its C-terminal and N-terminal sides. Gating of these M2 proton channels is thus accomplished by a multi-residue complex with finely tuned electrostatic and aromatic interactions.
Collapse
Affiliation(s)
- Yanina Pankratova
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| | - Matthew J McKay
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Medeiros-Silva J, Dregni AJ, Somberg NH, Duan P, Hong M. Atomic structure of the open SARS-CoV-2 E viroporin. SCIENCE ADVANCES 2023; 9:eadi9007. [PMID: 37831764 PMCID: PMC10575589 DOI: 10.1126/sciadv.adi9007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The envelope (E) protein of the SARS-CoV-2 virus forms cation-conducting channels in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of infected cells. The calcium channel activity of E is associated with the inflammatory responses of COVID-19. Using solid-state NMR (ssNMR) spectroscopy, we have determined the open-state structure of E's transmembrane domain (ETM) in lipid bilayers. Compared to the closed state, open ETM has an expansive water-filled amino-terminal chamber capped by key glutamate and threonine residues, a loose phenylalanine aromatic belt in the middle, and a constricted polar carboxyl-terminal pore filled with an arginine and a threonine residue. This structure gives insights into how protons and calcium ions are selected by ETM and how they permeate across the hydrophobic gate of this viroporin.
Collapse
Affiliation(s)
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
5
|
Sučec I, Mammeri NE, Dregni AJ, Hong M. Rapid Determination of the Topology of Oligomeric α-Helical Membrane Proteins by Water- and Lipid-Edited Methyl NMR. J Phys Chem B 2023; 127:7518-7530. [PMID: 37606918 PMCID: PMC10893779 DOI: 10.1021/acs.jpcb.3c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Single-span oligomeric α-helical transmembrane proteins are common in virus ion channels, which are targets of antiviral drugs. Knowledge about the high-resolution structures of these oligomeric α-helical bundles is so far scarce. Structure determination of these membrane proteins by solid-state NMR traditionally requires resolving and assigning protein chemical shifts and measuring many interhelical distances, which are time-consuming. To accelerate experimental structure determination, here we introduce a simple solid-state NMR approach that uses magnetization transfer from water and lipid protons to the protein. By detecting the water- and lipid-transferred intensities of the high-sensitivity methyl 13C signals of Leu, Val, and Ile residues, which are highly enriched in these membrane proteins, we can derive models of the topology of these homo-oligomeric helical bundles. The topology is specified by the positions of amino acid residues in heptad repeats and the orientations of residues relative to the channel pore, lipids, and the helical interface. We demonstrate this water- and lipid-edited methyl NMR approach on the envelope (E) protein of SARS-CoV-2, the causative agent of the COVID-19 pandemic. We show that water-edited and lipid-edited 2D 13C-13C correlation spectra can be measured with sufficient sensitivity. Even without resolving multiple residues of the same type in the NMR spectra, we can obtain the helical bundle topology. We apply these experiments to the structurally unknown E proteins of the MERS coronavirus and the human coronavirus NL63. The resulting structural topologies show interesting differences in the positions of the aromatic residues in these three E proteins, suggesting that these viroporins may have different mechanisms of activation and ion conduction.
