1
|
van Vreeswijk S, Monai M, Oord R, Schmidt JE, Parvulescu AN, Yarulina I, Karwacki L, Poplawsky JD, Weckhuysen BM. Detecting Cage Crossing and Filling Clusters of Magnesium and Carbon Atoms in Zeolite SSZ-13 with Atom Probe Tomography. JACS AU 2022; 2:2501-2513. [PMID: 36465530 PMCID: PMC9709938 DOI: 10.1021/jacsau.2c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 06/17/2023]
Abstract
The conversion of methanol to valuable hydrocarbon molecules is of great commercial interest, as the process serves as a sustainable alternative for the production of, for instance, the base chemicals for plastics. The reaction is catalyzed by zeolite materials. By the introduction of magnesium as a cationic metal, the properties of the zeolite, and thereby the catalytic performance, are changed. With atom probe tomography (APT), nanoscale relations within zeolite materials can be revealed: i.e., crucial information for a fundamental mechanistic understanding. We show that magnesium forms clusters within the cages of zeolite SSZ-13, while the framework elements are homogeneously distributed. These clusters of just a few nanometers were analyzed and visualized in 3-D. Magnesium atoms seem to initially be directed to the aluminum sites, after which they aggregate and fill one or two cages in the zeolite SSZ-13 structure. The presence of magnesium in zeolite SSZ-13 increases the lifetime as well as the propylene selectivity. By using operando UV-vis spectroscopy and X-ray diffraction techniques, we are able to show that these findings are related to the suppression of aromatic intermediate products, while maintaining the formation of polyaromatic compounds. Further nanoscale analysis of the spent catalysts showed indications of magnesium redistribution after catalysis. Unlike zeolite H-SSZ-13, for which only a homogeneous distribution of carbon was found, carbon can be either homogeneously or heterogeneously distributed within zeolite Mg-SSZ-13 crystals as the magnesium decreases the coking rate. Carbon clusters were isolated, visualized, and analyzed and were assumed to be polyaromatic compounds. Small one-cage-filling polyaromatic compounds were identified; furthermore, large-cage-crossing aromatic molecules were found by isolating large coke clusters, demonstrating the unique coking mechanism in zeolite SSZ-13. Short-length-scale evidence for the formation of polyaromatic compounds at acid sites is discovered, as clear nanoscale relations between aluminum and carbon atoms exist.
Collapse
Affiliation(s)
- Sophie
H. van Vreeswijk
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3854 CG, The Netherlands
| | - Matteo Monai
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3854 CG, The Netherlands
| | - Ramon Oord
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3854 CG, The Netherlands
| | - Joel E. Schmidt
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3854 CG, The Netherlands
| | | | - Irina Yarulina
- BASF, Carl-Bosch-Straße 38, 67063 Ludwigshafen am Rhein, Germany
| | - Lukasz Karwacki
- BASF, Carl-Bosch-Straße 38, 67063 Ludwigshafen am Rhein, Germany
| | - Jonathan D. Poplawsky
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3854 CG, The Netherlands
| |
Collapse
|
2
|
van Vreeswijk SH, Weckhuysen BM. Emerging Analytical Methods to Characterize Zeolite-Based Materials. Natl Sci Rev 2022; 9:nwac047. [PMID: 36128456 PMCID: PMC9477204 DOI: 10.1093/nsr/nwac047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Zeolites and zeolitic materials are, through their use in numerous conventional and sustainable applications, very important to our daily lives, including to foster the necessary transition to a more circular society. The characterization of zeolite-based materials has a tremendous history and a great number of applications and properties of these materials have been discovered in the past decades. This review focuses on recently developed novel as well as more conventional techniques applied with the aim of better understanding zeolite-based materials. Recently explored analytical methods, e.g. atom probe tomography, scanning transmission X-ray microscopy, confocal fluorescence microscopy and photo-induced force microscopy, are discussed on their important contributions to the better understanding of zeolites as they mainly focus on the micro- to nanoscale chemical imaging and the revelation of structure–composition–performance relationships. Some other techniques have a long and established history, e.g. nuclear magnetic resonance, infrared, neutron scattering, electron microscopy and X-ray diffraction techniques, and have gone through increasing developments allowing the techniques to discover new and important features in zeolite-based materials. Additional to the increasing application of these methods, multiple techniques are nowadays used to study zeolites under working conditions (i.e. the in situ/operando mode of analysis) providing new insights in reaction and deactivation mechanisms.
