1
|
Gillhuber S, Holloway JO, Mundsinger K, Kammerer JA, Harmer JR, Frisch H, Barner-Kowollik C, Roesky PW. Visible light photoflow synthesis of a Cu(ii) single-chain polymer nanoparticle catalyst. Chem Sci 2024:d4sc03079f. [PMID: 39246378 PMCID: PMC11376198 DOI: 10.1039/d4sc03079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
We herein pioneer the visible light (λ max = 410 nm) mediated flow synthesis of catalytically active single-chain nanoparticles (SCNPs). Our design approach is based on a copolymer of poly(ethylene glycol) methyl ether methacrylate and a photocleavable 2-((((2-nitrobenzyl)oxy)carbonyl)amino)ethyl methacrylate monomer which can liberate amine groups upon visible light irradiation, allowing for single-chain collapse via the complexation of Cu(ii) ions. We initially demonstrate the successful applicability of our design approach for the batch photochemical synthesis of Cu(ii) SCNPs and transfer the concept to photoflow conditions, enabling, for the first time, the continuous production of functional SCNPs. Critically, we explore their ability to function as a photocatalyst for the cleavage of carbon-carbon single and double bonds on the examples of xanthene-9-carboxylic acid and oleic acid, demonstrating the advantageous effect SCNPs can provide over analogous small molecule catalysts.
Collapse
Affiliation(s)
- Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 76131 Karlsruhe Germany
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Joshua O Holloway
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Kai Mundsinger
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Jochen A Kammerer
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland (UQ) Building 57 Research Road 4072 Brisbane QLD Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 76131 Karlsruhe Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
2
|
Do PT, Sbordone F, Kalmer H, Sokolova A, Zhang C, Thai LD, Golberg DV, Chapman R, Poad BLJ, Frisch H. Main chain selective polymer degradation: controlled by the wavelength and assembly. Chem Sci 2024; 15:12410-12419. [PMID: 39118612 PMCID: PMC11304539 DOI: 10.1039/d4sc02172j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
The advent of reversible deactivation radical polymerization (RDRP) revolutionized polymer chemistry and paved the way for accessing synthetic polymers with controlled sequences based on vinylic monomers. An inherent limitation of vinylic polymers stems from their all-carbon backbone, which limits both function and degradability. Herein, we report a synthetic strategy utilizing radical ring-opening polymerization (rROP) of complementary photoreactive cyclic monomers in combination with RDRP to embed photoresponsive functionality into desired blocks of polyvinyl polymers. Exploiting different absorbances of photoreactive cyclic monomers, it becomes possible to degrade blocks selectively by irradiation with either UVB or UVA light. Translating such primary structures of polymer sequences into higher order assemblies, the hydrophobicity of the photodegradable monomers allowed for the formation of micelles in water. Upon exposure to light, the nondegradable blocks detached yielding a significant reduction in the micelle hydrodynamic diameter. As a result of the self-assembled micellar environment, telechelic oligomers with photoreactive termini (e.g., coumarin or styrylpyrene) resulting from the photodegradation of polymers in water underwent intermolecular photocycloaddition to photopolymerize, which usually only occurs efficiently at longer wavelengths and a much higher concentration of photoresponsive groups. The reported main chain polymer degradation is thus controlled by the irradiation wavelength and the assembly of the polymers.
Collapse
Affiliation(s)
- Phuong T Do
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Henrik Kalmer
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Anna Sokolova
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road, Lucas Heights NSW 2234 Australia
| | - Chao Zhang
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Dmitri V Golberg
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney Kensington NSW 2052 Australia
- School of Environmental and Life Sciences, University of Newcastle Callaghan NSW 2308 Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
3
|
Michenfelder RT, Pashley‐Johnson F, Guschin V, Delafresnaye L, Truong VX, Wagenknecht H, Barner‐Kowollik C. Photochemical Action Plots Map Orthogonal Reactivity in Photochemical Release Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402011. [PMID: 38852174 PMCID: PMC11304248 DOI: 10.1002/advs.202402011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Indexed: 06/11/2024]
Abstract
The wavelength-by-wavelength resolved photoreactivity of two photo-caged carboxylic acids, i. e. 7-(diethylamino)-coumarin- and 3-perylene-modified substrates, is investigated via photochemical action plots. The observed wavelength-dependent reactivity of the chromophores is contrasted with their absorption profile. The photochemical action plots reveal a remarkable mismatch between the maximum reactivity and the absorbance. Through the action plot data, the study is able to uncover photochemical reactivity maxima at longer and shorter wavelengths, where the molar absorptivity of the chromophores is strongly reduced. Finally, the laser experiments are translated to light emitting diode (LED) irradiation and show efficient visible-light-induced release in a near fully wavelength-orthogonal, sequence-independent fashion (λLED1 = 405 nm, λLED2 = 505 nm) with both chromophores in the same reaction solution. The herein pioneered wavelength orthogonal release systems open an avenue for releasing two different molecular cargos with visible light in a fully orthogonal fashion.
Collapse
Affiliation(s)
- Rita T. Michenfelder
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Fred Pashley‐Johnson
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC) and Laboratory of Organic SynthesisDepartment of Organic and Macromolecular ChemistryFaculty of SciencesGhent UniversityKrijgslaan 281‐S4Ghent9000Belgium
| | - Viktor Guschin
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Laura Delafresnaye
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
| | - Vinh X. Truong
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for Science, Technology and Research (A*STAR)1 Pesek Round, Jurong IslandSingapore627833Republic of Singapore
| | - Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
4
|
Pashley-Johnson F, Munaweera R, Hossain SI, Gauci SC, Delafresnaye L, Frisch H, O'Mara ML, Du Prez FE, Barner-Kowollik C. How molecular architecture defines quantum yields. Nat Commun 2024; 15:6033. [PMID: 39019945 PMCID: PMC11255304 DOI: 10.1038/s41467-024-50366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Understanding the intricate relationship between molecular architecture and function underpins most challenges at the forefront of chemical innovation. Bond-forming reactions are particularly influenced by the topology of a chemical structure, both on small molecule scale and in larger macromolecular frameworks. Herein, we elucidate the impact that molecular architecture has on the photo-induced cyclisations of a series of monodisperse macromolecules with defined spacers between photodimerisable moieties, and examine the relationship between propensity for intramolecular cyclisation and intermolecular network formation. We demonstrate a goldilocks zone of maximum reactivity between the sterically hindered and entropically limited regimes with a quantum yield of intramolecular cyclisation that is nearly an order of magnitude higher than the lowest value. As a result of the molecular design of trifunctional macromolecules, their quantum yields can be deconvoluted into the formation of two different cyclic isomers, as rationalised with molecular dynamics simulations. Critically, we visualise our solution-based studies with light-based additive manufacturing. We formulate four photoresists for microprinting, revealing that the precise positioning of functional groups is critical for resist performance, with lower intramolecular quantum yields leading to higher-quality printing in most cases.
