1
|
Schulz T, Marian CM. Simulating the full spin manifold of triplet-pair states in a series of covalently linked TIPS-pentacenes. J Comput Chem 2024; 45:2727-2738. [PMID: 39139132 DOI: 10.1002/jcc.27475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Combined density functional theory and multireference configuration interaction methods have been used to elucidate singlet fission (SF) pathways and mechanisms in three regioisomers of side-on linked pentacene dimers. In addition to the optically bright singlets (S 1 and S 2 ) and singly excited triplets (T 1 and T 2 ), the full spin manifold of multiexcitonic triplet-pair states ( 1 ME, 3 ME, 5 ME) has been considered. In the ortho- and para-regioisomers, the 1 ME and S 1 potentials intersect upon geometry relaxation of the S 1 excitation. In the meta-regioisomer, the crossing occurs upon delocalization of the optically bright excitation. The energetic accessibility of these conical intersections and the absence of low-lying charge-transfer states suggests a direct SF mechanism, assisted by charge-resonance effects in the 1 ME state. While the 5 ME state does not appear to play a role in the SF mechanism of the ortho- and para-regioisomers, its participation in the disentanglement of the triplet pair is conceivable in the meta-regioisomer.
Collapse
Affiliation(s)
- Timo Schulz
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Lee J, Eom S, Kim H. Diverse quantum interference regimes in intramolecular singlet fission chromophores with thiophene-based linkers. Chem Sci 2024:d4sc03546a. [PMID: 39397821 PMCID: PMC11465401 DOI: 10.1039/d4sc03546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
An array of thiophene-based π-conjugated linkers in covalently linked pentacene dimers allow us to access diverse quantum interference (QI), modulating nonadiabatic coupling (NAC) in the singlet fission (SF) process. Simulations show that structural isomerism in terms of S atom orientation substantially alters NAC with relatively marginal impacts on energies. Extended curly arrow rules (ECARs) reveal sensitive dependence of QI on SF linker topologies and connectivity, categorizing regimes of constructive, destructive, and previously unrealized in SF research, shifted destructive QI. Drastic NAC changes in terms of S atom orientation are rationalized based on the nature of QI. Our results from nonequilibrium Green's function calculation using density functional theory corroborate the classification of QI regimes based on ECARs. Moreover, we found that the extent of charge resonance contribution in electronic states relevant to multiexciton formation and the appearance of optically allowed charge transfer excitation strongly depends on the operative QI regime. Notably, the magnitude of NAC effectively captures this influence. Our findings show that QI can rationalize and semi-quantitatively correlate with NAC for the multiexciton formation step in the SF process.
Collapse
Affiliation(s)
- Jonghwan Lee
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University Republic of Korea
| | - Sungsik Eom
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University Republic of Korea
- Department of Chemistry, Hanyang University Republic of Korea
| |
Collapse
|
3
|
Majdecki M, Hsu CH, Wang CH, Shi EHC, Zakrocka M, Wei YC, Chen BH, Lu CH, Yang SD, Chou PT, Gaweł P. Singlet Fission in a New Series of Systematically Designed Through-space Coupled Tetracene Oligomers. Angew Chem Int Ed Engl 2024; 63:e202401103. [PMID: 38412017 DOI: 10.1002/anie.202401103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through-space coupling, making it a relevant model for solid-state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short-lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through-space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology-compatible SF systems for applications in photovoltaics.
Collapse
Affiliation(s)
- Maciej Majdecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Hsing Wang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Emily Hsue-Chi Shi
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Magdalena Zakrocka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Przemysław Gaweł
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
4
|
Mencaroni L, Elisei F, Marrocchi A, Spalletti A, Carlotti B. Intramolecular Singlet Fission Coupled with Intermolecular Triplet Separation as a Strategy to Achieve High Triplet Yields in Fluorene-Based Small Molecules. J Phys Chem B 2024; 128:3442-3453. [PMID: 38544417 DOI: 10.1021/acs.jpcb.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In this work, detailed experimental proof and in-depth analysis of the singlet fission (SF) mechanism, operative in fluorene-based small molecules, are carried out by employing advanced time-resolved spectroscopies with nanosecond and femtosecond resolution. The investigation of the effect of solution concentration and solvent viscosity together with temperature and excitation wavelength demonstrates INTRAmolecular formation of the correlated triplet pair followed by INTERmolecular independent triplet separation via a "super-diffusional" triplet-triplet transfer process. This unconventional INTRA- to INTERmolecular SF may be considered an "ideal" mechanism. Indeed, intramolecular formation of the correlated triplet pair is here interestingly proved for small molecules rather than large multichromophoric systems, allowing easy synthesis and processability while maintaining good control over the SF process. On the other hand, the intermolecular triplet separation may be exploited to achieve high triplet quantum yields in these new SF small molecules.
Collapse
Affiliation(s)
- Letizia Mencaroni
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, via dell'Elce di sotto n.8, Perugia 06123, Italy
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, via dell'Elce di sotto n.8, Perugia 06123, Italy
| | - Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, via dell'Elce di sotto n.8, Perugia 06123, Italy
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, via dell'Elce di sotto n.8, Perugia 06123, Italy
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, via dell'Elce di sotto n.8, Perugia 06123, Italy
| |
Collapse
|
5
|
Sakai H, Nonaka K, Hayasaka R, Thazhathethil S, Sagara Y, Hasobe T. Tetracene cyclophanes showing controlled intramolecular singlet fission by through-space orientations. Chem Commun (Camb) 2024; 60:4084-4087. [PMID: 38506713 DOI: 10.1039/d4cc00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Tetracene cyclophanes: a series of cyclic tetracene dimers bridged by two flexible ethylene glycol units demonstrated enhanced intramolecular singlet fission through through-space orientations by suppressing the H-type excited complex.
Collapse
Affiliation(s)
- Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| | - Keigo Nonaka
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama, Tokyo 152-8522, Japan.
| | - Ryo Hayasaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| | - Shakkeeb Thazhathethil
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama, Tokyo 152-8522, Japan.
| | - Yoshimitsu Sagara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama, Tokyo 152-8522, Japan.
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
6
|
Greißel PM, Thiel D, Gotfredsen H, Chen L, Krug M, Papadopoulos I, Miskolzie M, Torres T, Clark T, Brøndsted Nielsen M, Tykwinski RR, Guldi DM. Intramolecular Triplet Diffusion Facilitates Triplet Dissociation in a Pentacene Hexamer. Angew Chem Int Ed Engl 2024; 63:e202315064. [PMID: 38092707 DOI: 10.1002/anie.202315064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 01/26/2024]
Abstract
Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair 1 (T1 T1 ) is prone to triplet-triplet annihilation due to its spatial confinement. In the solid state, entropically driven triplet diffusion assists in the spatial separation of triplets, resulting in higher yields of free triplets. Control over electronic coupling in the solid state is, however, challenging given its sensitivity to molecular packing. We have thus developed a hexameric system (HexPnc) to enable solid-state-like triplet diffusion at the molecular scale. This system is realized by covalently tethering three pentacene dimers to a central subphthalocyanine scaffold. Transient absorption spectroscopy, complemented by theoretical structural optimizations and steady-state spectroscopy, reveals that triplet diffusion is indeed facilitated due to intramolecular cluster formation. The yield of free triplets in HexPnc is increased by a factor of up to 14 compared to the corresponding dimeric reference (DiPnc). Thus, HexPnc establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems by providing avenues for diffusive separation of 1 (T1 T1 ), while, concomitantly, retaining strong interchromophore coupling which preserves rapid formation of 1 (T1 T1 ).
Collapse
Affiliation(s)
- Phillip M Greißel
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Dominik Thiel
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Henrik Gotfredsen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
- Current address: Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Lan Chen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marcel Krug
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Tomás Torres
- Department of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
- IMDEA Nanociencia, C/Faraday 9, Cantoblanco, 28049, Madrid, Spain
| | - Timothy Clark
- Department of Chemistry and Pharmacy &, Computer-Chemie-Center (CCC), Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy &, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
7
|
Hou Y, Papadopoulos I, Bo Y, Wollny AS, Ferguson MJ, Mai LA, Tykwinski RR, Guldi DM. Catalyzing Singlet Fission by Transition Metals: Second versus Third Row Effects. PRECISION CHEMISTRY 2023; 1:555-564. [PMID: 38037593 PMCID: PMC10685717 DOI: 10.1021/prechem.3c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 12/02/2023]
Abstract
The synthesis and characterization of platinum(II) and palladium(II) complexes bearing two (dimers Pt(Lpc)2Cl2 and Pd(Lpc)2Cl2), one (monomers Pt(Lpc)(Lref)Cl2 and Pd(Lpc)(Lref)Cl2), or no (reference compounds Pt(Lref)2Cl2 and Pd(Lref)2Cl2) pentacene-based pyridyl ligands are presented. Photophysical properties of the dimers are probed by means of steady-state and time-resolved transient absorption measurements in comparison to the monomer and model compounds. Our results document that despite enhanced spin-orbit coupling from the presence of heavy atoms, intramolecular singlet fission (iSF) is not challenged by intersystem crossing. iSF thus yields correlated triplet pairs and even uncorrelated triplet excited states upon decoherence. Importantly, significant separation of the two pentacenyl groups facilitates decoupling of the two chromophores. Furthermore, the mechanism of iSF is altered depending on the respective metal center, that is, Pt(II) versus Pd(II). The dimer based on Pt(II), Pt(Lpc)2Cl2, exhibits a direct pathway for the iSF and forms a correlated triplet pair with singlet-quintet spin-mixing within 10 ns in variable solvents. On the other hand, the dimer based on Pd(II), Pd(Lpc)2Cl2, leads to charge transfer mixing during the population of the correlated triplet pair that is dependent on solvent polarity. Moreover, Pd(Lpc)2Cl2 gives rise to a stable equilibrium between singlet and quintet correlated triplet pairs with lifetimes of up to 170 ns. Inherent differences in the size and polarizability, when contrasting platinum(II) with palladium(II), are the most likely rationale for the underlying trends.