Collapse
Affiliation(s)
- Iva Sučec
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
6
|
Shcherbakov AA, Brousseau M, Henzler-Wildman KA, Hong M. Microsecond Motion of the Bacterial Transporter EmrE in Lipid Bilayers. J Am Chem Soc 2023; 145:10104-10115. [PMID: 37097985 PMCID: PMC10905379 DOI: 10.1021/jacs.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The bacterial transporter EmrE is a homo-dimeric membrane protein that effluxes cationic polyaromatic substrates against the concentration gradient by coupling to proton transport. As the archetype of the small multidrug resistance family of transporters, EmrE structure and dynamics provide atomic insights into the mechanism of transport by this family of proteins. We recently determined high-resolution structures of EmrE in complex with a cationic substrate, tetra(4-fluorophenyl)phosphonium (F4-TPP+), using solid-state NMR spectroscopy and an S64V-EmrE mutant. The substrate-bound protein exhibits distinct structures at acidic and basic pH, reflecting changes upon binding or release of a proton from residue E14, respectively. To obtain insight into the protein dynamics that mediate substrate transport, here we measure 15N rotating-frame spin-lattice relaxation (R1ρ) rates of F4-TPP+-bound S64V-EmrE in lipid bilayers under magic-angle spinning (MAS). Using perdeuterated and back-exchanged protein and 1H-detected 15N spin-lock experiments under 55 kHz MAS, we measured 15N R1ρ rates site-specifically. Many residues show spin-lock field-dependent 15N R1ρ relaxation rates. This relaxation dispersion indicates the presence of backbone motions at a rate of about 6000 s-1 at 280 K for the protein at both acidic and basic pH. This motional rate is 3 orders of magnitude faster than the alternating access rate but is within the range estimated for substrate binding. We propose that these microsecond motions may allow EmrE to sample different conformations to facilitate substrate binding and release from the transport pore.
Collapse
Affiliation(s)
- Alexander A. Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Merissa Brousseau
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI 53706, United States
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| |
Collapse
|
7
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
8
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
9
|
Bonaccorsi M, Le Marchand T, Pintacuda G. Protein structural dynamics by Magic-Angle Spinning NMR. Curr Opin Struct Biol 2021; 70:34-43. [PMID: 33915352 DOI: 10.1016/j.sbi.2021.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
Magic-Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) is a fast-developing technique, capable of complementing solution NMR, X-ray crystallography, and electron microscopy for the biophysical characterization of microcrystalline, poorly crystalline or disordered protein samples, such as enzymes, biomolecular assemblies, membrane-embedded systems or fibrils. Beyond structures, MAS NMR is an ideal tool for the investigation of dynamics, since it is unique in its ability to distinguish static and dynamic disorder, and to characterize not only amplitudes but also timescales of motion. Building on seminal work on model proteins, the technique is now ripe for widespread application in structural biology. This review briefly summarizes the recent evolutions in biomolecular MAS NMR and accounts for the growing number of systems where this spectroscopy has provided a description of conformational dynamics over the very last few years.
Collapse
Affiliation(s)
- Marta Bonaccorsi
- Université de Lyon, Centre de RMN à Très hauts Champs, UMR 5280 (CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Tanguy Le Marchand
- Université de Lyon, Centre de RMN à Très hauts Champs, UMR 5280 (CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Guido Pintacuda
- Université de Lyon, Centre de RMN à Très hauts Champs, UMR 5280 (CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), 5 rue de la Doua, F-69100, Villeurbanne, France.
| |
Collapse
|
10
|
Gelenter MD, Mandala VS, Niesen MJM, Sharon DA, Dregni AJ, Willard AP, Hong M. Water orientation and dynamics in the closed and open influenza B virus M2 proton channels. Commun Biol 2021; 4:338. [PMID: 33712696 PMCID: PMC7955094 DOI: 10.1038/s42003-021-01847-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/11/2021] [Indexed: 01/03/2023] Open
Abstract
The influenza B M2 protein forms a water-filled tetrameric channel to conduct protons across the lipid membrane. To understand how channel water mediates proton transport, we have investigated the water orientation and dynamics using solid-state NMR spectroscopy and molecular dynamics (MD) simulations. 13C-detected water 1H NMR relaxation times indicate that water has faster rotational motion in the low-pH open channel than in the high-pH closed channel. Despite this faster dynamics, the open-channel water shows higher orientational order, as manifested by larger motionally-averaged 1H chemical shift anisotropies. MD simulations indicate that this order is induced by the cationic proton-selective histidine at low pH. Furthermore, the water network has fewer hydrogen-bonding bottlenecks in the open state than in the closed state. Thus, faster dynamics and higher orientational order of water molecules in the open channel establish the water network structure that is necessary for proton hopping.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michiel J M Niesen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dina A Sharon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