Collapse
Affiliation(s)
- S H van Vreeswijk
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - B M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
3
|
van Vreeswijk SH, Monai M, Oord R, Schmidt JE, Vogt ETC, Poplawsky JD, Weckhuysen BM. Nano-scale insights regarding coke formation in zeolite SSZ-13 subject to the methanol-to-hydrocarbons reaction. Catal Sci Technol 2022; 12:1220-1228. [PMID: 35310769 PMCID: PMC8859524 DOI: 10.1039/d1cy01938d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
The methanol-to-hydrocarbons (MTH) process, commonly catalyzed by zeolites, is of great commercial interest and therefore widely studied both in industry and academia. However, zeolite-based catalyst materials are notoriously hard to study at the nano-scale. Atom probe tomography (APT) is uniquely positioned among the suite of characterization techniques, as it can provide 3D chemical information with sub-nm resolution. In this work, we have used APT to study the nano-scale coking behavior of zeolite SSZ-13 and its relation to bulk coke formation on the macro-/micro-scale studied with operando and in situ UV-vis spectroscopy and microscopy. Radial distribution function analysis (RDF) of the APT data revealed short carbon–carbon length scale affinities, consistent with the formation of larger aromatic molecules (coke species). Using nearest neighbor distribution (NND) analysis, an increase in the homogeneity of carbon was found with increasing time-on-stream. However, carbon clusters could not be isolated due to spatial noise and limited clustering. Therefore, it was found that the coke formation in zeolite SSZ-13 (CHA) is reasonably homogeneous on the nano-scale, and is rather similar to the silicoaluminophosphate analogue SAPO-34 (CHA) but different in nano-scale coking behavior compared to previously studied zeolite ZSM-5 (MFI). A correlation between the micro- and nano-scale coking behavior of SSZ-13 was discovered with in situ/operando spectroscopy and atom probe tomography (APT), which allows for spatial reconstruction and analysis of relations between framework elements and carbon atoms.![]()
Collapse
Affiliation(s)
- S. H. van Vreeswijk
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - M. Monai
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - R. Oord
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - J. E. Schmidt
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - E. T. C. Vogt
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - J. D. Poplawsky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - B. M. Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Potter ME. Down the Microporous Rabbit Hole of Silicoaluminophosphates: Recent Developments on Synthesis, Characterization, and Catalytic Applications. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Matthew E. Potter
- Department of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| |
Collapse
|
5
|
Harris JW, Bates JS, Bukowski BC, Greeley J, Gounder R. Opportunities in Catalysis over Metal-Zeotypes Enabled by Descriptions of Active Centers Beyond Their Binding Site. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- James W. Harris
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Jason S. Bates
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Brandon C. Bukowski
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey Greeley
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
El Hariri El Nokab M, van der Wel PC. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydr Polym 2020; 240:116276. [DOI: 10.1016/j.carbpol.2020.116276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/22/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
|
7
|
Molecular elucidating of an unusual growth mechanism for polycyclic aromatic hydrocarbons in confined space. Nat Commun 2020; 11:1079. [PMID: 32103001 PMCID: PMC7044299 DOI: 10.1038/s41467-020-14493-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/13/2020] [Indexed: 11/24/2022] Open
Abstract
Extension and clustering of polycyclic aromatic hydrocarbons (PAHs) are key mechanistic steps for coking and deactivation in catalysis reactions. However, no unambiguous mechanistic picture exists on molecule-resolved PAHs speciation and evolution, due to the immense experimental challenges in deciphering the complex PAHs structures. Herein, we report an effective strategy through integrating a high resolution MALDI FT-ICR mass spectrometry with isotope labeling technique. With this strategy, a complete route for aromatic hydrocarbon evolution is unveiled for SAPO-34-catalyzed, industrially relevant methanol-to-olefins (MTO) as a model reaction. Notable is the elucidation of an unusual, previously unrecognized mechanistic step: cage-passing growth forming cross-linked multi-core PAHs with graphene-like structure. This mechanistic concept proves general on other cage-based molecule sieves. This preliminary work would provide a versatile means to decipher the key mechanistic step of molecular mass growth for PAHs involved in catalysis and combustion chemistry. Coke-induced catalyst deactivation draws increasing concerns in industrially catalytic processes. Here the authors provide a strategy integrating advanced mass spectroscopy and isotope labeling to uncover a cage-passing molecular route of coking species in molecular sieve catalysts.