Collapse
Affiliation(s)
- Yuxuan Hou
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Ilias Papadopoulos
- Department
of Chemistry and Pharmacy & Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Yifan Bo
- Department
of Chemistry and Pharmacy & Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Anna-Sophie Wollny
- Department
of Chemistry and Pharmacy & Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Michael J. Ferguson
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Lukas A. Mai
- Department
of Chemistry and Pharmacy & Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Rik R. Tykwinski
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Dirk M. Guldi
- Department
of Chemistry and Pharmacy & Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Purdy M, Budden P, Fallon K, Gannett CN, Abruña HD, Zeng W, Friend R, Musser AJ, Bronstein H. Re-Thinking Dimer Design Principles with Indolonaphthyridine Intramolecular Singlet Fission. Chemistry 2023; 29:e202301547. [PMID: 37377132 DOI: 10.1002/chem.202301547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Singlet fission is a phenomenon that could significantly improve the efficiency of photovoltaic devices. Indolonaphthyridine thiophene (INDT) is a photostable singlet fission material that could potentially be utilised in singlet fission-based photovoltaic devices. This study investigates the intramolecular singlet fission (i-SF) mechanism of INDT dimers linked via para-phenyl, meta-phenyl and fluorene bridging groups. Using ultra-fast spectroscopy the highest rate of singlet fission is found in the para-phenyl linked dimer. Quantum calculations show the para-phenyl linker encourages enhanced monomer electronic coupling. Increased rates of singlet fission were also observed in the higher polarity o-dichlorobenzene, relative to toluene, indicating that charge-transfer states have a role in mediating the process. The mechanistic picture of polarisable singlet fission materials, such as INDT, extends beyond the traditional mechanistic landscape.
Collapse
Affiliation(s)
- Michael Purdy
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Baker Lab, 122, E Ave, Ithaca, NY, USA
| | - Peter Budden
- Department of Physics, University of Cambridge, Cavendish Laboratory, Cambridge, CB3 0HE, UK
| | - Kealan Fallon
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Baker Lab, 122, E Ave, Ithaca, NY, USA
| | - Cara N Gannett
- Department of Chemistry & Chemical Biology, Cornell University, Baker Lab, 122, E Ave, Ithaca, NY, USA
| | - Héctor D Abruña
- Department of Chemistry & Chemical Biology, Cornell University, Baker Lab, 122, E Ave, Ithaca, NY, USA
| | - Weixuan Zeng
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Baker Lab, 122, E Ave, Ithaca, NY, USA
| | - Richard Friend
- Department of Physics, University of Cambridge, Cavendish Laboratory, Cambridge, CB3 0HE, UK
| | - Andrew J Musser
- Department of Chemistry & Chemical Biology, Cornell University, Baker Lab, 122, E Ave, Ithaca, NY, USA
| | - Hugo Bronstein
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Baker Lab, 122, E Ave, Ithaca, NY, USA
| |
Collapse
|
9
|
Lin LC, Smith T, Ai Q, Rugg BK, Risko C, Anthony JE, Damrauer NH, Johnson JC. Multiexciton quintet state populations in a rigid pyrene-bridged parallel tetracene dimer. Chem Sci 2023; 14:11554-11565. [PMID: 37886089 PMCID: PMC10599476 DOI: 10.1039/d3sc03153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
The multiexciton quintet state, 5TT, generated as a singlet fission intermediate in pairs of molecular chromophores, is a promising candidate as a qubit or qudit in future quantum information science schemes. In this work, we synthesize a pyrene-bridged parallel tetracene dimer, TPT, with an optimized interchromophore coupling strength to prevent the dissociation of 5TT to two decorrelated triplet (T1) states, which would contaminate the spin-state mixture. Long-lived and strongly spin-polarized pure 5TT state population is observed via transient absorption spectroscopy and transient/pulsed electron paramagnetic resonance spectroscopy, and its lifetime is estimated to be >35 µs, with the dephasing time (T2) for the 5TT-based qubit measured to be 726 ns at 10 K. Direct relaxation from 1TT to the ground state does diminish the overall excited state population, but the exclusive 5TT population at large enough persistent density for pulsed echo determination of spin coherence time is consistent with recent theoretical models that predict such behavior for strict parallel chromophore alignment and large exchange coupling.
Collapse
Affiliation(s)
- Liang-Chun Lin
- Department of Chemistry, University of Colorado Boulder Boulder CO 80309 USA
| | - Tanner Smith
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Qianxiang Ai
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Brandon K Rugg
- National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 USA
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - John E Anthony
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado Boulder Boulder CO 80309 USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder Boulder CO 80309 USA
| | - Justin C Johnson
- National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder Boulder CO 80309 USA
| |
Collapse
|
10
|
He G, Parenti KR, Budden PJ, Niklas J, Macdonald T, Kumarasamy E, Chen X, Yin X, McCamey DR, Poluektov OG, Campos LM, Sfeir MY. Unraveling Triplet Formation Mechanisms in Acenothiophene Chromophores. J Am Chem Soc 2023; 145:22058-22068. [PMID: 37787467 DOI: 10.1021/jacs.3c07082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Peter J Budden
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas Macdonald
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xing Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| |
Collapse
|
11
|
Majumder K, Mukherjee S, Panjwani NA, Lee J, Bittl R, Kim W, Patil S, Musser AJ. Controlling Intramolecular Singlet Fission Dynamics via Torsional Modulation of Through-Bond versus Through-Space Couplings. J Am Chem Soc 2023; 145:20883-20896. [PMID: 37705333 DOI: 10.1021/jacs.3c06075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Covalent dimers, particularly pentacenes, are the dominant platform for developing a mechanistic understanding of intramolecular singlet fission (iSF). Numerous studies have demonstrated that a photoexcited singlet state in these structures can rapidly and efficiently undergo exciton multiplication to form a correlated pair of triplets within a single molecule, with potential applications from photovoltaics to quantum information science. One of the most significant barriers limiting such dimers is the fast recombination of the triplet pair, which prevents spatial separation and the formation of long-lived triplet states. There is an ever-growing need to develop general synthetic strategies to control the evolution of triplets following iSF and enhance their lifetime. Here, we rationally tune the dihedral angle and interchromophore separation between pairs of pentacenes in a systematic series of bridging units to facilitate triplet separation. Through a combination of transient optical and spin-resonance techniques, we demonstrate that torsion within the linker provides a simple synthetic handle to tune the fine balance between through-bond and through-space interchromophore couplings that steer iSF. We show that the full iSF pathway from femtosecond to microsecond timescales is tuned through the static coupling set by molecular design and structural fluctuations that can be biased through steric control. Our approach highlights a straightforward design principle to generate paramagnetic spin pair states with higher yields.
Collapse
Affiliation(s)
- Kanad Majumder
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Soham Mukherjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Naitik A Panjwani
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität, Berlin, Berlin 14195, Berlin, Germany
| | - Jieun Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Robert Bittl
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität, Berlin, Berlin 14195, Berlin, Germany
| | - Woojae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Bo Y, Hou Y, Thiel D, Weiß R, Clark T, Ferguson MJ, Tykwinski RR, Guldi DM. Tetracene Dimers: A Platform for Intramolecular Down- and Up-conversion. J Am Chem Soc 2023; 145:18260-18275. [PMID: 37531628 DOI: 10.1021/jacs.3c02417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Photon energy conversion can be accomplished in many different ways, including the two opposing manners, down-conversion (i.e., singlet fission, SF) and up-conversion (i.e., triplet-triplet annihilation up-conversion, TTA-UC). Both processes have the potential to help overcome the detailed balance limit of single-junction solar cells. Tetracene, in which the energies of the lowest singlet excited state and twice the triplet excited state are comparable, exhibits both down- and up-conversion. Here, we have designed meta-diethynylphenylene- and 1,3-diethynyladamantyl-linked tetracene dimers, which feature different electronic coupling, to characterize the interplay between intramolecular SF (intra-SF) and intramolecular TTA-UC (intra-TTA-UC) via steady-state and time-resolved absorption and fluorescence spectroscopy. Furthermore, we have used Pd-phthalocyanine as a sensitizer to enable intra-TTA-UC in the two dimers via indirect photoexcitation in the near-infrared part of the solar spectrum. The work is rounded off by temperature-dependent measurements, which outline key aspects of how thermal effects impact intra-SF and intra-TTA-UC in different dimers.