12
|
Zhang L, Lu JR, Waigh TA. Electronics of peptide- and protein-based biomaterials. Adv Colloid Interface Sci 2021; 287:102319. [PMID: 33248339 DOI: 10.1016/j.cis.2020.102319] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Biologically inspired peptide- and protein-based materials are at the forefront of organic bioelectronics research due to their inherent conduction properties and excellent biocompatibility. Peptides have the advantages of structural simplicity and ease of synthesis providing credible prospects for mass production, whereas naturally expressed proteins offer inspiration with many examples of high performance evolutionary optimised bioelectronics properties. We review recent advances in the fundamental conduction mechanisms, experimental techniques and exemplar applications for the bioelectronics of self-assembling peptides and proteins. Diverse charge transfer processes, such as tunnelling, hopping and coupled transfer, are found in naturally occurring biological systems with peptides and proteins as the predominant building blocks to enable conduction in biology. Both theory and experiments allow detailed investigation of bioelectronic properties in order to design functionalized peptide- and protein-based biomaterials, e.g. to create biocompatible aqueous electrodes. We also highlight the design of bioelectronics devices based on peptides/proteins including field-effect transistors, piezoelectric energy harvesters and optoelectronics.
Collapse
Affiliation(s)
- L Zhang
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - J R Lu
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - T A Waigh
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Photon Science Institute, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
13
|
Stylianakis I, Shalev A, Scheiner S, Sigalas MP, Arkin IT, Glykos N, Kolocouris A. The balance between side-chain and backbone-driven association in folding of the α-helical influenza A transmembrane peptide. J Comput Chem 2020; 41:2177-2188. [PMID: 32735736 DOI: 10.1002/jcc.26381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25 ). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25 . DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25 . This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25 . Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariella Shalev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Michael P Sigalas
- Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Nikolas Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Dregni AJ, Duan P, Hong M. Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State Nuclear Magnetic Resonance. Biochemistry 2020; 59:2237-2248. [PMID: 32453948 PMCID: PMC7720860 DOI: 10.1021/acs.biochem.0c00342] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The microtubule-associated protein tau aggregates into distinct neurofibrillary tangles in brains afflicted with multiple neurodegenerative diseases such as Alzheimer's disease and corticobasal degeneration (CBD). The mechanism of tau misfolding and aggregation is poorly understood. Determining the structure, dynamics, and water accessibility of tau filaments may provide insight into the pathway of tau misfolding. Here, we investigate the hydration and dynamics of the β-sheet core of heparin-fibrillized 0N4R tau using solid-state nuclear magnetic resonance spectroscopy. This β-sheet core consists of the second and third microtubule-binding repeats, R2 and R3, respectively, which form a hairpin. Water-edited two-dimensional (2D) 13C-13C and 15N-13C correlation spectra show that most residues in R2 and R3 domains have low water accessibility, indicating that this hairpin is surrounded by other proteinaceous segments. However, a small number of residues, especially S285 and S316, are well hydrated compared to other Ser and Thr residues, suggesting that there is a small water channel in the middle of the hairpin. To probe whether water accessibility correlates with protein dynamics, we measured the backbone N-H dipolar couplings of the β-sheet core. Interestingly, residues in the fourth microtubule-binding repeat, R4, show rigid-limit N-H dipolar couplings, even though this domain exhibits weaker intensities in the 2D 15N-13C correlation spectra. These results suggest that the R4 domain participates in cross-β hydrogen bonding in some of the subunits but exhibits dynamic disorder in other subunits. Taken together, these hydration and dynamics data indicate that the R2-R3 hairpin of 0N4R tau is shielded from water by other proteinaceous segments on the exterior but contains a small water pore in the interior. This structural topology has various similarities with the CBD tau fibril structure but also shows specific differences. The disorder of the R4 domain and the presence of a small water channel in the heparin-fibrillized 4R tau have implications for the structure of tau fibrils in diseased brains.