Collapse
Affiliation(s)
- Fred Pashley-Johnson
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Rangika Munaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Road, 4072, St Lucia, QLD, Australia
| | - Sheikh I Hossain
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Road, 4072, St Lucia, QLD, Australia
| | - Steven C Gauci
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Laura Delafresnaye
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
| | - Megan L O'Mara
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Road, 4072, St Lucia, QLD, Australia.
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium.
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia.
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
5
|
Zhou S, Zhang M, Yuan Y, Ren L, Chen Y, Li W, Zhang A, Yan J. Visible Light [2 + 2] Cycloadditions of Thermoresponsive Dendronized Styryltriazines To Exhibit Tunable Microconfinement. ACS Macro Lett 2024; 13:866-873. [PMID: 38935045 DOI: 10.1021/acsmacrolett.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Visible light-triggered photochemical reactions in aqueous media are highly valuable to tailor molecular structures and properties in an ecofriendly manner. Here we report visible light-induced catalyst-free [2 + 2] cycloadditions of thermoresponsive dendronized styryltriazines, which show tunable microconfinement to guest dyes in aqueous media. These dendronized styryltriazines are constituted of conjugated mono- or tristyryltriazines, which carry hydrophilic dendritic oligoethylene glycol (OEG) pendants. They underwent efficient [2 + 2] cycloadditions to form dendronized cyclobutane dimers or oligomers in water through irradiation with visible light of 400 nm, and their cycloaddition behavior was dominated by dendritic architectures and solvent conditions. Dendronization with dendritic OEGs also afforded them characteristic thermoresponsive properties with tunable phase transition temperatures in the range 36-65 °C, which can be further modulated through photocycloaddition of styryltriazine chromophores. Importantly, dendronized styryltriazines can form tunable microenvironments in aqueous media, which encapsulate hydrophobic solvatochromic Nile red to exhibit variable photophysical properties. The encapsulated guest dye can be simultaneously released through noninvasive visible light-induced [2 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Sijie Zhou
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Mengjie Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Yue Yuan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Yuqiang Chen
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 380, Shanghai 200444, China
| |
Collapse
|
6
|
Huang L, Yang Y, Shao J, Xiong G, Wang H, Nishiura M, Hou Z. Synthesis of Tough and Fluorescent Self-Healing Elastomers by Scandium-Catalyzed Terpolymerization of Pyrenylethenylstyrene, Ethylene, and Anisylpropylene. J Am Chem Soc 2024; 146:2718-2727. [PMID: 38237149 DOI: 10.1021/jacs.3c12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The synthesis of fluorescent self-healing polymers by the incorporation of a fluorophore-containing olefin into a polyolefin backbone through catalyst-controlled multicomponent copolymerization is of fundamental interest and practical importance, but such an approach has remained unexplored to date. Herein, we report for the first time the synthesis of tough and fluorescent self-healing polymers by sequence-controlled terpolymerization of 4-[2-(1-pyrenyl)ethenyl]styrene (Pyr), ethylene (E), and anisylpropylene (AP) using a sterically demanding half-sandwich scandium catalyst. The resulting terpolymers consisted of relatively long alternating E-alt-AP sequences, isolated Pyr units, and short E-E blocks, which exhibited excellent tensile strength, remarkable self-healability, and high fluorescence quantum yield. The excellent mechanical and self-healing properties could be attributed to the nanophase separation of the crystalline E-E segments and the hard Pyr aggregates from a flexible E-alt-AP segment matrix, in which the Pyr units not only served as an efficient fluorophore but also played an important role in forming nanodomains and enhancing the polymer mobility. Furthermore, the styrenyl C═C bond of the Pyr unit in the terpolymers could undergo [2 + 2] cycloaddition under photoirradiation, which thus enabled the fabrication of a self-healable fluorescent two-dimensional image on a terpolymer film through photolithography. This work offers an unprecedented efficient protocol for the synthesis of a brand-new family of fluorescent self-healing materials, showcasing the high potential of catalyst-controlled sequence-regular copolymerization of different olefins for the creation of novel functional polymers.
Collapse
Affiliation(s)
- Lin Huang
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yang Yang
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jingjing Shao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gang Xiong
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Haobing Wang
- School of Emergent Soft Matter and Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Mohamed Irshadeen I, Truong VX, Frisch H, Barner-Kowollik C. Simultaneously recorded photochemical action plots reveal orthogonal reactivity. Chem Commun (Camb) 2023; 59:11959-11962. [PMID: 37724042 DOI: 10.1039/d3cc03777k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
We map the photochemical reactivity of two chromophores-a pyrene-chalcone and a methylene blue protected amine-from a one-pot reaction mixture based on their dynamic absorptivity changes upon light exposure, constructing a dual action plot. We employ the action plot data to determine a pathlength-independent λ-orthogonality window, allowing the orthogonal folding of distinct polymer chains into single chain nano-particles (SCNPs) from the same reaction mixture.
Collapse
Affiliation(s)
- Ishrath Mohamed Irshadeen
- School of Chemistry and Physics, Queensland University of Technology Faculty of Science and Engineering, Brisbane, Australia.
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Vinh X Truong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology Faculty of Science and Engineering, Brisbane, Australia.
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology Faculty of Science and Engineering, Brisbane, Australia.
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
9
|
Maag PH, Feist F, Truong VX, Frisch H, Roesky PW, Barner-Kowollik C. Visible-Light-Induced Control over Reversible Single-Chain Nanoparticle Folding. Angew Chem Int Ed Engl 2023; 62:e202309259. [PMID: 37485591 DOI: 10.1002/anie.202309259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
We introduce a class of single-chain nanoparticles (SCNPs) that respond to visible light (λmax =415 nm) with complete unfolding from their compact structure into linear chain analogues. The initial folding is achieved by a simple esterification reaction of the polymer backbone constituted of acrylic acid and polyethylene glycol carrying monomer units, introducing bimane moieties, which allow for the photochemical unfolding, reversing the ester-bond formation. The compaction and the light driven unfolding proceed cleanly and are readily followed by size exclusion chromatography (SEC) and diffusion ordered NMR spectroscopy (DOSY), monitoring the change in the hydrodynamic radius (RH ). Importantly, the folding reaction and the light-induced unfolding are reversible, supported by the high conversion of the photo cleavage. As the unfolding reaction occurs in aqueous systems, the system holds promise for controlling the unfolding of SCNPs in biological environments.