Collapse
Affiliation(s)
- Yifan Bo
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Yuxuan Hou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Dominik Thiel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - René Weiß
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Kefer O, Ahrens L, Han J, Wollscheid N, Misselwitz E, Rominger F, Freudenberg J, Dreuw A, Bunz UHF, Buckup T. Efficient Intramolecular Singlet Fission in Spiro-Linked Heterodimers. J Am Chem Soc 2023; 145:17965-17974. [PMID: 37535495 DOI: 10.1021/jacs.3c05518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We investigate intramolecular singlet fission (iSF) of spiro-linked azaacene heterodimers by time-resolved spectroscopy and quantum chemical calculations. Combining two different azaacenes through a nonconjugated linker using condensation chemistry furnishes azaacene heterodimers. Compared to their homodimers, iSF quantum yields are improved at an extended absorption range. The driving force of iSF, the energy difference ΔEiSF between the S1 state and the correlated triplet pair 1(TT), is tuned by the nature of the heterodimers. iSF is exothermic in all of the herein studied molecules. The overall quantum yield for triplet exciton formation reaches approximately 174%. This novel concept exploits large energy differences between singlet electronic states in combination with spatially fixed chromophores, which achieves efficient heterogeneous iSF, if the through-space interaction between the chromophores is minimal.
Collapse
Affiliation(s)
- Oskar Kefer
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Lukas Ahrens
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jie Han
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Nikolaus Wollscheid
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Erik Misselwitz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
14
|
Rajasree SS, Yu J, Fajardo-Rojas F, Fry HC, Anderson R, Li X, Xu W, Duan J, Goswami S, Maindan K, Gómez-Gualdrón DA, Deria P. Framework-Topology-Controlled Singlet Fission in Metal-Organic Frameworks. J Am Chem Soc 2023; 145:17678-17688. [PMID: 37527433 DOI: 10.1021/jacs.3c03918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Singlet fission (SF) has been explored as a viable route to improve photovoltaic performance by producing more excitons. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron superexchange to generate triplet pairs. However, strongly coupled chromophores often form excimers that can serve as an SF intermediate or a low-energy trap site. The succeeding decoherence process, however, requires an optimum electronic coupling to facilitate the isolation of triplet production from the initially prepared correlated triplet pair. Conformational flexibility and dielectric modulation can provide a means to tune the SF mechanism and efficiency by modulating the interchromophoric electronic interaction. Such a strategy cannot be easily adopted in densely stacked traditional organic solids. Here, we show that the assembly of the SF-active chromophores around well-defined pores of solution-stable metal-organic frameworks (MOFs) can be a great platform for a modular SF process. A series of three new MOFs, built out from 9,10-bis(ethynylenephenyl)anthracene-derived struts, show a topology-defined packing density and conformational flexibility of the anthracene core to dictate the SF mechanism. Various steady-state and transient spectroscopic data suggest that the initially prepared singlet population can prefer either an excimer-mediated SF or a direct SF (both through a virtual charge-transfer (CT) state). These solution-stable frameworks offer the tunability of the dielectric environment to facilitate the SF process by stabilizing the CT state. Given that MOFs are a great platform for various photophysical and photochemical developments, generating a large population of long-lived triplets can expand their utilities in various photon energy conversion schemes.
Collapse
Affiliation(s)
- Sreehari Surendran Rajasree
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Jierui Yu
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Fernando Fajardo-Rojas
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Ryther Anderson
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Xinlin Li
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Jiaxin Duan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karan Maindan
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Diego A Gómez-Gualdrón
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Pravas Deria
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| |
Collapse
|
15
|
Wang JX, Yin J, Gutiérrez-Arzaluz L, Thomas S, Shao W, Alshareef HN, Eddaoudi M, Bakr OM, Mohammed OF. Singlet Fission-Based High-Resolution X-Ray Imaging Scintillation Screens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300406. [PMID: 37083237 DOI: 10.1002/advs.202300406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Indexed: 05/03/2023]
Abstract
X-ray imaging technology is critical to numerous different walks of daily life, ranging from medical radiography and security screening all the way to high-energy physics. Although several organic chromophores are fabricated and tested as X-ray imaging scintillators, they generally show poor scintillation performance due to their weak X-ray absorption cross-section and inefficient exciton utilization efficiency. Here, a singlet fission-based high-performance organic X-ray imaging scintillator with near unity exciton utilization efficiency is presented. Interestingly, it is found that the X-ray sensitivity and imaging resolution of the singlet fission-based scintillator are dramatically improved by an efficient energy transfer from a thermally activated delayed fluorescence (TADF) sensitizer, in which both singlet and triplet excitons can be efficiently harnessed. The fabricated singlet fission-based scintillator exhibits a high X-ray imaging resolution of 27.5 line pairs per millimeter (lp mm-1 ), which exceeds that of most commercial scintillators, demonstrating its high potential use in medical radiography and security inspection.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Simil Thomas
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenyi Shao
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Ansteatt S, Uthe B, Mandal B, Gelfand RS, Dunietz BD, Pelton M, Ptaszek M. Engineering giant excitonic coupling in bioinspired, covalently bridged BODIPY dyads. Phys Chem Chem Phys 2023; 25:8013-8027. [PMID: 36876508 DOI: 10.1039/d2cp05621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Strong excitonic coupling in photosynthetic systems is believed to enable efficient light absorption and quantitative charge separation, motivating the development of artificial multi-chromophore arrays with equally strong or even stronger excitonic coupling. However, large excitonic coupling strengths have typically been accompanied by fast non-radiative recombination, limiting the potential of the arrays for solar energy conversion as well as other applications such as fluorescent labeling. Here, we report giant excitonic coupling leading to broad optical absorption in bioinspired BODIPY dyads that have high photostability, excited-state lifetimes at the nanosecond scale, and fluorescence quantum yields of nearly 50%. Through the synthesis, spectroscopic characterization, and computational modeling of a series of dyads with different linking moieties, we show that the strongest coupling is obtained with diethynylmaleimide linkers, for which the coupling occurs through space between BODIPY units with small separations and slipped co-facial orientations. Other linkers allow for broad tuning of both the relative through-bond and through-space coupling contributions and the overall strength of interpigment coupling, with a tradeoff observed in general between the strength of the two coupling mechanisms. These findings open the door to the synthesis of molecular systems that function effectively as light-harvesting antennas and as electron donors or acceptors for solar energy conversion.
Collapse
Affiliation(s)
- Sara Ansteatt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Brian Uthe
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Bikash Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Rachel S Gelfand
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Matthew Pelton
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. .,Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
17
|
Tonami T, Miyamoto H, Nakano M, Kishi R, Kitagawa Y. Theoretical Study on Thermal Structural Fluctuation Effects of Intermolecular Configurations on Singlet Fission in Pentacene Crystal Models. J Phys Chem A 2023; 127:1883-1893. [PMID: 36799732 DOI: 10.1021/acs.jpca.2c08864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Singlet fission (SF) occurs as a result of complex excited state relaxation dynamics in molecular aggregates, where a singlet exciton (FE) state is converted into a double-triplet exciton (TT) state through the interactions with several other degrees of freedom, such as nuclear motions. In this study, we combined quantum dynamics simulation based on the quantum master equation approach with all-atom-based classical molecular mechanics/molecular dynamics to examine the thermal structural fluctuation (i.e., static disorder) effects of intermolecular configuration on SF in pentacene crystal models. In particular, we considered two types of static-disordered models, in which excited states are assumed to interact with nuclear motions of intermolecular modes in the classical mechanical/statistical manner. We found that the introduction of static disorder effects leads to a faster decay of coherence between the FE and charge transfer (CT) states in the early stage of SF, contributing to the accelerations of several FE → TT relaxation pathways. Such acceleration in these models is shown to be attributed to fluctuations in the energies and electronic coupling of the CT states based on relative relaxation factor analysis. The present study is expected to contribute to further development of bottom-up materials design for efficient SF in condensed phases where the exitonic system interacts with nuclear motions in various coupling strengths.
Collapse
Affiliation(s)
- Takayoshi Tonami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hajime Miyamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives (SRN-OTRI), Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
18
|
de la Perrelle JM, Tapping PC, Schrefl E, Stuart AN, Huang DM, Kee TW. Singlet fission preserves polarisation correlation of excitons. Phys Chem Chem Phys 2023; 25:6817-6829. [PMID: 36790866 DOI: 10.1039/d2cp01943d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Singlet fission (SF) holds the promise to circumvent the photovoltaic efficiency limit to reach a power-conversion efficiency above 34%. SF of TIPS-pentacene (TIPS-Pn) has been investigated but its mechanism is yet to be well elucidated. Recently, we developed a nanoparticle (NP) system, in which doping of TIPS-Pn in a host matrix yields a range of average intermolecular distances, d, to study the dependence of SF in TIPS-Pn on d. At large d values, where the bimolecular SF process should be unfavourable, a relatively high SF quantum yield (ΦSF) is still observed, which implies a deviation from a random distribution of TIPS-Pn throughout the NP. Here, using polarisation-sensitive femtosecond time-resolved spectroscopy and Monte Carlo simulations of exciton migration and SF, we quantify the level of clustering of TIPS-Pn in the host matrix, which is responsible for the higher than expected ΦSF. The experimental data indicate a preservation of polarisation correlation by SF, which is uncommon because energy transfer in amorphous materials tends to result in depolarisation. We show that the preservation of polarisation correlation is due to SF upon exciton migration. Although exciton migration decorrelates polarisation, SF acts to remove decorrelated excitons to give an overall preservation of polarisation correlation.
