1
|
Hart KD, Hollobaugh MJ, Battiste AM, Yun TY, Abraham AP, Hamidizirasefi M, Loscher IM, Chandler BD. Upside-Down Adsorption: The Counterintuitive Influences of Surface Entropy and Surface Hydroxyl Density on Hydrogen Spillover. J Am Chem Soc 2024. [PMID: 39447137 DOI: 10.1021/jacs.4c07539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Although hydrogen spillover is often invoked to explain anomalies in catalysis, spillover remains a poorly understood phenomenon. Hydrogen spillover (H*) is best described as highly mobile H atom equivalents that arise when H2 migrates from a metal nanoparticle to an oxide or carbon support. In the 60 years since its discovery, few methods have become available to quantify or characterize H*-support interactions. We recently showed in situ infrared spectroscopy and volumetric chemisorption can quantify reversible H2 adsorption on Au/TiO2 catalysts, where adsorbed hydrogen exists as H* and interacts with titania surface hydroxyl (TiOH) groups. Here, we report parallel thermogravimetric analysis and Fourier transform infrared spectroscopy methods for systematically manipulating the surface TiOH density. We examine the role of surface hydroxylation on spillover thermodynamics using van't Hoff studies to determine apparent adsorption enthalpies and entropies at constant H* coverage, which is necessary to maintain constant H* translational entropy. Although surface TiOH groups are the likely adsorption sites, the data show removing hydroxyl groups increases spillover. This surprising finding─that adsorption increases as the adsorption site density decreases─is associated with improved thermodynamics on dehydroxylated surfaces. A strong adsorption enthalpy-entropy correlation implicates the changing surface entropy of the titania support itself (i.e., an initial state effect) is deeply intertwined with the H* configurational entropy. These effects are surprising and should apply to all low-coverage adsorbates where entropy terms dominate more traditional enthalpic considerations. Moreover, this study points toward a kinetic test for invoking spillover in a reaction mechanism: namely, in situ dehydroxylation should enhance spillover processes.
Collapse
Affiliation(s)
- Kelle D Hart
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Margaret J Hollobaugh
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Audrey M Battiste
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tae Yong Yun
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Angela Pathickal Abraham
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mohammad Hamidizirasefi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ian M Loscher
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bert D Chandler
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Yu Z, Wang Y, Fu K, Wang J, Zhu L, Xu H, Cheng D. Real-Time Simulation of the Reaction Kinetics of Supported Metal Nanoparticles. NANO LETTERS 2024. [PMID: 39373290 DOI: 10.1021/acs.nanolett.4c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A common issue with supported metal catalysts is the sintering of metal nanoparticles, resulting in catalyst deactivation. In this study, we propose a theoretical framework for realizing a real-time simulation of the reactivity of supported metal nanoparticles during the sintering process, combining density functional theory calculations, microkinetic modeling, Wulff-Kaichew construction, and sintering kinetic simulations. To validate our approach, we demonstrate its feasibility on α-Al2O3(0001)-supported Ag nanoparticles, where the simulated sintering behavior and ethylene epoxidation reaction rate as a function of time show qualitative agreement with experimental observation. Our proposed theoretical approach can be employed to screen out the promising microstructure feature of α-Al2O3 for stable supported Ag NPs, including the surface orientation and promoter species modified on it. The outlined approach of this work may be applied to a range of different thermocatalytic reactions other than ethylene epoxidation and provide guidance for the development of supported metal catalysts with long-term stability.