Collapse
Affiliation(s)
- Patrick H Maag
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Florian Feist
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Vinh X Truong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Re-search (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Richardson BJ, Zhang C, Rauthe P, Unterreiner AN, Golberg DV, Poad BLJ, Frisch H. Peptide Self-Assembly Controlled Photoligation of Polymers. J Am Chem Soc 2023. [PMID: 37433011 DOI: 10.1021/jacs.3c03961] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves─avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation "ON" or "OFF" under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.
Collapse
Affiliation(s)
- Bailey J Richardson
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Chao Zhang
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Pascal Rauthe
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Dmitri V Golberg
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
11
|
Do PT, Poad BLJ, Frisch H. Programming Photodegradability into Vinylic Polymers via Radical Ring-Opening Polymerization. Angew Chem Int Ed Engl 2023; 62:e202213511. [PMID: 36535898 PMCID: PMC10108003 DOI: 10.1002/anie.202213511] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Incorporation of photolabile moieties into the polymer backbone holds promise to remotely-control polymer degradation. However, suitable synthetic avenues are limited, especially for radical polymerizations. Here we report a strategy to program photodegradability into vinylic polymers by exploiting the wavelength selectivity of photocycloadditions for radical ring-opening polymerization (rROP). Irradiation of coumarin terminated allylic sulfides with UVA light initiated intramolecular [2+2] photocycloaddition producing cyclic macromonomers. Subsequent RAFT-mediated rROP with methyl acrylate yielded copolymers that inherited the photoreactivity of the cyclic parent monomer. Irradiation with UVB initiated efficient photocycloreversion of the coumarin dimers, causing polymer degradation within minutes under UVB light or days under sunlight exposure. Our synthetic strategy may pave the way to insert photolabile linkages into vinylic polymers, tuning degradation for specific wavelengths.
Collapse
Affiliation(s)
- Phuong T Do
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD-4000, Australia
| |
Collapse
|
12
|
Inada M, Udagawa A, Sato S, Asahi T, Saito K. Photo-conversion of self-assembled structures into continuous covalent structures via [2 + 2]-cycloaddition reactions. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2169-2177. [PMID: 36058993 DOI: 10.1007/s43630-022-00286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022]
Abstract
In this study, the conversion of self-assembled structures into continuous polymeric structures by linking the self-assembled molecules using the [2 + 2]-cycloaddition reaction was investigated. Synthesized bio-inspired thymine-based bolaamphiphilic molecules were designed to force the interactions between two molecules to engage two thymines in their self-assembled structure to undergo a cycloaddition reaction. Thymine-based bolaamphiphilic molecules were designed and synthesized using different phenylene spacers based on aromatic substituents (ortho-) (meta-) (para-). The formed self-assembled structures from these molecules were characterized and compared using molecular mechanical simulations. Simulations were performed to discuss the relationship between the inter- and intramolecular cycloaddition sensitivity to different substituents. This study provides a strategy for creating higher molecular weight linear polymers by controlling the photocyclization sites within the self-assembly by spacers between thymines. An intermolecular [2 + 2] cycloaddition reaction of thymine-based bolaamphiphilic molecules proceeded within the self-assembled nano-ribbon-like structure to form the continuous covalent structure.
Collapse
Affiliation(s)
- Moeka Inada
- Graduate School of Advanced Science and Engineering, Department of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Akihiro Udagawa
- Graduate School of Advanced Science and Engineering, Department of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, 113-8685, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Department of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan.
| | - Kei Saito
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia. .,Graduate School of Advanced Integrated Studies in Human Survivability (GSAIS), Kyoto University, Kyoto, 606-8306, Japan.
| |
Collapse
|
13
|
Maag PH, Feist F, Frisch H, Roesky PW, Barner-Kowollik C. Fluorescent and Catalytically Active Single Chain Nanoparticles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Patrick H. Maag
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrase 15, Karlsruhe 76131, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Florian Feist
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Peter W. Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrase 15, Karlsruhe 76131, Germany
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
14
|
Progress in polymer single-chain based hybrid nanoparticles. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Bae J, Ha J, Kim Y. Efficient Charge Transfer in an Aggregation-Induced Nanocavity of Au Nanoclusters. J Chem Phys 2022; 157:101102. [DOI: 10.1063/5.0101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the last 20 years, extensive research has been reported on the use of plasmonic nanoparticles as a potential photocatalyst. However, the low conversion efficiency has still remained a major concern. Herein, we present a new photocatalytic reaction system based on Au nanoclusters (Au NCs) to enhance the conversion efficiency. Negatively charged Au NCs electrostatically interact with positively charged metal ions and form highly aggregated nanocrystals, which can efficiently capture a chemical substance in the reaction mixture. In such a reaction system, the distance between the electron donor and acceptor can be shortened, resulting in an efficient electron transfer process. We examined the electron transfer behavior in a nanocavity system via resazurin photoreduction and compared the reaction rate with that of a colloidal system, which is a commonly used reaction system. Evidently, the nanocavity system facilitated an enhanced reaction rate compared to that of the colloidal system. Furthermore, this nanocavity reaction system permitted multistep photoreactions and multi-electron transfer processes.
Collapse
Affiliation(s)
- Jueun Bae
- Yeungnam University, Korea, Republic of (South Korea)
| | - Juhee Ha
- Yeungnam University, Korea, Republic of (South Korea)
| | - Youngsoo Kim
- Chemistry, Yeungnam University, Korea, Republic of (South Korea)
| |
Collapse
|
16
|
Wijker S, Deng L, Eisenreich F, Voets IK, Palmans ARA. En Route to Stabilized Compact Conformations of Single-Chain Polymeric Nanoparticles in Complex Media. Macromolecules 2022; 55:6220-6230. [PMID: 35910311 PMCID: PMC9330768 DOI: 10.1021/acs.macromol.2c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Precise control over the folding pathways of polypeptides using a combination of noncovalent and covalent interactions has evolved into a wide range of functional proteins with a perfectly defined 3D conformation. Inspired hereby, we develop a series of amphiphilic copolymers designed to form compact, stable, and structured single-chain polymeric nanoparticles (SCPNs) of defined size, even in competitive conditions. The SCPNs are formed through a combination of noncovalent interactions (hydrophobic and hydrogen-bonding interactions) and covalent intramolecular cross-linking using a light-induced [2 + 2] cycloaddition. By comparing different self-assembly pathways of the nanoparticles, we show that, like for proteins in nature, the order of events matters. When covalent cross-links are formed prior to the folding via hydrophobic and supramolecular interactions, larger particles with less structured interiors are formed. In contrast, when the copolymers first fold via hydrophobic and hydrogen-bonding interactions into compact conformations, followed by covalent cross-links, good control over the size of the SCPNs and microstructure of the hydrophobic interior is achieved. Such a structured SCPN can stabilize the solvatochromic dye benzene-1,3,5-tricarboxamide-Nile Red via molecular recognition for short periods of time in complex media, while showing slow exchange dynamics with the surrounding complex media at longer time scales. The SCPNs show good biocompatibility with cells and can carry cargo into the lysosomal compartments of the cells. Our study highlights the importance of control over the folding pathway in the design of stable SCPNs, which is an important step forward in their application as noncovalent drug or catalyst carriers in biological settings.