Collapse
Affiliation(s)
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
15
|
Mandala VS, Loftis AR, Shcherbakov AA, Pentelute BL, Hong M. Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism. Nat Struct Mol Biol 2020; 27:160-167. [PMID: 32015551 PMCID: PMC7641042 DOI: 10.1038/s41594-019-0371-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
The influenza B M2 (BM2) proton channel is activated by acidic pH to mediate virus uncoating. Unlike influenza A M2 (AM2), which conducts protons with strong inward rectification, BM2 conducts protons both inward and outward. Here we report 1.4- and 1.5-Å solid-state NMR structures of the transmembrane domain of the closed and open BM2 channels in a phospholipid environment. Upon activation, the transmembrane helices increase the tilt angle by 6° and the average pore diameter enlarges by 2.1 Å. BM2 thus undergoes a scissor motion for activation, which differs from the alternating-access motion of AM2. These results indicate that asymmetric proton conduction requires a backbone hinge motion, whereas bidirectional conduction is achieved by a symmetric scissor motion. The proton-selective histidine and gating tryptophan in the open BM2 reorient on the microsecond timescale, similar to AM2, indicating that side chain dynamics are the essential driver of proton shuttling.
Collapse
Affiliation(s)
- Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander R Loftis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
16
|
Konstantinidi A, Chountoulesi M, Naziris N, Sartori B, Amenitsch H, Mali G, Čendak T, Plakantonaki M, Triantafyllakou I, Tselios T, Demetzos C, Busath DD, Mavromoustakos T, Kolocouris A. The boundary lipid around DMPC-spanning influenza A M2 transmembrane domain channels: Its structure and potential for drug accommodation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183156. [PMID: 31846647 DOI: 10.1016/j.bbamem.2019.183156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
We have investigated the perturbation of influenza A M2TM in DMPC bilayers. We have shown that (a) DSC and SAXS detect changes in membrane organization caused by small changes (micromolar) in M2TM or aminoadamantane concentration and aminoadamantane structure, by comparison of amantadine and spiro[pyrrolidine-2,2'-adamantane] (AK13), (b) that WAXS and MD can suggest details of ligand topology. DSC and SAXS show that at a low M2TM micromolar concentration in DPMC bilayers, two lipid domains are observed, which likely correspond to M2TM boundary lipids and bulk-like lipids. At higher M2TM concentrations, one domain only is identified, which constitutes essentially all of the lipid molecules behaving as boundary lipids. According to SAXS, WAXS, and DSC in the absence of M2TM, both aminoadamantane drugs exert a similar perturbing effect on the bilayer at low concentrations. At the same concentrations of the drug when M2TM is present, amantadine and, to a lesser extent, AK13 cause, according to WAXS, a significant disordering of chain-stacking, which also leads to the formation of two lipid domains. This effect is likely due, according to MD simulations, to the preference of the more lipophilic AK13 to locate closer to the lateral surfaces of M2TM when compared to amantadine, which forms stronger ionic interactions with phosphate groups. The preference of AK13 to concentrate inside the lipid bilayer close to the exterior of the hydrophobic M2TM helices may contribute to its higher binding affinity compared to amantadine.
Collapse
Affiliation(s)
- Athina Konstantinidi
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, A-8010 Graz, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, A-8010 Graz, Austria
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
| | - Tomaž Čendak
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
| | - Maria Plakantonaki
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Iro Triantafyllakou
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Theodore Tselios
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - David D Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Thomas Mavromoustakos
- Section of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece.