Collapse
Affiliation(s)
| | - Patrick C Tapping
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| | - Elisabeth Schrefl
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| | - Alexandra N Stuart
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| | - David M Huang
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| | - Tak W Kee
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
19
|
Quantum interference effects elucidate triplet-pair formation dynamics in intramolecular singlet-fission molecules. Nat Chem 2023; 15:339-346. [PMID: 36585444 DOI: 10.1038/s41557-022-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/03/2022] [Indexed: 12/31/2022]
Abstract
Quantum interference (QI)-the constructive or destructive interference of conduction pathways through molecular orbitals-plays a fundamental role in enhancing or suppressing charge and spin transport in organic molecular electronics. Graphical models were developed to predict constructive versus destructive interference in polyaromatic hydrocarbons and have successfully estimated the large conductivity differences observed in single-molecule transport measurements. A major challenge lies in extending these models to excitonic (photoexcited) processes, which typically involve distinct orbitals with different symmetries. Here we investigate how QI models can be applied as bridging moieties in intramolecular singlet-fission compounds to predict relative rates of triplet pair formation. In a series of bridged intramolecular singlet-fission dimers, we found that destructive QI always leads to a slower triplet pair formation across different bridge lengths and geometries. A combined experimental and theoretical approach reveals the critical considerations of bridge topology and frontier molecular orbital energies in applying QI conductance principles to predict rates of multiexciton generation.
Collapse
|
20
|
Wang C, Wu B, Li Y, Dong T, Chai Y, Zhang Y, Wang C. Regioisomeric Benzidine-Fullerenes: Tuning of the Diverse Hole-Distribution to Influence Charge Separation Patterns. Angew Chem Int Ed Engl 2023; 62:e202300377. [PMID: 36790824 DOI: 10.1002/anie.202300377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Understanding the influence of molecular structure on charge distribution and charge separation (CS) provides essential guidance for optoelectronic materials design. Here we propose a regioisomeric strategy to tune the diverse hole-distribution, and probe the influence on CS patterns. Para-, meta- and ortho-substituted benzidine-fullerene, named 1 p, 1 m and 1 o are designed. Following CS, hole-delocalization occurs in 1 p, while hole-localization exists in 1 m and 1 o. The rates of charge separation (4.02×1011 s-1 ) and recombination (9.8×109 s-1 ) of 1 p is about 20 and 12 times faster than 1 m and 1 o, indicating that para-determined delocalization promotes ultrafast CS, while meta- and ortho-generated localization contributes to long-lived CS states. Computational analysis further implies that localization results from the destruction of electronic conjugation for 1 m, and limitation of conformational relaxation for 1 o. Given that the universality and simplicity of regional isomerism, this work opens up new thoughts for molecular design with tunable charge separation patterns.
Collapse
Affiliation(s)
- Chong Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street No.2, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P.R.China
| | - Bo Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street No.2, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P.R.China
| | - Yang Li
- School of Science, Beijing University of Posts and Telecommunications (BUPT), No.10 Xitucheng Road, Haidian District, Beijing, 100876, China
| | - Tianyang Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street No.2, Beijing, 100190, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xuefu Middle Road No.2 Weiyang District, Xi'an city, Shaanxi, 710021, China
| | - Yongqiang Chai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street No.2, Beijing, 100190, China
| | - Yuhe Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street No.2, Beijing, 100190, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street No.2, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P.R.China
| |
Collapse
|
21
|
Nakamura S, Sakai H, Fuki M, Ooie R, Ishiwari F, Saeki A, Tkachenko NV, Kobori Y, Hasobe T. Thermodynamic Control of Intramolecular Singlet Fission and Exciton Transport in Linear Tetracene Oligomers. Angew Chem Int Ed Engl 2023; 62:e202217704. [PMID: 36578175 DOI: 10.1002/anie.202217704] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
We newly synthesized a series of homo- and hetero-tetracene (Tc) oligomers to propose a molecular design strategy for the efficient exciton transport in linear oligomers by promoting correlated triplet pair (TT) dissociation and controlling sequential exciton trapping process of individual doubled triplet excitons (T+T) by intramolecular singlet fission. First, entropic gain effects on the number of Tc units are examined by comparing Tc-homo-oligomers [(Tc)n : n=2, 4, 6]. Then, a comparison of (Tc)n and Tc-hetero-oligomer [TcF3 -(Tc)4 -TcF3 ] reveals the vibronic coupling effect for entropic gain. Observed entropic effects on the T+T formation indicated that the exciton migration is rationalized by number of possible TT states increased both by increasing the number of Tc units and by the vibronic levels at the terminal TcF3 units. Finally, we successfully observed high-yield exciton trapping process (trapped triplet yield: ΦTrT =176 %).
Collapse
Affiliation(s)
- Shunta Nakamura
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Rikuto Ooie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
22
|
Singlet fission dynamics modulated by molecular configuration in covalently linked pyrene dimers, Anti- and Syn-1,2-di(pyrenyl)benzene. Commun Chem 2023; 6:16. [PMID: 36698005 PMCID: PMC9845327 DOI: 10.1038/s42004-023-00816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Covalently linked dimers (CLDs) and their structural isomers have attracted much attention as potential materials for improving power conversion efficiencies through singlet fission (SF). Here, we designed and synthesized two covalently ortho-linked pyrene (Py) dimers, anti- and syn-1,2-di(pyrenyl)benzene (Anti-DPyB and Syn-DPyB, respectively), and investigated the effect of molecular configuration on SF dynamics using steady-state and time-resolved spectroscopies. Both Anti-DPyB and Syn-DPyB, which have different Py-stacking configurations, form excimers, which then relax to the correlated triplet pair ((T1T1)) state, indicating the occurrence of SF. Unlike previous studies where the excimer formation inhibited an SF process, the (T1T1)'s of Anti-DPyB and Syn-DPyB are formed through the excimer state. The dissociation of (T1T1)'s to 2T1 in Anti-DPyB is more favorable than in Syn-DPyB. Our results showcase that the molecular configuration of a CLD plays an important role in SF dynamics.
Collapse
|
23
|
Mattos RS, Burghardt I, Aquino AJA, Cardozo TM, Lischka H. On the Cooperative Origin of Solvent-Enhanced Symmetry-Breaking Charge Transfer in a Covalently Bound Tetracene Dimer Leading to Singlet Fission. J Am Chem Soc 2022; 144:23492-23504. [PMID: 36534052 DOI: 10.1021/jacs.2c10129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Singlet fission in covalently bound acene dimers in solution is driven by the interplay of excitonic and singlet correlated triplet 1(TT) states with intermediate charge-transfer states, a process which depends sensitively on the solvent environment. We use high-level electronic structure methods to explore this singlet fission process in a linked tetracene dimer, with emphasis on the symmetry-breaking mechanism for the charge-transfer (CT) states induced by low-frequency antisymmetric vibrations and polar/polarizable solvents. A combination of the second-order algebraic diagrammatic construction (ADC(2)) and density functional theory/multireference configuration interaction (DFT/MRCI) methods are employed, along with a state-specific conductor-like screening model (COSMO) solvation model in the former case. This work quantifies, for the first time, an earlier mechanistic proposal [Alvertis et al., J. Am. Chem. Soc. 2019, 141, 17558] according to which solvent-induced symmetry breaking leads to a high-energy CT state which interacts with the correlated triplet state, resulting in singlet fission. An approximate assessment of the nonadiabatic interactions between the different electronic states underscores that the CT states are essential in facilitating the transition from the bright excitonic state to the 1(TT) state leading to singlet fission. We show that several types of symmetry-breaking inter- and intra-fragment vibrations play a crucial role in a concerted mechanism with the solvent environment and with the symmetric inter-fragment torsion, which tunes the admixture of excitonic and CT states. This offers a new perspective on how solvent-induced symmetry-breaking CT can be understood and how it cooperates with intramolecular mechanisms in singlet fission.
Collapse
Affiliation(s)
- Rafael S Mattos
- Aix Marseille University, CNRS, ICR, Marseille 13013, France.,Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Thiago M Cardozo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
24
|
Bansal D, Kundu A, Singh VP, Pal AK, Datta A, Dasgupta J, Mukhopadhyay P. A highly contorted push-pull naphthalenediimide dimer and evidence of intramolecular singlet exciton fission. Chem Sci 2022; 13:11506-11512. [PMID: 36320404 PMCID: PMC9555572 DOI: 10.1039/d2sc04187a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 08/05/2023] Open
Abstract
Singlet fission is a process by which two molecular triplet excitons are generated subsequent to the absorption of one photon. Molecules that enable singlet fission have triplet state energy at least half of the bright singlet state energy. This stringent energy criteria have challenged chemists to device new molecular and supramolecular design principles to modulate the singlet-triplet energy gap and build singlet fission systems from a wide range of organic chromophores. Herein, we report for the first time intramolecular singlet fission in the seminal naphthalenediimide (NDI) scaffold constrained in a push-pull cyclophane architecture, while individually the NDI chromophore does not satisfy the energy criterion. The challenging synthesis of this highly contorted push-pull cyclophane is possible from the preorganized pincer-like precursor. The special architecture establishes the shortest co-facial NDI⋯NDI contacts (3.084 Å) realized to date. Using broadband femtosecond transient absorption, we find that the correlated T-T pair forms rapidly within 380 fs of photoexcitation. Electronic structure calculations at the level of state-averaged CASSCF (ne,mo)/XMCQDPT2 support the existence of the multi-excitonic T-T pair state, thereby confirming the first example of singlet exciton fission in a NDI scaffold.