Collapse
Affiliation(s)
- Stefan Wijker
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Linlin Deng
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Fabian Eisenreich
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K. Voets
- Laboratory
of Self-Organizing Soft Matter, Department of Chemical Engineering
and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and Organic
Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
17
|
Shao Y, Wang Y, Tang Z, Wen Z, Chang C, Wang C, Sun D, Ye Y, Qiu D, Ke Y, Liu F, Yang Z. Scalable Synthesis of Photoluminescent Single‐Chain Nanoparticles by Electrostatic‐Mediated Intramolecular Crosslinking. Angew Chem Int Ed Engl 2022; 61:e202205183. [DOI: 10.1002/anie.202205183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yue Shao
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yong‐Lei Wang
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
- Department of Electrochemical Energy Storage Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Zian Tang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Zhendong Wen
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Chiawei Chang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Chunyu Wang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Dayin Sun
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yilan Ye
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100180 China
| | - Yubin Ke
- Spallation Neutron Source Science Center Dongguan 523803 China
| | - Feng Liu
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
18
|
Nishimura T, Hatatani Y, Ando M, Sasaki Y, Akiyoshi K. Single-component nanodiscs via the thermal folding of amphiphilic graft copolymers with the adjusted flexibility of the main chain. Chem Sci 2022; 13:5243-5251. [PMID: 35655565 PMCID: PMC9093194 DOI: 10.1039/d2sc01674e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nanodiscs have attracted considerable attention as structural scaffolds for membrane-protein research and as biomaterials in e.g. drug-delivery systems. However, conventional disc-fabrication methods are usually laborious, and disc fabrication via the self-assembly of amphiphiles is difficult. Herein, we report the formation of polymer nanodiscs based on the self-assembly of amphiphilic graft copolymers by adjusting the persistence length of the main chain. Amphiphilic graft copolymers with a series of different main-chain persistence lengths were prepared and these formed, depending on the persistence length, either rods, discs, or vesicles. Notably, polymer nanodiscs were formed upon heating a chilled polymer solution without the need for any additives, and the thus obtained nanodiscs were used to solubilize a membrane protein during cell-free protein synthesis. Given the simplicity of this disc-fabrication method and the ability of these discs to solubilize membrane proteins, this study considerably expands the fundamental and practical scope of graft-copolymer nanodiscs and demonstrates their utility as tools for studying the structure and function of membrane proteins.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University 3-15-1, Tokida Ueda Nagano 386-8567 Japan
| | - Yusuke Hatatani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Mitsuru Ando
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University Shogoin Kawahara-cho, Sakyo-ku Kyoto 606-8507 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
19
|
Shao Y, Wang Y, Tang Z, Wen Z, Chang C, Wang C, Sun D, Ye Y, Qiu D, Ke Y, Liu F, Yang Z. Scalable Synthesis of Photoluminescent Single‐Chain Nanoparticles by Electrostatic‐Mediated Intramolecular Crosslinking. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Shao
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yong‐Lei Wang
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
- Department of Electrochemical Energy Storage Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Zian Tang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Zhendong Wen
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Chiawei Chang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Chunyu Wang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Dayin Sun
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yilan Ye
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100180 China
| | - Yubin Ke
- Spallation Neutron Source Science Center Dongguan 523803 China
| | - Feng Liu
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Truong VX, Ehrmann K, Seifermann M, Levkin PA, Barner-Kowollik C. Wavelength Orthogonal Photodynamic Networks. Chemistry 2022; 28:e202104466. [PMID: 35213069 PMCID: PMC9310740 DOI: 10.1002/chem.202104466] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light‐induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light‐driven adaptation of 3D printed structures on the macro‐ and micro‐scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non‐conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non‐fluorescent, and cell adhesive vs. cell repellent properties.
Collapse
Affiliation(s)
- Vinh X Truong
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Katharina Ehrmann
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Maximilian Seifermann
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| |
Collapse
|
21
|
Gao H, Shi R, Zhu Y, Qian H, Lu Z. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Chambers LC, Barner-Kowollik C, Barner L, Michalek L, Frisch H. Photostationary State in Dynamic Covalent Networks. ACS Macro Lett 2022; 11:532-536. [PMID: 35575324 DOI: 10.1021/acsmacrolett.2c00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We explore a cross-linked polymer network based on a visible light photodynamic [2 + 2] cycloaddition driven by styrylpyrene chemistry. Based on a polymer backbone with pendent styrylpyrene units, the network can be formed by using λ = 450 nm irradiation. Upon irradiation with λ = 340 nm, a photostationary state is generated within the network with ∼17% of the styrylpyrene units open compared to close to 2% in the visible light cured state. The limited fraction of open [2 + 2] couples is caused by their proximity and is in sharp contrast to solution experiments on the photoreactive moiety. Thus, the polymer network retains its mechanical properties even at the photostationary point. We hypothesize that the application of an additional stimulus could serve as a second gate for inducing network disintegration by spacing the [2 + 2] units during ultraviolet irradiation.