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece.
| |
Collapse
|
17
|
Singh H, Vasa SK, Jangra H, Rovó P, Päslack C, Das CK, Zipse H, Schäfer LV, Linser R. Fast Microsecond Dynamics of the Protein–Water Network in the Active Site of Human Carbonic Anhydrase II Studied by Solid-State NMR Spectroscopy. J Am Chem Soc 2019; 141:19276-19288. [DOI: 10.1021/jacs.9b05311] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Himanshu Singh
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Suresh K. Vasa
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Harish Jangra
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Petra Rovó
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Christopher Päslack
- Theoretical Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Chandan K. Das
- Theoretical Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Hendrik Zipse
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Lars V. Schäfer
- Theoretical Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Rasmus Linser
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
18
|
Thomaston JL, Wu Y, Polizzi N, Liu L, Wang J, DeGrado WF. X-ray Crystal Structure of the Influenza A M2 Proton Channel S31N Mutant in Two Conformational States: An Open and Shut Case. J Am Chem Soc 2019; 141:11481-11488. [PMID: 31184871 DOI: 10.1021/jacs.9b02196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amantadine-resistant S31N mutant of the influenza A M2 proton channel has become prevalent in currently circulating viruses. Here, we have solved an X-ray crystal structure of M2(22-46) S31N that contains two distinct conformational states within its asymmetric unit. This structure reveals the mechanism of adamantane resistance in both conformational states of the M2 channel. In the Inwardopen conformation, the mutant Asn31 side chain faces the channel pore and sterically blocks the adamantane binding site. In the Inwardclosed conformation, Asn31 forms hydrogen bonds with carbonyls at the monomer-monomer interface, which twists the monomer helices and constricts the channel pore at the drug binding site. We also examine M2(19-49) WT and S31N using solution NMR spectroscopy and show that distribution of the two conformational states is dependent on both detergent choice and experimental pH.
Collapse
Affiliation(s)
- Jessica L Thomaston
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Yibing Wu
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Nicholas Polizzi
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Lijun Liu
- State Key Laboratory of Chemical Oncogenomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,DLX Scientific , Lawrence , Kansas 66049 , United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , University of Arizona , Tucson , Arizona 85721 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| |
Collapse
|
19
|
Gelenter MD, Smith KJ, Liao SY, Mandala VS, Dregni AJ, Lamm MS, Tian Y, Xu W, Pochan DJ, Tucker TJ, Su Y, Hong M. The peptide hormone glucagon forms amyloid fibrils with two coexisting β-strand conformations. Nat Struct Mol Biol 2019; 26:592-598. [PMID: 31235909 PMCID: PMC6609468 DOI: 10.1038/s41594-019-0238-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
Glucagon and insulin maintain blood glucose homeostasis and are used to treat hypoglycemia and hyperglycemia, respectively, in patients with diabetes. Whereas insulin is stable for weeks in its solution formulation, glucagon fibrillizes rapidly at the acidic pH required for solubility and is therefore formulated as a lyophilized powder that is reconstituted in an acidic solution immediately before use. Here we use solid-state NMR to determine the atomic-resolution structure of fibrils of synthetic human glucagon grown at pharmaceutically relevant low pH. Unexpectedly, two sets of chemical shifts are observed, indicating the coexistence of two β-strand conformations. The two conformations have distinct water accessibilities and intermolecular contacts, indicating that they alternate and hydrogen bond in an antiparallel fashion along the fibril axis. Two antiparallel β-sheets assemble with symmetric homodimer cross sections. This amyloid structure is stabilized by numerous aromatic, cation-π, polar and hydrophobic interactions, suggesting mutagenesis approaches to inhibit fibrillization could improve this important drug.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katelyn J Smith
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Shu-Yu Liao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew S Lamm
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Yu Tian
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Institute for Molecular Engineering, The University of Chicago, Eckhardt Research Center, Chicago, IL, USA
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | | | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA.
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Fernández A. Protein structural defects enable pharmaceutical targeting while functionalizing the M2 proton channel. Biochem Biophys Res Commun 2019; 514:86-91. [PMID: 31023526 DOI: 10.1016/j.bbrc.2019.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 11/28/2022]
Abstract
The influenza M2 (22-46) proton channel is therapeutically targetable and a prototype for proton transport across membranes. Conduction initiation, requiring a hydronium formed with exceptionally high pKa, remains nebulous. We tackle the problem by focusing on the dynamic interplay between protein structure and solvent interface. We identify two packing defects in the protein subunits that predict exactly the low and high-affinity drug-binding sites. The latter defect frustrates water coordination, enhancing water basicity and stabilizing the nearby hydronium that forms upon proton penetration in the channel. Thus, the trigger of proton conduction is directly related to the high-affinity binding site. The findings, in quantitative agreement with affinity measurements, are consistent with the targetable functional nature of protein packing defects. These findings enable the design of proton-conducting biomimetic materials, where the epistructure may be engineered to tune the basicity of interfacial water.