Collapse
|
8
|
Wang X, Hatzoglou C, Sneed B, Fan Z, Guo W, Jin K, Chen D, Bei H, Wang Y, Weber WJ, Zhang Y, Gault B, More KL, Vurpillot F, Poplawsky JD. Interpreting nanovoids in atom probe tomography data for accurate local compositional measurements. Nat Commun 2020; 11:1022. [PMID: 32094330 PMCID: PMC7039975 DOI: 10.1038/s41467-020-14832-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Quantifying chemical compositions around nanovoids is a fundamental task for research and development of various materials. Atom probe tomography (APT) and scanning transmission electron microscopy (STEM) are currently the most suitable tools because of their ability to probe materials at the nanoscale. Both techniques have limitations, particularly APT, because of insufficient understanding of void imaging. Here, we employ a correlative APT and STEM approach to investigate the APT imaging process and reveal that voids can lead to either an increase or a decrease in local atomic densities in the APT reconstruction. Simulated APT experiments demonstrate the local density variations near voids are controlled by the unique ring structures as voids open and the different evaporation fields of the surrounding atoms. We provide a general approach for quantifying chemical segregations near voids within an APT dataset, in which the composition can be directly determined with a higher accuracy than STEM-based techniques. Atom probe tomography can image chemical composition at the nanoscale, but our understanding of how it images voids, or empty spaces, is still lacking. Here, the authors combine atom probe tomography, scanning transmission electron microscopy, and field-evaporation theory to show how voids are imaged and subsequently measured.
Collapse
Affiliation(s)
- Xing Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Constantinos Hatzoglou
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000, Rouen, France
| | - Brian Sneed
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Zhe Fan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Wei Guo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ke Jin
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Di Chen
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Hongbin Bei
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Yongqiang Wang
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - William J Weber
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Materials Science and Engineering, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Yanwen Zhang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Materials Science and Engineering, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Baptiste Gault
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str, 1, 40237, Düsseldorf, Germany.,Department of Materials, Imperial College London, Royal School of Mine, London, SW7 2AZ, UK
| | - Karren L More
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Francois Vurpillot
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000, Rouen, France
| | - Jonathan D Poplawsky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
9
|
Wang Z, Li T, Jiang Y, Lafon O, Liu Z, Trébosc J, Baiker A, Amoureux JP, Huang J. Acidity enhancement through synergy of penta- and tetra-coordinated aluminum species in amorphous silica networks. Nat Commun 2020; 11:225. [PMID: 31932684 PMCID: PMC6957685 DOI: 10.1038/s41467-019-13907-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/25/2019] [Indexed: 11/30/2022] Open
Abstract
Amorphous silica-aluminas (ASAs) are widely used in acid-catalyzed C-H activation reactions and biomass conversions in large scale, which can be promoted by increasing the strength of surface Brønsted acid sites (BAS). Here, we demonstrate the first observation on a synergistic effect caused by two neighboring Al centers interacting with the same silanol group in flame-made ASAs with high Al content. The two close Al centers decrease the electron density on the silanol oxygen and thereby enhance its acidity, which is comparable to that of dealuminated zeolites, while ASAs with small or moderate Al contents provide mainly moderate acidity, much lower than that of zeolites. The ASAs with enhanced acidity exhibit outstanding performances in C-H bond activation of benzene and glucose dehydration to 5-hydroxymethylfurfural, simultaneously with an excellent calcination stability and resistance to leaching, and they offer an interesting potential for a wide range of acid and multifunctional catalysis.
Collapse
Affiliation(s)
- Zichun Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Tong Li
- Institute for Materials & ZGH, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Yijiao Jiang
- Department of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Olivier Lafon
- Univ. Lille, CNRS, UMR 8181, UCCS-Unité de Catalyse et de Chimie du Solide, F-59000, Lille, France
- Institut Universitaire de France, Centrale Lille, ENSCL, Villeneuve-d'Ascq, France
| | - Zongwen Liu
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Julien Trébosc
- Univ. Lille, CNRS, INRA, Centrale Lille, ENSCL, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000, Lille, France
| | - Alfons Baiker
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH, Zürich, Hönggerberg, HCI, CH-8093, Switzerland
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, UMR 8181, UCCS-Unité de Catalyse et de Chimie du Solide, F-59000, Lille, France.
- Bruker Biospin, 34, rue de l'industrie, 67166, Wissembourg, France.
- Riken NMR Science and Development Division, Yokohama, 230-0045, Kanagawa, Japan.