Collapse
Affiliation(s)
- Lewis C. Chambers
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Leonie Barner
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| | - Lukas Michalek
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| | - Hendrik Frisch
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, QLD, Australia
| |
Collapse
|
23
|
Truong VX, Bachmann J, Unterreiner A, Blinco JP, Barner‐Kowollik C. Wavelength-Orthogonal Stiffening of Hydrogel Networks with Visible Light. Angew Chem Int Ed Engl 2022; 61:e202113076. [PMID: 35029002 PMCID: PMC9305448 DOI: 10.1002/anie.202113076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 01/05/2023]
Abstract
Herein, we introduce the wavelength-orthogonal crosslinking of hydrogel networks using two red-shifted chromophores, i.e. acrylpyerene (AP, λactivation =410-490 nm) and styrylpyrido[2,3-b]pyrazine (SPP, λactivation =400-550 nm), able to undergo [2+2] photocycloaddition in the visible-light regime. The photoreactivity of the SPP moiety is pH-dependent, whereby an acidic environment inhibits the cycloaddition. By employing a spiropyran-based photoacid generator with suitable absorption wavelength, we are able to restrict the activation wavelength of the SPP moiety to the green light region (λactivation =520-550 nm), enabling wavelength-orthogonal activation of the AP group. Our wavelength-orthogonal photochemical system was successfully applied in the design of hydrogels whose stiffness can be tuned independently by either green or blue light.
Collapse
Affiliation(s)
- Vinh X. Truong
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
| | - Julian Bachmann
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Andreas‐Neil Unterreiner
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - James P. Blinco
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
| | - Christopher Barner‐Kowollik
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
24
|
Kodura D, Rodrigues LL, Walden SL, Goldmann AS, Frisch H, Barner-Kowollik C. Orange-Light-Induced Photochemistry Gated by pH and Confined Environments. J Am Chem Soc 2022; 144:6343-6348. [PMID: 35364816 DOI: 10.1021/jacs.2c00156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce a new photochemically active compound, i.e., pyridinepyrene (PyPy), entailing a pH-active moiety that effects a significant halochromic shift into orange-light (λ = 590 nm) activatable photoreactivity while concomitantly exerting control over its reaction pathways. With blue light (λ = 450 nm) in neutral to basic pH, a [2 + 2] photocycloaddition can be triggered to form a cyclobutene ring in a reversible fashion. If the pH is decreased to acidic conditions, resulting in a halochromic absorption shift, photocycloaddition on the small-molecule level is blocked due to repulsive interactions and exclusive trans-cis isomerization is observed. Through implementation of PyPy into the confined environment of a single-chain nanoparticle (SCNP) design, one can overcome the repulsive forces and exploit the halochromic shift for orange light (λ = 590 nm)-induced cycloaddition and formation of macromolecular three-dimensional (3D) architectures.
Collapse
Affiliation(s)
- Daniel Kodura
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Leona L Rodrigues
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Sarah L Walden
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Anja S Goldmann
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
25
|
Truong VX, Bachmann J, Unterreiner A, Blinco JP, Barner‐Kowollik C. Wellenlängen‐Orthogonale Versteifung von Hydrogel‐Netzwerken mit sichtbarem Licht. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vinh X. Truong
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
| | - Julian Bachmann
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Deutschland
| | - Andreas‐Neil Unterreiner
- Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Deutschland
| | - James P. Blinco
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
| | - Christopher Barner‐Kowollik
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
26
|
Truong VX, Barner-Kowollik C. Photodynamic covalent bonds regulated by visible light for soft matter materials. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Irshadeen IM, Walden SL, Wegener M, Truong VX, Frisch H, Blinco JP, Barner-Kowollik C. Action Plots in Action: In-Depth Insights into Photochemical Reactivity. J Am Chem Soc 2021; 143:21113-21126. [PMID: 34859671 DOI: 10.1021/jacs.1c09419] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Predicting wavelength-dependent photochemical reactivity is challenging. Herein, we revive the well-established tool of measuring action spectra and adapt the technique to map wavelength-resolved covalent bond formation and cleavage in what we term "photochemical action plots". Underpinned by tunable lasers, which allow excitation of molecules with near-perfect wavelength precision, the photoinduced reactivity of several reaction classes have been mapped in detail. These include photoinduced cycloadditions and bond formation based on photochemically generated o-quinodimethanes and 1,3-dipoles such as nitrile imines as well as radical photoinitiator cleavage. Organized by reaction class, these data demonstrate that UV/vis spectra fail to act as a predictor for photochemical reactivity at a given wavelength in most of the examined reactions, with the photochemical reactivity being strongly red shifted in comparison to the absorption spectrum. We provide an encompassing perspective of the power of photochemical action plots for bond-forming reactions and their emerging applications in the design of wavelength-selective photoresists and photoresponsive soft-matter materials.
Collapse
Affiliation(s)
- Ishrath Mohamed Irshadeen
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Sarah L Walden
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Martin Wegener
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Vinh X Truong
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - James P Blinco
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
28
|
Rolland M, Truong NP, Parkatzidis K, Pilkington EH, Torzynski AL, Style RW, Dufresne ER, Anastasaki A. Shape-Controlled Nanoparticles from a Low-Energy Nanoemulsion. JACS AU 2021; 1:1975-1986. [PMID: 34841413 PMCID: PMC8611665 DOI: 10.1021/jacsau.1c00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Nanoemulsion technology enables the production of uniform nanoparticles for a wide range of applications. However, existing nanoemulsion strategies are limited to the production of spherical nanoparticles. Here, we describe a low-energy nanoemulsion method to produce nanoparticles with various morphologies. By selecting a macro-RAFT agent (poly(di(ethylene glycol) ethyl ether methacrylate-co-N-(2-hydroxypropyl) methacrylamide) (P(DEGMA-co-HPMA))) that dramatically lowers the interfacial tension between monomer droplets and water, we can easily produce nanoemulsions at room temperature by manual shaking for a few seconds. With the addition of a common ionic surfactant (SDS), these nanoscale droplets are robustly stabilized at both the formation and elevated temperatures. Upon polymerization, we produce well-defined block copolymers forming nanoparticles with a wide range of controlled morphologies, including spheres, worm balls, worms, and vesicles. Our nanoemulsion polymerization is robust and well-controlled even without stirring or external deoxygenation. This method significantly expands the toolbox and availability of nanoemulsions and their tailor-made polymeric nanomaterials.