Collapse
Affiliation(s)
- Zuran Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yuqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kun Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiayi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lin Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
3
|
Wei K, Wang X, Ge J. Towards bridging thermo/electrocatalytic CO oxidation: from nanoparticles to single atoms. Chem Soc Rev 2024; 53:8903-8948. [PMID: 39129479 DOI: 10.1039/d3cs00868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), as a feasible alternative to replace the traditional fossil fuel-based energy converter, contribute significantly to the global sustainability agenda. At the PEMFC anode, given the high exchange current density, Pt/C is deemed the catalyst-of-choice to ensure that the hydrogen oxidation reaction (HOR) occurs at a sufficiently fast pace. The high performance of Pt/C, however, can only be achieved under the premise that high purity hydrogen is used. For instance, in the presence of trace level carbon monoxide, a typical contaminant during H2 production, Pt is severely deactivated by CO surface blockage. Addressing the poisoning issue necessitates for either developing anti-poisoning electrocatalysts or using pre-purified H2 obtained via a thermo-catalysis route. In other words, the CO poisoning issue can be addressed by either thermal-catalysis from the H2 supply side or electrocatalysis at the user side, respectively. In spite of the distinction between thermo-catalysis and electro-catalysis, there are high similarities between the two routes. Essentially, a reduction in the kinetic barrier for the combination of CO to oxygen containing intermediates is required in both techniques. Therefore, bridging electrocatalysis and thermocatalysis might offer new insight into the development of cutting edge catalysts to solve the poisoning issue, which, however, stands as an underexplored frontier in catalysis science. This review provides a critical appraisal of the recent advancements in preferential CO oxidation (CO-PROX) thermocatalysts and anti-poisoning HOR electrocatalysts, aiming to bridge the gap in cognition between the two routes. First, we discuss the differences in thermal/electrocatalysis, CO oxidation mechanisms, and anti-CO poisoning strategies. Second, we comprehensively summarize the progress of supported and unsupported CO-tolerant catalysts based on the timeline of development (nanoparticles to clusters to single atoms), focusing on metal-support interactions and interface reactivity. Third, we elucidate the stability issue and theoretical understanding of CO-tolerant electrocatalysts, which are critical factors for the rational design of high-performance catalysts. Finally, we underscore the imminent challenges in bridging thermal/electrocatalytic CO oxidation, with theory, materials, and the mechanism as the three main weapons to gain a more in-depth understanding. We anticipate that this review will contribute to the cognition of both thermocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Kai Wei
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Junjie Ge
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Landrini M, Patel R, Tyrrell-Thrower J, Macchioni A, Hughes DL, Tensi L, Hrobárik P, Rocchigiani L. Exploring Ligand Effects on Structure, Bonding, and Photolytic Hydride Transfer of Cationic Gold(I) Bridging Hydride Complexes of Molybdocene and Tungstenocene. Inorg Chem 2024; 63:13525-13545. [PMID: 38989543 DOI: 10.1021/acs.inorgchem.4c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A diverse family of heterobimetallic bridging hydride adducts of the type [LAu(μ-H)2MCp2][X] (L = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene, IPr; 1,3-bis(1-adamantyl)imidazole-2-ylidene, IAd; 1,3-bis(2,6-di-iso-propylphenyl)-5,5-dimethyl-4,6-diketopyrimidinyl-2-ylidene, DippDAC; triphenylphosphine, PPh3; 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl, tBuXPhos; X = SbF6-, BF4- or TfO-) was synthesized by reacting group VI metallocene dihydrides Cp2MH2 (Cp = cyclopentadienyl anion; M = Mo, W) with cationic gold(I) complexes [LAu(NCMe)][X]. Trimetallic [L'Au2(μ-H)2WCp2][X]2 and tetrametallic [L'Au2{(μ-H)2WCp2}2] [X]2 complexes (L' = rac-2,2'-bis(diphenylphosphino)-1,1'-binaphthalene or bis(diphenylphosphinomethane)) were obtained by reacting digold [L'{Au(NCMe)}2][X]2 with Cp2WH2 in a 1:1 and a 1:2 stoichiometry. Accessing such a broad structural diversity allowed us to pinpoint roles played by the ancillary ligands and group VI metals on the bonding properties of this family of bridging hydrides. In particular, a clear effect of the ligand on the interaction energy and electronic structure was observed, with important implications on photolytic reactivity. UV or visible light irradiation, indeed, leads to the selective cleavage of the heterobimetallic Au(μ-H)2M arrangement and formation of molecular gold hydrides. The photolysis was found to be chromoselective (wavelength-dependent), which can be ascribed to different charge redistributions upon excitation to the first (Kasha's reactivity) and higher (anti-Kasha's reactivity) excited states.
Collapse
Affiliation(s)
- Martina Landrini
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Rohan Patel
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Joshua Tyrrell-Thrower
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Luca Rocchigiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| |
Collapse
|
5
|
Xiao Y, Tan C, Zeng F, Liu W, Liu J. Structural regulation of amorphous molybdenum sulfide by atomic palladium doping for hydrogen evolution. J Colloid Interface Sci 2024; 665:60-67. [PMID: 38513408 DOI: 10.1016/j.jcis.2024.03.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Molybdenum sulfide materials have long been considered as attractive non-precious-metal electrocatalysts for the hydrogen evolution reaction (HER). However, comparing with the crystalline counterpart, amorphous MoSx has been less investigated previously. We here propose to increase the catalytical activity of a-MoSx by raising the reactant concentration at the catalytic interface via a chemical doping approach. The reconstruction of coordination structure of a-MoSx via Pd doping induces the formation of abundant unsaturated S atoms. Moreover, the reactant friendly catalytic interface is constructed through introducing hydrophilic groups to a-MoSx. The doped a-MoSx catalyst exhibits significantly enhanced HER activity in both acid and alkaline media.