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
10
|
Ramirez A, Dutta Chowdhury A, Caglayan M, Rodriguez-Gomez A, Wehbe N, Abou-Hamad E, Gevers L, Ould-Chikh S, Gascon J. Coated sulfated zirconia/SAPO-34 for the direct conversion of CO2 to light olefins. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02532d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of CO2 to light olefins via bifunctional catalysts (i.e. metal oxides/zeolites) is a promising approach to tackle CO2 emissions and, at the same time, reduce fossil-fuel dependence by closing the carbon cycle.
Collapse
Affiliation(s)
- Adrian Ramirez
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Abhishek Dutta Chowdhury
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Mustafa Caglayan
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Alberto Rodriguez-Gomez
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Nimer Wehbe
- Core Labs
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Edy Abou-Hamad
- Core Labs
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Lieven Gevers
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Samy Ould-Chikh
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC)
- Advanced Catalytic Materials
- King Abdullah University of Science and Technology
- Thuwal 23955
- Saudi Arabia
| |
Collapse
|
11
|
Abstract
Atom probe tomography is a well-established analytical instrument for imaging the 3D structure and composition of materials with high mass resolution, sub-nanometer spatial resolution and ppm elemental sensitivity. Thanks to recent hardware developments in Atom Probe Tomography (APT), combined with progress on site-specific focused ion beam (FIB)-based sample preparation methods and improved data treatment software, complex materials can now be routinely investigated. From model samples to complex, usable porous structures, there is currently a growing interest in the analysis of catalytic materials. APT is able to probe the end state of atomic-scale processes, providing information needed to improve the synthesis of catalysts and to unravel structure/composition/reactivity relationships. This review focuses on the study of catalytic materials with increasing complexity (tip-sample, unsupported and supported nanoparticles, powders, self-supported catalysts and zeolites), as well as sample preparation methods developed to obtain suitable specimens for APT experiments.
Collapse
|
12
|
Pini R, Joss L. See the unseen: applications of imaging techniques to study adsorption in microporous materials. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Schmidt JE, Ye X, van Ravenhorst IK, Oord R, Shapiro DA, Yu Y, Bare SR, Meirer F, Poplawsky JD, Weckhuysen BM. Probing the Location and Speciation of Elements in Zeolites with Correlated Atom Probe Tomography and Scanning Transmission X-Ray Microscopy. ChemCatChem 2019; 11:488-494. [PMID: 31123533 PMCID: PMC6519228 DOI: 10.1002/cctc.201801378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 01/22/2023]
Abstract
Characterizing materials at nanoscale resolution to provide new insights into structure property performance relationships continues to be a challenging research target due to the inherently low signal from small sample volumes, and is even more difficult for nonconductive materials, such as zeolites. Herein, we present the characterization of a single Cu-exchanged zeolite crystal, namely Cu-SSZ-13, used for NOX reduction in automotive emissions, that was subject to a simulated 135,000-mile aging. By correlating Atom Probe Tomography (APT), a single atom microscopy method, and Scanning Transmission X-ray Microscopy (STXM), which produces high spatial resolution X-ray Absorption Near Edge Spectroscopy (XANES) maps, we show that a spatially non-uniform proportion of the Al was removed from the zeolite framework. The techniques reveal that this degradation is heterogeneous at length scales from micrometers to tens of nanometers, providing complementary insight into the long-term deactivation of this catalyst system.
Collapse
Affiliation(s)
- Joel E. Schmidt
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - Xinwei Ye
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
- School of Materials Science and Engineering Key Laboratory of Advanced Energy Materials Chemistry (MOE) Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjin300350P.R. China
| | - Ilse K. van Ravenhorst
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - Ramon Oord
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - David A. Shapiro
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeley CA94720USA
| | - Young‐Sang Yu
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeley CA94720USA
| | - Simon R. Bare
- SLAC National Accelerator LaboratoryMenlo Park CA94025USA
| | - Florian Meirer
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - Jonathan D. Poplawsky
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Bert M. Weckhuysen
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| |
Collapse
|
14
|
Nieskens DLS, Lunn JD, Malek A. Understanding the Enhanced Lifetime of SAPO-34 in a Direct Syngas-to-Hydrocarbons Process. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03465] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jonathan D. Lunn
- The Dow Chemical Company, 2301 North Brazosport Boulevard, Freeport, Texas 77541, United States
| | - Andrzej Malek
- The Dow Chemical Company, 1776 Building, Midland, Michigan 48674, United States
| |
Collapse
|