Collapse
Affiliation(s)
- Manon Rolland
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Kostas Parkatzidis
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Emily H. Pilkington
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Alexandre L. Torzynski
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Robert W. Style
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Eric R. Dufresne
- Laboratory
of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory
for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
29
|
Piane JJ, Huss S, Alameda LT, Koehler SJ, Chamberlain LE, Schubach MJ, Hoover AC, Elacqua E. Single‐chain
polymers as homogeneous oxidative photoredox catalysts. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jacob J. Piane
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Steven Huss
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Lucas T. Alameda
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Stephen J. Koehler
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Lauren E. Chamberlain
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Matthew J. Schubach
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Ashley C. Hoover
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Elizabeth Elacqua
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| |
Collapse
|
30
|
Nam J, Kwon S, Yu YG, Seo HB, Lee JS, Lee WB, Kim Y, Seo M. Folding of Sequence-Controlled Graft Copolymers to Subdomain-Defined Single-Chain Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jiyun Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangwoo Kwon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Guen Yu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ho-Bin Seo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - YongJoo Kim
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
31
|
Hoffmann JF, Roos AH, Schmitt FJ, Hinderberger D, Binder WH. Fluorescent and Water Dispersible Single-Chain Nanoparticles: Core-Shell Structured Compartmentation. Angew Chem Int Ed Engl 2021; 60:7820-7827. [PMID: 33373475 PMCID: PMC8048794 DOI: 10.1002/anie.202015179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/13/2020] [Indexed: 12/20/2022]
Abstract
Single-chain nanoparticles (SCNPs) are highly versatile structures resembling proteins, able to function as catalysts or biomedical delivery systems. Based on their synthesis by single-chain collapse into nanoparticular systems, their internal structure is complex, resulting in nanosized domains preformed during the crosslinking process. In this study we present proof of such nanocompartments within SCNPs via a combination of electron paramagnetic resonance (EPR) and fluorescence spectroscopy. A novel strategy to encapsulate labels within these water dispersible SCNPs with hydrodynamic radii of ≈5 nm is presented, based on amphiphilic polymers with additional covalently bound labels, attached via the copper catalyzed azide/alkyne "click" reaction (CuAAC). A detailed profile of the interior of the SCNPs and the labels' microenvironment was obtained via electron paramagnetic resonance (EPR) experiments, followed by an assessment of their photophysical properties.
Collapse
Affiliation(s)
- Justus F Hoffmann
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Andreas H Roos
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Franz-Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Dariush Hinderberger
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| |
Collapse
|
32
|
Barbee MH, Wright ZM, Allen BP, Taylor HF, Patteson EF, Knight AS. Protein-Mimetic Self-Assembly with Synthetic Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02826] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe M. Wright
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin P. Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hailey F. Taylor
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily F. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
33
|
Hoffmann JF, Roos AH, Schmitt F, Hinderberger D, Binder WH. Fluorescent and Water Dispersible Single‐Chain Nanoparticles: Core–Shell Structured Compartmentation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justus F. Hoffmann
- Macromolecular Chemistry Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Andreas H. Roos
- Physical Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Franz‐Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 3 06120 Halle Germany
| | - Dariush Hinderberger
- Physical Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Wolfgang H. Binder
- Macromolecular Chemistry Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| |
Collapse
|
34
|
Galant O, Donmez HB, Barner‐Kowollik C, Diesendruck CE. Flow Photochemistry for Single‐Chain Polymer Nanoparticle Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Or Galant
- Schulich Faculty of Chemistry and The Interdepartmental Program in Polymer Engineering Technion—Israel Institute of Technology Haifa 3200003 Israel
| | - Hasan Barca Donmez
- Schulich Faculty of Chemistry and The Interdepartmental Program in Polymer Engineering Technion—Israel Institute of Technology Haifa 3200003 Israel
| | - Christopher Barner‐Kowollik
- Centre for Materials Science School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry and The Interdepartmental Program in Polymer Engineering Technion—Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
35
|
Scheutz GM, Elgoyhen J, Bentz KC, Xia Y, Sun H, Zhao J, Savin DA, Sumerlin BS. Mediating covalent crosslinking of single-chain nanoparticles through solvophobicity in organic solvents. Polym Chem 2021. [DOI: 10.1039/d1py00780g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoinduced intrachain crosslinking of coumarin-containing copolymers in various organic solvents was mediated through the solvophobic effect, providing control over the reaction rate and the compaction of the final single-chain nanoparticles.
Collapse
Affiliation(s)
- Georg M. Scheutz
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Justine Elgoyhen
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Kyle C. Bentz
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Yening Xia
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Hao Sun
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Daniel A. Savin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| |
Collapse
|
36
|
Irshadeen IM, De Bruycker K, Micallef AS, Walden SL, Frisch H, Barner-Kowollik C. Green light LED activated ligation of a scalable, versatile chalcone chromophore. Polym Chem 2021. [DOI: 10.1039/d1py00533b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we present a photoreactive chalcone moiety that can be synthesized at a scale of several grams with ease, and can efficiently undergo a [2 + 2] photocycloaddition with light close to 500 nm as determined by an action plot.
Collapse
Affiliation(s)
- Ishrath Mohamed Irshadeen
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Kevin De Bruycker
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Aaron S. Micallef
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Sarah L. Walden
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
37
|
Zhang Y, Huang J, Zhang J, Zhu X, Tong G. Synthesis and self-assembly of photo-responsive polypeptoid-based copolymers containing azobenzene side chains. Polym Chem 2021. [DOI: 10.1039/d0py01723j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photo-responsive polypeptoid-based copolymers containing azobenzene side chains have been well synthesized and they could self-assemble into tunable nanostructures with reversible light-switched behaviors.
Collapse
Affiliation(s)
- Yuxuan Zhang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Jie Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Jun Zhang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
38
|
Wu D, Liu K, Ren L, Zhu L, Yan J, Li W, Zhang X, Zhang A. [2 + 2] Photocycloaddition-Mediated Intra- and Intermolecular Cross-Linking of Thermoresponsive Dendronized Polymethacrylates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Di Wu
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Kun Liu
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Liangxuan Ren
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Li Zhu
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Jiatao Yan
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Wen Li
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Xiacong Zhang
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
39
|
Galant O, Donmez HB, Barner-Kowollik C, Diesendruck CE. Flow Photochemistry for Single-Chain Polymer Nanoparticle Synthesis. Angew Chem Int Ed Engl 2020; 60:2042-2046. [PMID: 33044775 DOI: 10.1002/anie.202010429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 01/27/2023]
Abstract
Single chain polymer nanoparticles (SCNP) are an attractive polymer architecture that provides functions seen in folded biomacromolecules. The generation of SCNPs, however, is limited by the requirement of a high dilution chemical step, necessitating the use of large reactors to produce processable quantities of material. Herein, the chemical folding of macromolecules into SCNPs is achieved in both batch and flow photochemical processes by the previously described photodimerization of anthracene units in polymethylmethacrylate (100 kDa) under UV irradiation at 366 nm. When employing flow chemistry, the irradiation time is readily controlled by tuning the flow rates, allowing for the precise control over the intramolecular collapse process. The flow system provides a route at least four times more efficient for SCNP formation, reaching higher intramolecular cross-linking ratios five times faster than batch operation.