Collapse
Affiliation(s)
- Ariel Fernández
- National Research Council (CONICET), Rivadavia 1917, Buenos Aires, 1033, Argentina; INQUISUR/UNS/CONICET, Avenida Alem 1253, Bahía Blanca, 8000, Argentina; AF Innovation Pharma Consultancy GmbH, Buenos Aires, 1112, Argentina; Collegium Basilea, Institute for Advanced Study, Hochstrasse 51, 4053, Basel, Switzerland.
| |
Collapse
|
21
|
Kwon B, Roos M, Mandala VS, Shcherbakov AA, Hong M. Elucidating Relayed Proton Transfer through a His-Trp-His Triad of a Transmembrane Proton Channel by Solid-State NMR. J Mol Biol 2019; 431:2554-2566. [PMID: 31082440 DOI: 10.1016/j.jmb.2019.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/13/2019] [Accepted: 05/05/2019] [Indexed: 01/02/2023]
Abstract
Proton transfer through membrane-bound ion channels is mediated by both water and polar residues of proteins, but the detailed molecular mechanism is challenging to determine. The tetrameric influenza A and B virus M2 proteins form canonical proton channels that use an HxxxW motif for proton selectivity and gating. The BM2 channel also contains a second histidine (His), H27, equidistant from the gating tryptophan, which leads to a symmetric H19xxxW23xxxH27 motif. The proton-dissociation constants (pKa's) of H19 in BM2 were found to be much lower than the pKa's of H37 in AM2. To determine if the lower pKa's result from H27-facilitated proton dissociation of H19, we have now investigated a H27A mutant of BM2 using solid-state NMR. 15N NMR spectra indicate that removal of the second histidine converted the protonation and tautomeric equilibria of H19 to be similar to the H37 behavior in AM2, indicating that the peripheral H27 is indeed the origin of the low pKa's of H19 in wild-type BM2. Measured interhelical distances between W23 sidechains indicate that the pore constriction at W23 increases with the H19 tetrad charge but is independent of the H27A mutation. These results indicate that H27 both accelerates proton dissociation from H19 to increase the inward proton conductance and causes the small reverse conductance of BM2. The proton relay between H19 and H27 is likely mediated by the intervening gating tryptophan through cation-π interactions. This relayed proton transfer may exist in other ion channels and has implications for the design of imidazole-based synthetic proton channels.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Matthias Roos
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Keeler EG, Michaelis VK, Wilson CB, Hung I, Wang X, Gan Z, Griffin RG. High-Resolution 17O NMR Spectroscopy of Structural Water. J Phys Chem B 2019; 123:3061-3067. [PMID: 30882222 PMCID: PMC6689193 DOI: 10.1021/acs.jpcb.9b02277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of studying site-specific interactions of structurally similar water molecules in complex systems is well known. We demonstrate the ability to resolve four distinct bound water environments within the crystal structure of lanthanum magnesium nitrate hydrate via 17O solid state nuclear magnetic resonance (NMR) spectroscopy. Using high-resolution multidimensional experiments at high magnetic fields (18.8-35.2 T), each individual water environment was resolved. The quadrupole coupling constants and asymmetry parameters of the 17O of each water were determined to be between 6.6 and 7.1 MHz, 0.83 and 0.90, respectively. The resolution of the four unique, yet similar, structural waters within a hydrated crystal via 17O NMR spectroscopy demonstrates the ability to decipher the unique electronic environment of structural water within a single hydrated crystal structure.