Collapse
Affiliation(s)
- Yao Xiao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Cuiying Tan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fangui Zeng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wengang Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
6
|
Li S, Miyazaki T, Nakata A. Theoretical search for characteristic atoms in supported gold nanoparticles: a large-scale DFT study. Phys Chem Chem Phys 2024. [PMID: 38922670 DOI: 10.1039/d4cp01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The size and site dependences of atomic and electronic structures in isolated and supported gold nanoparticles have been investigated using large-scale density functional theory (DFT) calculations using multi-site support functions. The effects of the substrate on nanoparticles with diameters of 2 nm and several different shapes have been examined. First, isolated gold nanoparticles with diameters of 0.6 nm (13 atoms) to 4.5 nm (2057 atoms), which have comparable sizes to nanoparticles used in experiments, were considered. To analyse huge amounts of data obtained from large-scale DFT calculations, we performed principal component analysis (PCA), which helps systematically and efficiently clarify the electronic structures of large nanoparticles. The PCA results reveal the site dependence of the electronic structures. Notably, the atoms in the surface and subsurface have different electronic structures to those located in the inner layers, especially at the vertexes of the particles. The convergence of local electronic structures with respect to the particle size has also been demonstrated. For supported nanoparticles, PCA helps indicate which atoms are affected, and how much, by the substrate. The correlation between the PCA results and site dependence of reaction activity is also discussed herein.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.
| | - Tsuyoshi Miyazaki
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.
| | - Ayako Nakata
- Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
7
|
Whittaker TN, Fishler Y, Clary JM, Brimley P, Holewinski A, Musgrave CB, Farberow CA, Smith WA, Vigil-Fowler D. Insights into Electrochemical CO 2 Reduction on Metallic and Oxidized Tin Using Grand-Canonical DFT and In Situ ATR-SEIRA Spectroscopy. ACS Catal 2024; 14:8353-8365. [PMID: 38868105 PMCID: PMC11165454 DOI: 10.1021/acscatal.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
Electrochemical CO2 reduction (CO2R) to formate is an attractive carbon emissions mitigation strategy due to the existing market and attractive price for formic acid. Tin is an effective electrocatalyst for CO2R to formate, but the underlying reaction mechanism and whether the active phase of tin is metallic or oxidized during reduction is openly debated. In this report, we used grand-canonical density functional theory and attenuated total reflection surface-enhanced infrared absorption spectroscopy to identify differences in the vibrational signatures of surface species during CO2R on fully metallic and oxidized tin surfaces. Our results show that CO2R is feasible on both metallic and oxidized tin. We propose that the key difference between each surface termination is that CO2R catalyzed by metallic tin surfaces is limited by the electrochemical activation of CO2, whereas CO2R catalyzed by oxidized tin surfaces is limited by the slow reductive desorption of formate. While the exact degree of oxidation of tin surfaces during CO2R is unlikely to be either fully metallic or fully oxidized, this study highlights the limiting behavior of these two surfaces and lays out the key features of each that our results predict will promote rapid CO2R catalysis. Additionally, we highlight the power of integrating high-fidelity quantum mechanical modeling and spectroscopic measurements to elucidate intricate electrocatalytic reaction pathways.