Collapse
Affiliation(s)
- Or Galant
- Schulich Faculty of Chemistry and The Interdepartmental Program in Polymer Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hasan Barca Donmez
- Schulich Faculty of Chemistry and The Interdepartmental Program in Polymer Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Christopher Barner-Kowollik
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry and The Interdepartmental Program in Polymer Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
40
|
Kodura D, Houck HA, Bloesser FR, Goldmann AS, Du Prez FE, Frisch H, Barner-Kowollik C. Light-fueled dynamic covalent crosslinking of single polymer chains in non-equilibrium states. Chem Sci 2020; 12:1302-1310. [PMID: 34163893 PMCID: PMC8179028 DOI: 10.1039/d0sc05818a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
While polymer synthesis proceeds predominantly towards the thermodynamic minimum, living systems operate on the reverse principle – consuming fuel to maintain a non-equilibrium state. Herein, we report the controlled formation of 3D macromolecular architectures based on light-fueled covalent non-equilibrium chemistry. In the presence of green light (525 nm) and a bivalent triazolinedione (TAD) crosslinker, naphthalene-containing polymers can be folded into single chain nanoparticles (SCNPs). At ambient temperature, the cycloaddition product of TAD with naphthalene reverts and the SCNP unfolds into its linear parent polymer. The reported SCNP is the first example of a reversible light triggered folding of single polymer chains and can readily be repeated for several cycles. The folded state of the SCNP can either be preserved through a constant supply of light fuel, kinetic trapping or through a chemical modification that makes the folded state thermodynamically favored. Whereas small molecule bivalent TAD/naphthalene cycloaddition products largely degraded after 3 days in solution, even in the presence of fuel, the SCNP entities were found to remain intact, thereby indicating the light-fueled stabilization of the SCNP to be an inherent feature of the confined macromolecular environment. Synthetic polymers consume green light as fuel for intramolecular crosslinking, yielding non-equilibrium single chain nanoparticles that can be light-stabilised, kinetically and chemically trapped, or else unfold in the absence of light fuel.![]()
Collapse
Affiliation(s)
- Daniel Kodura
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia .,Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Hannes A Houck
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia .,Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia.,Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281 S4-bis 9000 Gent Belgium
| | - Fabian R Bloesser
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia .,Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Anja S Goldmann
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia .,Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281 S4-bis 9000 Gent Belgium
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia .,Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia .,Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
41
|
Piane JJ, Chamberlain LE, Huss S, Alameda LT, Hoover AC, Elacqua E. Organic Photoredox-Catalyzed Cycloadditions Under Single-Chain Polymer Confinement. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jacob J. Piane
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802, United States
| | - Lauren E. Chamberlain
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802, United States
| | - Steven Huss
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802, United States
| | - Lucas T. Alameda
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802, United States
| | - Ashley C. Hoover
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802, United States
| | - Elizabeth Elacqua
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802, United States
| |
Collapse
|
42
|
Huang SY, Cheng CC. Spontaneous Self-Assembly of Single-Chain Amphiphilic Polymeric Nanoparticles in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2006. [PMID: 33053654 PMCID: PMC7601091 DOI: 10.3390/nano10102006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022]
Abstract
Single-chain polymeric nanoparticles (SCPNs) have great potential as functional nanocarriers for drug delivery and bioimaging, but synthetic challenges in terms of final yield and purification procedures limit their use. A new concept to modify and improve the synthetic procedures used to generate water-soluble SCPNs through amphiphilic interactions has been successfully exploited. We developed a new ultrahigh molecular weight amphiphilic polymer containing a hydrophobic poly(epichlorohydrin) backbone and hydrophilic poly(ethylene glycol) side chains. The polymer spontaneously self-assembles into SCPNs in aqueous solution and does not require subsequent purification. The resulting SCPNs possess a number of distinct physical properties, including a uniform hydrodynamic nanoparticle diameter of 10-15 nm, extremely low viscosity and a desirable spherical-like morphology. Concentration-dependent studies demonstrated that stable SCPNs were formed at high concentrations up to 10 mg/mL in aqueous solution, with no significant increase in solution viscosity. Importantly, the SCPNs exhibited high structural stability in media containing serum or phosphate-buffered saline and showed almost no change in hydrodynamic diameter. The combination of these characteristics within a water-soluble SCPN is highly desirable and could potentially be applied in a wide range of biomedical fields. Thus, these findings provide a path towards a new, innovative route for the development of water-soluble SCPNs.
Collapse
Affiliation(s)
- Shan-You Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
43
|
Kalayci K, Frisch H, Truong VX, Barner-Kowollik C. Green light triggered [2+2] cycloaddition of halochromic styrylquinoxaline-controlling photoreactivity by pH. Nat Commun 2020; 11:4193. [PMID: 32826921 PMCID: PMC7443129 DOI: 10.1038/s41467-020-18057-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Photochemical reactions are a powerful tool in (bio)materials design due to the spatial and temporal control light can provide. To extend their applications in biological setting, the use of low-energy, long wavelength light with high penetration propertiesis required. Further regulation of the photochemical process by additional stimuli, such as pH, will open the door for construction of highly regulated systems in nanotechnology- and biology-driven applications. Here we report the green light induced [2+2] cycloaddition of a halochromic system based on a styrylquinoxaline moiety, which allows for its photo-reactivity to be switched on and off by adjusting the pH of the system. Critically, the [2+2] photocycloaddition can be activated by green light (λ up to 550 nm), which is the longest wavelength employed to date in catalyst-free photocycloadditions in solution. Importantly, the pH-dependence of the photo-reactivity was mapped by constant photon action plots. The action plots further indicate that the choice of solvent strongly impacts the system's photo-reactivity. Indeed, higher conversion and longer activation wavelengths were observed in water compared to acetonitrile under identical reaction conditions. The wider applicability of the system was demonstrated in the crosslinking of an 8-arm PEG to form hydrogels (ca. 1 cm in thickness) with a range of mechanical properties and pH responsiveness, highlighting the potential of the system in materials science.