Collapse
Affiliation(s)
- Deepak Bansal
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Vijay Pal Singh
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 West Bengal India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 West Bengal India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Pritam Mukhopadhyay
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
25
|
He G, Parenti KR, Campos LM, Sfeir MY. Direct Exciton Harvesting from a Bound Triplet Pair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203974. [PMID: 35973675 DOI: 10.1002/adma.202203974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Singlet fission is commonly defined as the generation of two triplet excitons from a single absorbed photon. However, ambiguities within this definition arise due to the complexity of the various double triplet states that exist in SF chromophores and the corresponding interconversion processes. To clarify this process, singlet fission is frequently depicted as sequential two-step conversion in which a singlet exciton decays into a bound triplet-pair biexciton state that dissociates into two "free" triplet excitons. However, this model discounts the potential for direct harvesting from the coupled biexciton state. Here, it is demonstrated that individual triplet excitons can be extracted directly from a bound triplet pair. It is demonstrated that due to the requirement for geminate triplet-triplet annihilation in intramolecular singlet fission compounds, unique spectral and kinetic signatures can be used to quantify triplet-pair harvesting yields. An internal quantum efficiency for triplet exciton transfer from the triplet pair of >50%, limited only by the solubility of the compounds is achieved. The harvesting process is not dependent on the net multiplicity of the triplet-pair state, suggesting that an explicit, independent dissociation step is not a requirement for using triplet pairs to do chemical or electrical work.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| |
Collapse
|
26
|
Zhou J, Liu H, Liu S, Su P, Wang W, Li Z, Liu Z, Chen Y, Dong Y, Li X. Singlet Fission in Colloidal Nanoparticles of Amphipathic Diketopyrrolopyrrole Derivatives: Probing the Role of the Charge Transfer State. J Phys Chem B 2022; 126:6483-6492. [PMID: 35979942 DOI: 10.1021/acs.jpcb.2c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To evaluate the role of the charge transfer (CT) state in the singlet fission (SF) process, we prepared three 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) derivatives with zero (Ph2TDPP), one (Ph2TDPP-COOH), and two (Ph2TDPP-(COOH)2) carboxylic groups, respectively. Their colloidal nanoparticles were also prepared by a simple precipitation method. The SF dynamics and mechanism in these colloid nanoparticles were investigated by using steady-state/transient absorption and fluorescence spectroscopy. Steady-state absorption spectra reveal that the strength of the CT resonance interactions between the adjacent DPP units is increased gradually from Ph2TDPP to Ph2TDPP-COOH and then to Ph2TDPP-(COOH)2. Fluorescence and transient absorption spectra demonstrate that SF is proceeded via a CT-assisted superexchange mechanism in these three nanoparticles. Furthermore, SF rate and yield are enhanced gradually with the increase of the number of the carboxylic group, which may be attributed to the enhancement of the CT coupling strength. The result of this work not only provides a better understanding of the SF mechanism especially for the role of the CT state but also gives some new insights for the design of efficient SF materials based on DPP derivatives.
Collapse
Affiliation(s)
- Jun Zhou
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Heyuan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Shanshan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Pengkun Su
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weijie Wang
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhi Li
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Zhaobin Liu
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Yanli Chen
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yunqin Dong
- College of Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Xiyou Li
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
27
|
Hong Y, Rudolf M, Kim M, Kim J, Schembri T, Krause AM, Shoyama K, Bialas D, Röhr MIS, Joo T, Kim H, Kim D, Würthner F. Steering the multiexciton generation in slip-stacked perylene dye array via exciton coupling. Nat Commun 2022; 13:4488. [PMID: 35918327 PMCID: PMC9345863 DOI: 10.1038/s41467-022-31958-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Dye arrays from dimers up to larger oligomers constitute the functional units of natural light harvesting systems as well as organic photonic and photovoltaic materials. Whilst in the past decades many photophysical studies were devoted to molecular dimers for deriving structure-property relationship to unravel the design principles for ideal optoelectronic materials, they fail to accomplish the subsequent processes of charge carrier generation or the detachment of two triplet species in singlet fission (SF). Here, we present a slip-stacked perylene bisimide trimer, which constitutes a bridge between hitherto studied dimer and solid-state materials, to investigate SF mechanisms. This work showcases multiple pathways towards the multiexciton state through direct or excimer-mediated mechanisms by depending upon interchromophoric interaction. These results suggest the comprehensive role of the exciton coupling, exciton delocalization, and excimer state to facilitate the SF process. In this regard, our observations expand the fundamental understanding the structure-property relationship in dye arrays. Understanding structure-property relationship of dye arrays is of great importance for designing organic photonic and photovoltaic materials. Here, authors present a slip-stacked perylene bisimide array as a model system to investigate singlet fission mechanisms by depending upon interchromophoric interaction.
Collapse
Affiliation(s)
- Yongseok Hong
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Maximilian Rudolf
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Munnyon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Juno Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tim Schembri
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Ana-Maria Krause
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - David Bialas
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Merle I S Röhr
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea. .,Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Frank Würthner
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany. .,Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| |
Collapse
|
28
|
Roy A, Diers JR, Niedzwiedzki DM, Meares A, Yu Z, Bhagavathy GV, Satraitis A, Kirmaier C, Ptaszek M, Bocian DF, Holten D. Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions. J Phys Chem A 2022; 126:5107-5125. [PMID: 35901315 DOI: 10.1021/acs.jpca.2c03114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple-double-triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, and Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Ganga Viswanathan Bhagavathy
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| |
Collapse
|
29
|
Santra S, Ray J, Ghosh D. Mechanism of Singlet Fission in Carotenoids from a Polyene Model System. J Phys Chem Lett 2022; 13:6800-6805. [PMID: 35856845 DOI: 10.1021/acs.jpclett.2c02000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Singlet fission (SF) is the process of formation of multiple excitons (triplet) from a locally excited singlet state. The mechanism of SF in polyacenes has been shown to proceed via a charge transfer intermediate state. However, carotenoids are not understood in the context of SF. This is possibly due to the complicated multireference nature of the low-lying excited states of carotenoids and the presence of a dark 21Ag state below the optically bright 1Bu state. In this work, we show that the dark Ag state in polyenes and/or carotenoids, along with the charge transfer states, plays a pivotal role in the SF process. We notice that the relative importance of these states varies with a change in geometry and the overall presence of multiple pathways is crucial to the success of the SF process in carotenoid aggregates and disordered geometries.
Collapse
Affiliation(s)
- Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmoy Ray
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
30
|
Jadhav SD, Sasikumar D, Hariharan M. Modulating singlet fission through interchromophoric rotation. Phys Chem Chem Phys 2022; 24:16193-16199. [PMID: 35749225 DOI: 10.1039/d2cp01116f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Singlet fission (SF) is a spin-allowed, exciton-multiplying phenomenon that can be utilized to improve the efficiency of organic solar cells. It is well-understood that SF is sensitive to the local crystal morphology and an appropriately balanced coupling is essential to facilitate efficient SF. In this study, we show how the interchromophoric rotation selectively modulates the interaction between the monomer frontier molecular orbitals, promoting both fast and exothermal SF. We evaluate the effective electronic coupling for SF (VSF), the square of which is proportional to the SF rate, and the effective energies of the Frenkel exciton (FE/S1S0) and triplet pair exciton (TT) in a terrylene dimer model. Optimal interplanar rotation of the chromophoric moieties in slip-stacked arrangements pulls the effective energy of the TT state below that of the FE state. Consequently, SF is favored over competing pathways such as excimer formation, thereby enhancing the overall triplet yield. This work represents a step towards improvising the molecular design guidelines for SF and understanding the importance of interchromophoric rotation over the conventional slip-stacked arrangements for achieving favorable intermolecular electronic coupling towards efficient SF.
Collapse
Affiliation(s)
- Sohan D Jadhav
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Devika Sasikumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
31
|
Roseiro P, Robert V. Environmental effects on the singlet fission phenomenon: a model Hamiltonian-based study. Phys Chem Chem Phys 2022; 24:15945-15950. [PMID: 35730339 DOI: 10.1039/d2cp01632j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the screening of compounds for singlet fission, the relative energies of the constitutive units are decisive to fulfil the thermodynamic rules. From a model Hamiltonian constructed on the local spin states of an active chromophore and its environment, it is suggested that embedding greatly influences the energy differences of the active monomer spin states. Even in the absence of charge transfer, the field generated by a singlet environment produces an increase of the [E(S1) - E(S0)]/[E(T1) - E(S0)] critical ratio by up to 6% as compared to the one of a free chromophore. Besides, variations are observed when the intimate electronic structure of the singlet environment is modified. This propensity towards singlet fission is even more pronounced (10%) when the environment is switched to the triplet state. Finally, the embedding is likely to reverse the spin state ordering in the limit of vanishing atomic orbital overlaps. Despite its simplicity, the model stresses the importance of the environment spin nature in the quest for singlet fission candidates, and more generally in spectroscopy analysis.