Collapse
Affiliation(s)
- Todd N. Whittaker
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Yuval Fishler
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Jacob M. Clary
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Materials,
Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Paige Brimley
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Adam Holewinski
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Charles B. Musgrave
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
- Materials
Science and Engineering Program, University
of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Carrie A. Farberow
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Wilson A. Smith
- Department
of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado
Boulder, Boulder, Colorado 80303, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Derek Vigil-Fowler
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Materials,
Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
8
|
Shun K, Matsukawa S, Mori K, Yamashita H. Specific Hydrogen Spillover Pathways Generated on Graphene Oxide Enabling the Formation of Non-Equilibrium Alloy Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306765. [PMID: 38072797 DOI: 10.1002/smll.202306765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/14/2023] [Indexed: 05/12/2024]
Abstract
The phenomenon of hydrogen spillover is investigated as a means of realizing a hydrogen-based society for over half a century. Herein, a graphene oxide having a precisely tuned architecture via calcination in air to introduce ether groups onto basal planes along with carbon defects is reported. This material provides specific pathways for the spillover of atomic hydrogen and has practical applications with regard to the synthesis of non-equilibrium solid-solution alloy nanoparticles. A combination of experimental work and simulations confirmed that the presence of ether groups associated with carbon defects facilitated hydrogen spillover within the basal planes of this graphene oxide. This enhanced hydrogen spillover ability, in turn, enables the simultaneous reduction of Ru3+ and Ni2+ ions to form RuNi alloy nanoparticles under hydrogen reduction conditions. Energy dispersive X-ray and X-ray absorption near edge structure simulations establish that this strategy forms unique alloy nanoparticles each comprising a Ru core with a RuNi solid-solution shell having a hexagonal close-packed structure. These non-equilibrium RuNi alloy nanoparticles exhibit greater catalytic activity than monometallic Ru nanoparticles during the hydrolysis of ammonia borane.
Collapse
Affiliation(s)
- Kazuki Shun
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Matsukawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Dimitratos N, Vilé G, Albonetti S, Cavani F, Fiorio J, López N, Rossi LM, Wojcieszak R. Strategies to improve hydrogen activation on gold catalysts. Nat Rev Chem 2024; 8:195-210. [PMID: 38396010 DOI: 10.1038/s41570-024-00578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/25/2024]
Abstract
Catalytic reactions involving molecular hydrogen are at the heart of many transformations in the chemical industry. Classically, hydrogenations are carried out on Pd, Pt, Ru or Ni catalysts. However, the use of supported Au catalysts has garnered attention in recent years owing to their exceptional selectivity in hydrogenation reactions. This is despite the limited understanding of the physicochemical aspects of hydrogen activation and reaction on Au surfaces. A rational design of new improved catalysts relies on making better use of the hydrogenating properties of Au. This Review analyses the strategies utilized to improve hydrogen-Au interactions, from addressing the importance of the Au particle size to exploring alternative mechanisms for H2 dissociation on Au cations and Au-ligand interfaces. These insights hold the potential to drive future applications of Au catalysis.
Collapse
Affiliation(s)
- Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Stefania Albonetti
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Fabrizio Cavani
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Jhonatan Fiorio
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Liane M Rossi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de catalyse et chimie du solide, Lille, France.
- Université de Lorraine and CNRS, L2CM UMR 7053, Nancy, France.
| |
Collapse
|
10
|
Adams J, Chen H, Ricciardulli T, Vijayaraghavan S, Sampath A, Flaherty DW. Distinct Site Motifs Activate O 2 and H 2 on Supported Au Nanoparticles in Liquid Water. ACS Catal 2024; 14:3248-3265. [PMID: 38449529 PMCID: PMC10913054 DOI: 10.1021/acscatal.3c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Au nanoparticles catalyze the activation and conversion of small molecules with rates and kinetic barriers that depend on the dimensions of the nanoparticle, composition of the support, and presence of catalytically culpable water molecules that solvate these interfaces. Here, molecular interpretations of steady-state rate measurements, kinetic isotope effects, and structural characterizations reveal how the interface of Au nanoparticles, liquid water, and metal oxide supports mediate the kinetically relevant activation of H2 and sequential reduction of O2-derived intermediates during the formation of H2O2 and H2O. Rates of H2 consumption are 10-100 fold greater on Au nanoparticles supported on metal oxides (e.g., titania) compared to more inert and hydrophobic materials (carbon, boron nitride). Similarly, Au nanoparticles on reducible and Lewis acidic supports (e.g., lanthana) bind dioxygen intermediates more strongly and present lower barriers (<22 kJ mol-1) for O-O bond dissociation than inert interfaces formed with silica (>70 kJ mol-1). Selectivities for H2O2 formation increase significantly as the diameters of the Au nanoparticles increase because differences in nanoparticle size change the relative fractions of exposed sites that exist at Au-support interfaces. In contrast, site-normalized rates and barriers for H2 activation depend weakly on the size of Au nanoparticles and the associated differences in active site motifs. These findings suggest that H2O aids the activation of H2 at sites present across all surface Au atoms when nanoparticles are solvated by water. However, molecular O2 preferentially binds and dissociates at Au-support interfaces, leading to greater structure sensitivity for barriers of O-O dissociation across different support identities and sizes of Au nanoparticles. These insights differ from prior knowledge from studies of gas-phase reactions of H2 and O2 upon Au nanoparticle catalysts within dilute vapor pressures of water (10-4 to 0.1 kPa H2O), in which catalysis occurs at the perimeter of the Au-support interface. In contrast, contacting Au catalysts with liquid water (55.5 M H2O) expands catalysis to all surface Au atoms and enables appreciable H2O2 formation.