Collapse
Affiliation(s)
- Eric G. Keeler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| | - Vladimir K. Michaelis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| | - Christopher B. Wilson
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| | - Ivan Hung
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Xiaoling Wang
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| |
Collapse
|
23
|
Mandala VS, Liao SY, Gelenter MD, Hong M. The Transmembrane Conformation of the Influenza B Virus M2 Protein in Lipid Bilayers. Sci Rep 2019; 9:3725. [PMID: 30842530 PMCID: PMC6403292 DOI: 10.1038/s41598-019-40217-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Influenza A and B viruses cause seasonal flu epidemics. The M2 protein of influenza B (BM2) is a membrane-embedded tetrameric proton channel that is essential for the viral lifecycle. BM2 is a functional analog of AM2 but shares only 24% sequence identity for the transmembrane (TM) domain. The structure and function of AM2, which is targeted by two antiviral drugs, have been well characterized. In comparison, much less is known about the structure of BM2 and no drug is so far available to inhibit this protein. Here we use solid-state NMR spectroscopy to investigate the conformation of BM2(1-51) in phospholipid bilayers at high pH, which corresponds to the closed state of the channel. Using 2D and 3D correlation NMR experiments, we resolved and assigned the 13C and 15N chemical shifts of 29 residues of the TM domain, which yielded backbone (φ, ψ) torsion angles. Residues 6-28 form a well-ordered α-helix, whereas residues 1-5 and 29-35 display chemical shifts that are indicative of random coil or β-sheet conformations. The length of the BM2-TM helix resembles that of AM2-TM, despite their markedly different amino acid sequences. In comparison, large 15N chemical shift differences are observed between bilayer-bound BM2 and micelle-bound BM2, indicating that the TM helix conformation and the backbone hydrogen bonding in lipid bilayers differ from the micelle-bound conformation. Moreover, HN chemical shifts of micelle-bound BM2 lack the periodic trend expected for coiled coil helices, which disagree with the presence of a coiled coil structure in micelles. These results establish the basis for determining the full three-dimensional structure of the tetrameric BM2 to elucidate its proton-conduction mechanism.
Collapse
Affiliation(s)
- Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Shu-Yu Liao
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
24
|
Kaur H, Abreu B, Akhmetzyanov D, Lakatos-Karoly A, Soares CM, Prisner T, Glaubitz C. Unexplored Nucleotide Binding Modes for the ABC Exporter MsbA. J Am Chem Soc 2018; 140:14112-14125. [PMID: 30289253 DOI: 10.1021/jacs.8b06739] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter MsbA is an ATP-driven lipid-A flippase. It belongs to the ABC protein superfamily whose members are characterized by conserved motifs in their nucleotide binding domains (NBDs), which are responsible for ATP hydrolysis. Recently, it was found that MsbA could catalyze a reverse adenylate kinase (rAK)-like reaction in addition to ATP hydrolysis. Both reactions are connected and mediated by the same conserved NBD domains. Here, the structural foundations underlying the nucleotide binding to MsbA were therefore explored using a concerted approach based on conventional- and DNP-enhanced solid-state NMR, pulsed-EPR, and MD simulations. MsbA reconstituted into lipid bilayers was trapped in various catalytic states corresponding to intermediates of the coupled ATPase-rAK mechanism. The analysis of nucleotide-binding dependent chemical shift changes, and the detection of through-space contacts between bound nucleotides and MsbA within these states provides evidence for an additional nucleotide-binding site in close proximity to the Q-loop and the His-Switch. By replacing Mg2+ with Mn2+ and employing pulsed EPR spectroscopy, evidence is provided that this newly found nucleotide binding site does not interfere with the coordination of the required metal ion. Molecular dynamic (MD) simulations of nucleotide and metal binding required for the coupled ATPase-rAK mechanism have been used to corroborate these experimental findings and provide additional insight into nucleotide location, orientation, and possible binding modes.