Collapse
Affiliation(s)
- Pablo Roseiro
- Laboratoire de Chimie Quantique, UMR 7177 Université de Strasbourg CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France.
| | - Vincent Robert
- Laboratoire de Chimie Quantique, UMR 7177 Université de Strasbourg CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France.
| |
Collapse
|
32
|
Fumanal M, Corminboeuf C. Optimizing the Thermodynamics and Kinetics of the Triplet-Pair Dissociation in Donor-Acceptor Copolymers for Intramolecular Singlet Fission. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4115-4121. [PMID: 35573105 PMCID: PMC9097278 DOI: 10.1021/acs.chemmater.2c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Singlet fission (SF) is a two-step process in which a singlet splits into two triplets throughout the so-called correlated triplet-pair (1TT) state. Intramolecular SF (iSF) materials, in particular, have attracted growing interest as they can be easily implemented in single-junction solar cells and boost their power conversion efficiency. Still, the potential of iSF materials such as polymers and oligomers for photovoltaic applications has been partially hindered by their ability to go beyond the 1TT intermediate and generate free triplets, whose mechanism remains poorly understood. In this work, the main aspects governing the 1TT dissociation in donor-acceptor copolymers and the key features that optimize this process are exposed. First, we show that both thermodynamics and kinetics play a crucial role in the intramolecular triplet-pair separation and second, we uncover the inherent flexibility of the donor unit as the fundamental ingredient to optimize them simultaneously. Overall, these results provide a better understanding of the intramolecular 1TT dissociation process and establish a new paradigm for the development of novel iSF active materials.
Collapse
Affiliation(s)
- Maria Fumanal
- Laboratory for Computational Molecular
Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular
Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Ringström R, Edhborg F, Schroeder ZW, Chen L, Ferguson MJ, Tykwinski RR, Albinsson B. Molecular rotational conformation controls the rate of singlet fission and triplet decay in pentacene dimers. Chem Sci 2022; 13:4944-4954. [PMID: 35655894 PMCID: PMC9067590 DOI: 10.1039/d1sc06285a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/03/2022] [Indexed: 12/02/2022] Open
Abstract
Three pentacene dimers have been synthesized to investigate the effect of molecular rotation and rotational conformations on singlet fission (SF). In all three dimers, the pentacene units are linked by a 1,4-diethynylphenylene spacer that provides almost unimpeded rotational freedom between the pentacene- and phenylene-subunits in the parent dimer. Substituents on the phenylene spacer add varying degrees of steric hindrance that restricts both the rotation and the equilibrium distribution of different conformers; the less restricted conformers exhibit faster SF and more rapid subsequent triplet-pair recombination. Furthermore, the rotational conformers have small shifts in their absorption spectra and this feature has been used to selectively excite different conformers and study the resulting SF. Femtosecond transient absorption studies at 100 K reveal that the same dimer can have orders of magnitude faster SF in a strongly coupled conformer compared to a more weakly coupled one. Measurements in polystyrene further show that the SF rate is nearly independent of viscosity whereas the triplet pair lifetime is considerably longer in a high viscosity medium. The results provide insight into design criteria for maintaining high initial SF rate while suppressing triplet recombination in intramolecular singlet fission.
Collapse
Affiliation(s)
- Rasmus Ringström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemigården 4 SE-412 96 Göteborg Sweden
| | - Fredrik Edhborg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemigården 4 SE-412 96 Göteborg Sweden
| | - Zachary W Schroeder
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Lan Chen
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemigården 4 SE-412 96 Göteborg Sweden
| |
Collapse
|
34
|
|
35
|
Papadopoulos I, Gutiérrez-Moreno D, Bo Y, Casillas R, Greißel PM, Clark T, Fernández-Lázaro F, Guldi DM. Altering singlet fission pathways in perylene-dimers; perylene-diimide versus perylene-monoimide. NANOSCALE 2022; 14:5194-5203. [PMID: 35315470 DOI: 10.1039/d1nr08523a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We used a systematic approach to shed light on the inherent differences in perylenes, namely monoimides versus diimides, including coplanarity and dipole moment, and their impact on singlet fission (SF) by designing, synthesizing, and probing a full fledged series of phenylene- and naphthalene-linked dimers. Next to changing the functionality of the perylene core, we probed the effect of the spacers and their varying degrees of rotational freedom, molecular electrostatic potentials, and intramolecular interactions on the SF-mechanism and -efficiencies. An arsenal of spectroscopic techniques revealed that for perylene-monoimides, a strong charge-transfer mixing with the singlet and triplet excited states restricts SF and yields low triplet quantum yields. This is accompanied by an up-conversion channel that includes geminate triplet-triplet recombination. Using perylene-diimides alters the SF-mechanism by populating a charge-separated-state intermediate, which either favors or shuts-down SF. Napthylene-spacers bring about higher triplet quantum yields and overall better SF-performance for all perylene-monoimides and perylene-diimides. The key to better SF-performance is rotational freedom because it facilitates the overall excited-state polarization and amplifies intramolecular interactions between chromophores.
Collapse
Affiliation(s)
- Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - David Gutiérrez-Moreno
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203 Elche, Spain.
| | - Yifan Bo
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Rubén Casillas
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Phillip M Greißel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203 Elche, Spain.
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| |
Collapse
|
36
|
Mencaroni L, Carlotti B, Elisei F, Marrocchi A, Spalletti A. Exploring a new class of singlet fission fluorene derivatives with high-energy triplets. Chem Sci 2022; 13:2071-2078. [PMID: 35308848 PMCID: PMC8848920 DOI: 10.1039/d1sc07175k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we report strong experimental evidence for singlet fission (SF) in a new class of fluorene-based molecules, exhibiting two-branched donor-acceptor structures. The time-resolved spectroscopic results disclose ultrafast formation of a double triplet state (occurring in few picoseconds) and efficient triplet exciton separation (up to 145% triplet yield). The solvent polarity effect and the role of intramolecular charge transfer (ICT) on the SF mechanism have been thoroughly investigated with several advanced spectroscopies. We found that a stronger push-pull character favors SF, as long as the ICT does not act as a trap by opening a competitive pathway. Within the context of other widely-known SF chromophores, the unconventional property of generating high-energy triplet excitons (ca. 2 eV) via SF makes these materials outstanding candidates as photosensitizers for photovoltaic devices.
Collapse
Affiliation(s)
- Letizia Mencaroni
- Department of Chemistry Biology and Biotechnology and CEMIN, University of Perugia via elce di sotto n. 8, 06123 Perugia Italy
| | - Benedetta Carlotti
- Department of Chemistry Biology and Biotechnology and CEMIN, University of Perugia via elce di sotto n. 8, 06123 Perugia Italy
| | - Fausto Elisei
- Department of Chemistry Biology and Biotechnology and CEMIN, University of Perugia via elce di sotto n. 8, 06123 Perugia Italy
| | - Assunta Marrocchi
- Department of Chemistry Biology and Biotechnology and CEMIN, University of Perugia via elce di sotto n. 8, 06123 Perugia Italy
| | - Anna Spalletti
- Department of Chemistry Biology and Biotechnology and CEMIN, University of Perugia via elce di sotto n. 8, 06123 Perugia Italy
| |
Collapse
|
37
|
He G, Yablon LM, Parenti KR, Fallon KJ, Campos LM, Sfeir MY. Quantifying Exciton Transport in Singlet Fission Diblock Copolymers. J Am Chem Soc 2022; 144:3269-3278. [PMID: 35166107 DOI: 10.1021/jacs.1c13456] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Singlet fission (SF) is a mechanism of exciton multiplication in organic chromophores, which has potential to drive highly efficient optoelectronic devices. Creating effective device architectures that operate by SF critically depends on electronic interactions across multiple length scales─from individual molecules to interchromophore interactions that facilitate multiexciton dephasing and exciton diffusion toward donor-acceptor interfaces. Therefore, it is imperative to understand the underpinnings of multiexciton transport and interfacial energy transfer in multichromophore systems. Interestingly, block copolymers (BCPs) can be designed to control multiscale interactions by tailoring the nature of the building blocks, yet SF dynamics are not well understood in these macromolecules. Here, we designed diblock copolymers comprising an inherent energy cleft at the interface between a block with pendent pentacene chromophores and an additional block with pendent tetracene chromophores. The singlet and triplet energy offset between the two blocks creates a driving force for exciton transport along the BCP chain in dilute solution. Using time-resolved optical spectroscopy, we have quantified the yields of key energy transfer steps, including both singlet and triplet energy transfer processes across the pentacene-tetracene interface. From this modular BCP architecture, we correlate the energy transfer time scales and relative yields with the length of each block. The ability to quantify these energy transfer processes provides valuable insights into exciton transport at critical length scales between bulk crystalline systems and small-molecule dimers─an area that has been underexplored.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States.,Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Lauren M Yablon
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kealan J Fallon
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States.,Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| |
Collapse
|
38
|
Paul S, Karunakaran V. Excimer Formation Inhibits the Intramolecular Singlet Fission Dynamics: Systematic Tilting of Pentacene Dimers by Linking Positions. J Phys Chem B 2022; 126:1054-1062. [PMID: 35107283 DOI: 10.1021/acs.jpcb.1c07951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of excimer formation in inhibiting or enhancing the efficiency of the intramolecular singlet fission (iSF) process has been a subject of recent debate. Here, we investigated the effect of excimer formation on iSF dynamics by modifying its configuration by connecting pentacenes at various positions. Hence, pentacene dimers having slip-stacked (2,2' BP, J-type), oblique (2,6' BP), and facial (6,6' BP, H-type) configurations were synthesized by covalently linking pentacenes at positions 2,2', 2,6', and 6,6', respectively, with an ethynyl bridge, and their ultrafast excited-state relaxation dynamics were characterized. Femtosecond time-resolved transient absorption spectra revealed that the efficiency of iSF dynamics decreased from slip-stacked (182%) to oblique configuration (97%),whereas in the 6,6' BP with facial configuration, strong electronic coupling led to the formation of excimers that decayed nonradiatively without formation of correlated triplet pairs. These studies reveal the formation of excimers by strong intrapentacene electronic coupling upon ultrafast excitation, preventing the efficient iSF process.