Collapse
Affiliation(s)
- Kubra Kalayci
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Vinh X Truong
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
44
|
Nishimura T, Shishi S, Sasaki Y, Akiyoshi K. Thermoresponsive Polysaccharide Graft Polymer Vesicles with Tunable Size and Structural Memory. J Am Chem Soc 2020; 142:11784-11790. [PMID: 32506909 DOI: 10.1021/jacs.0c02290] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Controlling polymer vesicle size is difficult and a major obstacle for their potential use in biomedical applications, such as drug-delivery carriers and nanoreactors. Herein, we report size-tunable polymer vesicles based on self-assembly of a thermoresponsive amphiphilic graft copolymer. Unilamellar polymer vesicles form upon heating chilled polymer solutions, and vesicle size can be tuned in the range of 40-70 nm by adjusting the initial polymer concentration. Notably, the polymer can reversibly switch between a monomer state and a vesicle state in accordance with a cooling/heating cycle, which changes neither the size nor the size distribution of the vesicles. This lack of change suggests that the polymer memorizes a particular vesicle conformation. Given our vesicles' size tunability and structural memory, our research considerably expands the fundamental and practical scope of thermoresponsive amphiphilic graft copolymers and renders amphiphilic graft copolymers useful tools for synthesizing functional self-assembled materials.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shen Shishi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
45
|
Frisch H, Mundsinger K, Poad BLJ, Blanksby SJ, Barner-Kowollik C. Wavelength-gated photoreversible polymerization and topology control. Chem Sci 2020; 11:2834-2842. [PMID: 32206267 PMCID: PMC7069517 DOI: 10.1039/c9sc05381f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
We exploit the wavelength dependence of [2 + 2] photocycloadditions and -reversions of styrylpyrene to exert unprecedented control over the photoreversible polymerization and topology of telechelic building blocks. Blue light (λ max = 460 nm) initiates a catalyst-free polymerization yielding high molar mass polymers (M n = 60 000 g mol-1), which are stable at wavelengths exceeding 430 nm, yet highly responsive to shorter wavelengths. UVB irradiation (λ max = 330 nm) induces a rapid depolymerization affording linear oligomers, whereas violet light (λ max = 410 nm) generates cyclic entities. Thus, different colors of light allow switching between a depolymerization that either proceeds through cyclic or linear topologies. The light-controlled topology formation was evidenced by correlation of mass spectrometry (MS) with size exclusion chromatography (SEC) and ion mobility data. Critically, the color-guided topology control was also possible with ambient laboratory light affording cyclic oligomers, while sunlight activated the linear depolymerization pathway. These findings suggest that light not only induces polymerization and depolymerization but that its color can control the topological outcomes.
Collapse
Affiliation(s)
- Hendrik Frisch
- Centre for Materials Science , School of Chemistry and Physics , Queensland University of Technology (QUT) , 2 George Street , Brisbane , QLD 4000 , Australia .
| | - Kai Mundsinger
- Centre for Materials Science , School of Chemistry and Physics , Queensland University of Technology (QUT) , 2 George Street , Brisbane , QLD 4000 , Australia .
| | - Berwyck L J Poad
- Central Analytical Research Facility , Institute for Future Environments , Queensland University of Technology (QUT) , 2 George Street , Brisbane , QLD 4000 , Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility , Institute for Future Environments , Queensland University of Technology (QUT) , 2 George Street , Brisbane , QLD 4000 , Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science , School of Chemistry and Physics , Queensland University of Technology (QUT) , 2 George Street , Brisbane , QLD 4000 , Australia .
- Macromolecular Architectures , Institut für Technische Chemie und Polymerchemie , Karlsruhe Institute of Technology (KIT) , Engesserstrasse 18 , 76131 Karlsruhe , Germany
| |
Collapse
|
46
|
Frisch H, Tuten BT, Barner‐Kowollik C. Macromolecular Superstructures: A Future Beyond Single Chain Nanoparticles. Isr J Chem 2020. [DOI: 10.1002/ijch.201900145] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hendrik Frisch
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
| | - Bryan T. Tuten
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
| | - Christopher Barner‐Kowollik
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie KarlsruheInstitute of Technology (KIT) Engesserstr.18 76131 Karlsruhe Germany
| |
Collapse
|
47
|
Abstract
Reversible photocycloadditions hold great potential to control formation and fissure of bonds. However, the wavelength selective addressability of cycloaddition and -reversion was found to be lost in the confined environment of single polymer chains.
Collapse
Affiliation(s)
- Modan Liu
- Institute of Nanotechnology (INT)
- Hermann-von-Helmholtz-Platz 1
- 76344 Eggenstein-Leopoldshafen
- Karlsruhe Institute of Technology (KIT)
- Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT)
- Hermann-von-Helmholtz-Platz 1
- 76344 Eggenstein-Leopoldshafen
- Karlsruhe Institute of Technology (KIT)
- Germany
| | - Hendrik Frisch
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| |
Collapse
|
48
|
Marschner DE, Kamm PW, Frisch H, Unterreiner AN, Barner-Kowollik C. Photocycloadditions in disparate chemical environments. Chem Commun (Camb) 2020; 56:14043-14046. [DOI: 10.1039/d0cc03911j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We elucidate the wavelength dependence of a photocycloaddition by accessing action plots dependent on the reactivity relative to the number of absorbed photons and establish the effect of concentration and solvent on the reactivity.
Collapse
Affiliation(s)
- David E. Marschner
- Macromolecular Architectures
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Philipp W. Kamm
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Hendrik Frisch
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Andreas-Neil Unterreiner
- Molecular Physical Chemistry Group
- Institute for Physical Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| |
Collapse
|
49
|
Liu CH, Dugas LD, Bowman JI, Chidanguro T, Storey RF, Simon YC. Forcing single-chain nanoparticle collapse through hydrophobic solvent interactions in comb copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01235d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that we can tune the chain collapse of comb copolymers into single-chain nanoparticles upon UV irradiation through solvency control.
Collapse
Affiliation(s)
- Cheyenne H. Liu
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Logan D. Dugas
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Jared I. Bowman
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Tamuka Chidanguro
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Robson F. Storey
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Yoan C. Simon
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| |
Collapse
|
50
|
Kislyak A, Frisch H, Gernhardt M, Van Steenberge PHM, D'hooge DR, Barner‐Kowollik C. Time‐Dependent Differential and Integral Quantum Yields for Wavelength‐Dependent [4+4] Photocycloadditions. Chemistry 2019; 26:478-484. [DOI: 10.1002/chem.201903641] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Anastasia Kislyak
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
- Laboratory for Chemical Technology Ghent University Technologiepark 125 9052 Ghent Belgium
| | - Hendrik Frisch
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Marvin Gernhardt
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology Ghent University Technologiepark 125 9052 Ghent Belgium
- Centre for Textiles Science and Technology Ghent University Technologiepark 70a 9052 Ghent Belgium
| | - Christopher Barner‐Kowollik
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76128 Karlsruhe Germany
| |
Collapse
|