Collapse
Affiliation(s)
- Hundeep Kaur
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Bárbara Abreu
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Dmitry Akhmetzyanov
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Andrea Lakatos-Karoly
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Cláudio M Soares
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Thomas Prisner
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| |
Collapse
|
25
|
Gelenter MD, Hong M. Efficient 15N- 13C Polarization Transfer by Third-Spin-Assisted Pulsed Cross-Polarization Magic-Angle-Spinning NMR for Protein Structure Determination. J Phys Chem B 2018; 122:8367-8379. [PMID: 30106585 DOI: 10.1021/acs.jpcb.8b06400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We introduce a pulsed third-spin-assisted recoupling experiment that produces high-intensity long-range 15N-13C cross peaks using low radiofrequency (rf) energy. This Proton-Enhanced Rotor-echo Short-Pulse IRradiATION Cross-Polarization (PERSPIRATIONCP) pulse sequence operates with the same principle as the Proton-Assisted Insensitive-Nuclei Cross-Polarization (PAINCP) experiment but uses only a fraction of the rf energy by replacing continuous-wave 13C and 15N irradiation with rotor-echo 90° pulses. Using formyl-Met-Leu-Phe (f-MLF) and β1 immunoglobulin binding domain of protein G (GB1) as model proteins, we demonstrate experimentally how PERSPIRATIONCP polarization transfer depends on the CP contact time, rf power, pulse flip angle, and 13C carrier frequency and compare the PERSPIRATIONCP performance with the performances of PAINCP, RESPIRATIONCP, and SPECIFICCP for measuring 15N-13C cross peaks. PERSPIRATIONCP achieves long-range 15N-13C transfer and yields higher cross peak-intensities than that of the other techniques. Numerical simulations reproduce the experimental trends and moreover indicate that PERSPIRATIONCP relies on 15N-1H and 13C-1H dipolar couplings rather than 15N-13C dipolar coupling for polarization transfer. Therefore, PERSPIRATIONCP is an rf-efficient and higher-sensitivity alternative to PAINCP for measuring long-range 15N-13C correlations, which are essential for protein resonance assignment and structure determination. Using cross peaks from two PERSPIRATIONCP 15N-13C correlation spectra as the sole distance restraints, supplemented with (φ, ψ) torsion angles obtained from chemical shifts, we calculated the GB1 structure and obtained a backbone root-mean-square deviation of 2.0 Å from the high-resolution structure of the protein. Therefore, this rf-efficient PERSPIRATIONCP method is useful for obtaining many long-range distance restraints for protein structure determination.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
26
|
Gallo PN, Iovine JC, Nucci NV. Toward comprehensive measurement of protein hydration dynamics: Facilitation of NMR-based methods by reverse micelle encapsulation. Methods 2018; 148:146-153. [PMID: 30048681 DOI: 10.1016/j.ymeth.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022] Open
Abstract
Protein-water interactions are a fundamental determinant of protein structure and function. Despite their importance, the molecular details of water orientations and dynamics near protein surfaces remain poorly understood, largely due to the difficulty of measuring local water mobility near the protein in a site-resolved fashion. Solution NMR-based measurement of water mobility via the nuclear Overhauser effect was presented as a method for performing comprehensive, site-resolved measurements of water dynamics many years ago. Though this approach yielded extensive insight on the dynamics and locations of waters buried within proteins, its promise for measuring surface hydration dynamics was impeded by various technical barriers. Over the past several years, however, this approach has been pursued anew with the aid of reverse micelle encapsulation of proteins of interest. The confined environment of the reverse micelle resolves many of these barriers and permits site-resolved measurement of relative water dynamics across much of the protein surface. Here, the development of this strategy for measuring hydration dynamics is reviewed with particular focus on the important remaining challenges to its widespread application.
Collapse
Affiliation(s)
- Pamela N Gallo
- Department of Physics & Astronomy, Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Joseph C Iovine
- Department of Physics & Astronomy, Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Nathaniel V Nucci
- Department of Physics & Astronomy, Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States.
| |
Collapse
|