Collapse
Affiliation(s)
- Sumitha Paul
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venugopal Karunakaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
39
|
Valianti S, Skourtis SS. The Role of Bridge-State Intermediates in Singlet Fission for Donor-Bridge-Acceptor Systems: A Semianalytical Approach to Bridge-Tuning of the Donor-Acceptor Fission Coupling. J Phys Chem Lett 2022; 13:939-946. [PMID: 35050642 PMCID: PMC9836358 DOI: 10.1021/acs.jpclett.1c03700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We describe a semianalytical/computational framework to explore structure-function relationships for singlet fission in Donor (D)-Bridge (B)-Acceptor (A) molecular architectures. The aim of introducing a bridging linker between the D and A molecules is to tune, by modifying the bridge structure, the electronic pathways that lead to fission and to D-A-separated correlated triplets. We identify different bridge-mediation regimes for the effective singlet-fission coupling in the coherent tunneling limit and show how to derive the dominant fission pathways in each regime. We describe the dependence of these regimes on D-B-A many-electron state energetics and on D-B (A-B) one-electron and two-electron matrix elements. This semianalytical approach can be used to guide computational and experimental searches for D-B-A systems with tuned singlet fission rates. We use this approach to interpret the bridge-resonance effect of singlet fission that has been observed in recent experiments.
Collapse
|
40
|
Yablon LM, Sanders SN, Miyazaki K, Kumarasamy E, He G, Choi B, Ananth N, Sfeir MY, Campos LM. Singlet fission and triplet pair recombination in bipentacenes with a twist. MATERIALS HORIZONS 2022; 9:462-470. [PMID: 34846410 DOI: 10.1039/d1mh01201k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigate triplet pair dynamics in pentacene dimers that have varying degrees of coplanarity (pentacene-pentacene twist angle). The fine-tuning of the twist angle was achieved by alternating connectivity at the 1-position or 2-positions of pentacene. This mix-and-match connectivity leads to tunable twist angles between the two covalently linked pentacenes. These twisted dimers allow us to investigate the subtle effects that the dihedral angle between the covalently linked pentacenes imparts on singlet fission and triplet pair recombination dynamics. We observe that as the dihedral angle between the two bonded pentacenes is increased, the rates of singlet fission decrease, while the accompanying decrease in triplet recombination rates is stark. Temperature-dependent transient optical studies combined with theoretical calculations show that the triplet pair recombination proceeds primarily through a direct multiexciton internal conversion process. Calculations further show that the significant decrease in recombination rates can be directly attributed to a corresponding decrease in the magnitude of the nonadiabatic coupling between the singlet multiexcitonic state and the ground state. These results highlight the importance of the twist angle in designing systems that exhibit rapid singlet fission, while maintaining long triplet pair lifetimes in pentacene dimers.
Collapse
Affiliation(s)
- Lauren M Yablon
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Samuel N Sanders
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Ken Miyazaki
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, USA.
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA
| | - Bonnie Choi
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, USA.
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
41
|
Ahrens L, Wollscheid N, Han J, Kefer O, Rominger F, Roozbeh A, Freudenberg J, Dreuw A, Bunz UHF, Buckup T. Structure Set in Stone: Designing Rigid Linkers to Control the Efficiency of Intramolecular Singlet Fission. J Phys Chem B 2021; 125:13235-13245. [PMID: 34812631 DOI: 10.1021/acs.jpcb.1c07122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research on materials facilitating efficient singlet fission (SF) is driven by a possible reduction of thermalization losses in organic photovoltaic devices. Intramolecular SF (iSF) is in this context of special interest, as the targeted modification of either chromophores or linkers enables gradual variations of molecular properties. In this combined synthetic, spectroscopic, and computational work, we present and investigate nine novel spiro-linked azaarene dimers, which undergo efficient iSF with triplet yields up to 199%. Additional molecular braces enhance the rigidity of these tailor-made dimers (TMDs), resulting in great agreement between crystal structures and predicted optimal geometries for iSF in solution. Regardless of the employed chromophores and linkages, the dynamics of all nine TMDs are perfectly described by a unified kinetic model. Most notably, an increase in the orbital overlap of the π-systems by decreasing the twist angle between the two chromophores does not only increase the rate of formation of the correlated triplet pair but also further promotes its decorrelation. This new structure-function relationship represents a promising strategy toward TMDs with high triplet lifetimes to be utilized in optoelectronic devices.
Collapse
Affiliation(s)
- Lukas Ahrens
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Nikolaus Wollscheid
- Physikalisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jie Han
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Oskar Kefer
- Physikalisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ashkan Roozbeh
- Physikalisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
42
|
Lewis TN, Tonnelé C, Shuler WG, Kasun ZA, Sato H, Berges AJ, Rodriguez JR, Krische MJ, Casanova D, Bardeen CJ. Chemical Tuning of Exciton versus Charge-Transfer Excited States in Conformationally Restricted Arylene Cages. J Am Chem Soc 2021; 143:18548-18558. [PMID: 34709810 DOI: 10.1021/jacs.1c08176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covalent assemblies of conjugated organic chromophores provide the opportunity to engineer new excited states with novel properties. In this work, a newly developed triple-stranded cage architecture, in which meta-substituted aromatic caps serve as covalent linking groups that attach to both top and bottom of the conjugated molecule walls, is used to tune the properties of thiophene oligomer assemblies. Benzene-capped and triazine-capped 5,5'-(2,2-bithiophene)-containing arylene cages are synthesized and characterized using steady-state and time-resolved spectroscopic methods. The conformational freedom and electronic states are analyzed using time-dependent density functional theory. The benzene cap acts as a passive spacer whose electronic states do not mix with those of the chromophore walls. The excited state properties are dominated by through-space interactions between the chromophore subunits, generating a neutral Frenkel H-type exciton state. This excitonic state undergoes intersystem crossing on a 200 ps time scale while the fluorescence output is suppressed by a factor of 2 due to a decreased radiative rate. Switching to a triazine cap enables electron transfer from the chromophore-linker after the initial excitation to the exciton state, leading to the formation of a charge-transfer state within 10 ps. This state can avoid intersystem crossing and exhibits red-shifted fluorescence with enhanced quantum yield. The ability to interchange structural modules with different electronic properties while retaining the overall cage morphology provides a new approach for tuning the properties of discrete chromophore assemblies.
Collapse
Affiliation(s)
- Taylor N Lewis
- University of California, Riverside, Department of Chemistry, Riverside, California 92521, United States
| | - Claire Tonnelé
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi Spain
| | - William G Shuler
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Zachary A Kasun
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Hiroki Sato
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Adam J Berges
- University of California, Riverside, Department of Chemistry, Riverside, California 92521, United States
| | - Jacob R Rodriguez
- University of California, Riverside, Department of Materials Science and Engineering, Riverside, California 92521, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi Spain.,IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Euskadi Spain
| | - Christopher J Bardeen
- University of California, Riverside, Department of Chemistry, Riverside, California 92521, United States.,University of California, Riverside, Department of Materials Science and Engineering, Riverside, California 92521, United States
| |
Collapse
|
43
|
Abraham V, Mayhall NJ. Revealing the Contest between Triplet-Triplet Exchange and Triplet-Triplet Energy Transfer Coupling in Correlated Triplet Pair States in Singlet Fission. J Phys Chem Lett 2021; 12:10505-10514. [PMID: 34677988 DOI: 10.1021/acs.jpclett.1c03217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the separation of the correlated triplet pair state 1(TT) intermediate is critical for leveraging singlet fission to improve solar cell efficiency. This separation mechanism is dominated by two key interactions: (i) the exchange interaction (K) between the triplets which leads to the spin splitting of the biexciton state into 1(TT),3(TT) and 5(TT) states, and (ii) the triplet-triplet energy transfer integral (t) which enables the formation of the spatially separated (but still spin entangled) state 1(T···T). We develop a simple ab initio technique to compute both the biexciton exchange (K) and biexciton transfer coupling. Our key findings reveal new conditions for successful correlated triplet pair state dissociation. The biexciton exchange interaction needs to be ferromagnetic or negligible to the triplet energy transfer for favorable dissociation. We also explore the effect of chromophore packing to reveal geometries where these conditions are achieved for tetracene.
Collapse
Affiliation(s)
- Vibin Abraham
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| |
Collapse
|
44
|
Hoche J, Flock M, Miao X, Philipp LN, Wenzel M, Fischer I, Mitric R. Excimer formation dynamics in the isolated tetracene dimer. Chem Sci 2021; 12:11965-11975. [PMID: 34667562 PMCID: PMC8457379 DOI: 10.1039/d1sc03214c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022] Open
Abstract
The understanding of excimer formation and its interplay with the singlet-correlated triplet pair state 1(TT) is of high significance for the development of efficient organic electronics. Here, we study the photoinduced dynamics of the tetracene dimer in the gas phase by time-resolved photoionisation and photoion imaging experiments as well as nonadiabatic dynamics simulations in order to obtain mechanistic insight into the excimer formation dynamics. The experiments are performed using a picosecond laser system for excitation into the S2 state and reveal a biexponential time dependence. The time constants, obtained as a function of excess energy, lie in the range between ≈10 ps and 100 ps and are assigned to the relaxation of the excimer on the S1 surface and to its deactivation to the ground state. Simulations of the quantum-classical photodynamics are carried out in the frame of the semi-empirical CISD and TD-lc-DFTB methods. Both theoretical approaches reveal a dominating relaxation pathway that is characterised by the formation of a perfectly stacked excimer. TD-lc-DFTB simulations have also uncovered a second relaxation channel into a less stable dimer conformation in the S1 state. Both methods have consistently shown that the electronic and geometric relaxation to the excimer state is completed in less than 10 ps. The inclusion of doubly excited states in the CISD dynamics and their diabatisation further allowed to observe a transient population of the 1(TT) state, which, however, gets depopulated on a timescale of 8 ps, leading finally to the trapping in the excimer minimum. The understanding of excimer formation and its interplay with the singlet-correlated triplet pair state 1(TT) is of high significance for the development of efficient organic electronics.![]()
Collapse
Affiliation(s)
- Joscha Hoche
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marco Flock
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xincheng Miao
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Luca Nils Philipp
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Wenzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ingo Fischer
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Roland Mitric
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
45
|
Sharma A, Athanasopoulos S, Kumarasamy E, Phansa C, Asadpoordarvish A, Sabatini RP, Pandya R, Parenti KR, Sanders SN, McCamey DR, Campos LM, Rao A, Tayebjee MJY, Lakhwani G. Pentacene-Bridge Interactions in an Axially Chiral Binaphthyl Pentacene Dimer. J Phys Chem A 2021; 125:7226-7234. [PMID: 34433272 DOI: 10.1021/acs.jpca.1c05254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular chirality can be exploited as a sensitive reporter of the nature of intra- and interchromophore interactions in π-conjugated systems. In this report, we designed an intramolecular singlet fission (iSF)-based pentacene dimer with an axially chiral binaphthyl bridge (2,2'-(2,2'-dimethoxy-[1,1'-binaphthalene]-3,3'-diyl) n-octyl-di-isopropyl silylethynyl dipentacene, BNBP) to utilize its chiroptical response as a marker of iSF chromophore-bridge-chromophore (SFC-β-SFC) interactions. The axial chirality of the bridge enforces significant one-handed excitonic coupling of the pentacene monomer units; as such, BNBP exhibits significant chiroptical response in the ground and excited states. We analyzed the chiroptical response of BNBP using the exciton coupling method and quadratic response density functional theory calculations to reveal that higher energy singlet transitions in BNBP involve significant delocalization of the electronic density on the bridging binaphthyl group. Our results highlight the promising application of chiroptical techniques to investigate the nature of SFC-β-SFC interactions that impact singlet fission dynamics.
Collapse
Affiliation(s)
- Ashish Sharma
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stavros Athanasopoulos
- Departamento de Física, Universidad Carlos III de Madrid, Avenida Universidad 30, Leganés 28911, Madrid, Spain
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Chanakarn Phansa
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Amir Asadpoordarvish
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia.,ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Randy P Sabatini
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Raj Pandya
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Samuel N Sanders
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Murad J Y Tayebjee
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom.,School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Girish Lakhwani
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
46
|
Fumanal M, Corminboeuf C. Pushing the Limits of the Donor-Acceptor Copolymer Strategy for Intramolecular Singlet Fission. J Phys Chem Lett 2021; 12:7270-7277. [PMID: 34318679 DOI: 10.1021/acs.jpclett.1c01986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Donor-acceptor (D-A) copolymers have shown great potential for intramolecular singlet fission (iSF). Nonetheless, very few design principles exist for optimizing these systems for iSF, with very little knowledge about how to engineer them for this purpose. In recent work, a fundamental trade-off between the main electronic ingredients required for iSF capable D-A coplanar copolymers was revealed. Still, further investigations are needed to understand these limitations and learn how to bypass them. In this work, we propose to induce torsion as an effective way to circumvent the limits of the coplanar approach. We disclose the potential of noncoplanar copolymers with inherently low triplet energies that encompass all the characteristics required for iSF beyond the limiting values associated with fully coplanar systems. Our findings shed some light on the electronic structure aspects of D-A copolymers for iSF and offer a new avenue for the rational design of novel promising candidates.
Collapse
Affiliation(s)
- Maria Fumanal
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Casanova D. Restricted active space configuration interaction methods for strong correlation: Recent developments. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- David Casanova
- Donostia International Physics Center (DIPC) Donostia Spain
- Ikerbasque Basque Foundation for Science Bilbao Spain
| |
Collapse
|
48
|
Open questions on the photophysics of ultrafast singlet fission. Commun Chem 2021; 4:85. [PMID: 36697779 PMCID: PMC9814646 DOI: 10.1038/s42004-021-00527-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 01/28/2023] Open
|
49
|
Wang Z, Liu H, Xie X, Zhang C, Wang R, Chen L, Xu Y, Ma H, Fang W, Yao Y, Sang H, Wang X, Li X, Xiao M. Free-triplet generation with improved efficiency in tetracene oligomers through spatially separated triplet pair states. Nat Chem 2021; 13:559-567. [PMID: 33833447 DOI: 10.1038/s41557-021-00665-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Singlet fission (SF) can potentially boost the efficiency of solar energy conversion by converting a singlet exciton (S1) into two free triplets (T1 + T1) through an intermediate state of a correlated triplet pair (TT). Although efficient TT generation has been recently realized in many intramolecular SF materials, their potential applications have been hindered by the poor efficiency of TT dissociation. Here we demonstrate that this can be overcome by employing a spatially separated 1(T…T) state with weak intertriplet coupling in tetracene oligomers with three or more chromophores. By using transient magneto-optical spectroscopic methods, we show that free-triplet generation can be markedly enhanced through the SF pathway that involves the spatially separated 1(T…T) state rather than the pathway mediated by the spatially adjacent TT state, leading to a marked improvement in free-triplet generation with an efficiency increase from 21% for the dimer to 85% (124%) for the trimer (tetramer).
Collapse
Affiliation(s)
- Zhiwei Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Heyuan Liu
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Xiaoyu Xie
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Weihai Fang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing, China
| | - Yao Yao
- Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Hai Sang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiyou Li
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, China.
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. .,Department of Physics, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
50
|
Muthike AK, Carlotti B, Madu IK, Jiang H, Kim H, Wu Q, Yu L, Zimmerman PM, Goodson T. The Role of the Core Attachment Positioning in Triggering Intramolecular Singlet Exciton Fission in Perylene Diimide Tetramers. J Phys Chem B 2021; 125:5114-5131. [PMID: 33961426 DOI: 10.1021/acs.jpcb.1c02534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have proposed that the presence of a flexible π-bridge linker is crucial in activating intramolecular singlet exciton fission (iSEF) in multichromophoric systems. In this study, we report the photophysical properties of three analogous perylene diimide (PDI) dendritic tetramers showing flexible/twisted π-bridged structures with α- and β-substitutions and a rigid/planar structure with a β-fused ring (βC) connection to a benzodithiophene-thiophene (BDT-Th) core. The rigidity and enhanced planarity of βC lead to significant intramolecular charge transfer and triplet formation via an intersystem crossing pathway. Steady-state spectroscopic measurements reveal similar absorption and emission spectra for the α-tetramer and the parent PDI monomer. However, their fluorescence quantum yield is significantly different. The negligible fluorescence yield of the α-tetramer (0.04%) is associated with a competitive nonradiative decay pathway. Indeed, for this twisted compound in a high polar environment, a fast and efficient iSEF with a triplet quantum yield of 124% is observed. Our results show that the α-single-bond connections in the α compound are capable of interrupting the coupling among the PDI units, favoring iSEF. We propose that the formation of the double triplet (1[TT]) state is through a superposition of singlet states known as [S1S0][TT]CT, which has been suggested previously for pentacene derivatives. Using steady-state and time-resolved spectroscopic experiments, we demonstrate that the conformational flexibility of the linker itself is necessary but not sufficient to allow iSEF. For the case of the other twisted tetramer, β, the strong π-π co-facial interactions between the adjacent PDI units in its structure lead to excimer formation. These excimer states trap the singlet excitons preventing the formation of the 1[TT] state, thus inhibiting iSEF.
Collapse
Affiliation(s)
- Angelar K Muthike
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benedetta Carlotti
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto n.8, 06123 Perugia, Italy
| | - Ifeanyi K Madu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hyungjun Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
| | - Qinghe Wu
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Luping Yu
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|