Collapse
Affiliation(s)
- Jason
S. Adams
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Haoyu Chen
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tomas Ricciardulli
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Sucharita Vijayaraghavan
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Abinaya Sampath
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - David W. Flaherty
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Chen L, Allec SI, Nguyen MT, Kovarik L, Hoffman AS, Hong J, Meira D, Shi H, Bare SR, Glezakou VA, Rousseau R, Szanyi J. Dynamic Evolution of Palladium Single Atoms on Anatase Titania Support Determines the Reverse Water-Gas Shift Activity. J Am Chem Soc 2023; 145:10847-10860. [PMID: 37145876 DOI: 10.1021/jacs.3c02326] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Research interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO2-anatase SAC (Pd1/TiO2) in the reverse water-gas shift (rWGS) reaction. Combining kinetics, in situ characterization, and theory, we show that at T ≥ 350 °C, the reduction of TiO2 by H2 alters the coordination environment of Pd, creating Pd sites with partially cleaved Pd-O interfacial bonds and a unique electronic structure that exhibit high intrinsic rWGS activity through the carboxyl pathway. The activation by H2 is accompanied by the partial sintering of single Pd atoms (Pd1) into disordered, flat, ∼1 nm diameter clusters (Pdn). The highly active Pd sites in the new coordination environment under H2 are eliminated by oxidation, which, when performed at a high temperature, also redisperses Pdn and facilitates the reduction of TiO2. In contrast, Pd1 sinters into crystalline, ∼5 nm particles (PdNP) during CO treatment, deactivating Pd1/TiO2. During the rWGS reaction, the two Pd evolution pathways coexist. The activation by H2 dominates, leading to the increasing rate with time-on-stream, and steady-state Pd active sites similar to the ones formed under H2. This work demonstrates how the coordination environment and nuclearity of metal sites on a SAC evolve during catalysis and pretreatments and how their activity is modulated by these behaviors. These insights on SAC dynamics and the structure-function relationship are valuable to mechanistic understanding and catalyst design.
Collapse
Affiliation(s)
- Linxiao Chen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah I Allec
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manh-Thuong Nguyen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Debora Meira
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Honghong Shi
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Roger Rousseau
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - János Szanyi
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Relativistic effects on the chemical bonding properties of the heavier elements and their compounds. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Lu X, Song C, Qi X, Li D, Lin L. Confinement Effects in Well-Defined Metal-Organic Frameworks (MOFs) for Selective CO 2 Hydrogenation: A Review. Int J Mol Sci 2023; 24:ijms24044228. [PMID: 36835639 PMCID: PMC9959283 DOI: 10.3390/ijms24044228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
Decarbonization has become an urgent affair to restrain global warming. CO2 hydrogenation coupled with H2 derived from water electrolysis is considered a promising route to mitigate the negative impact of carbon emission and also promote the application of hydrogen. It is of great significance to develop catalysts with excellent performance and large-scale implementation. In the past decades, metal-organic frameworks (MOFs) have been widely involved in the rational design of catalysts for CO2 hydrogenation due to their high surface areas, tunable porosities, well-ordered pore structures, and diversities in metals and functional groups. Confinement effects in MOFs or MOF-derived materials have been reported to promote the stability of CO2 hydrogenation catalysts, such as molecular complexes of immobilization effect, active sites in size effect, stabilization in the encapsulation effect, and electron transfer and interfacial catalysis in the synergistic effect. This review attempts to summarize the progress of MOF-based CO2 hydrogenation catalysts up to now, and demonstrate the synthetic strategies, unique features, and enhancement mechanisms compared with traditionally supported catalysts. Great emphasis will be placed on various confinement effects in CO2 hydrogenation. The challenges and opportunities in precise design, synthesis, and applications of MOF-confined catalysis for CO2 hydrogenation are also summarized.
Collapse
Affiliation(s)
- Xiaofei Lu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Chuqiao Song
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyu Qi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duanxing Li
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
14
|
Yun TY, Chandler BD. Surface Hydroxyl Chemistry of Titania- and Alumina-Based Supports: Quantitative Titration and Temperature Dependence of Surface Brønsted Acid-Base Parameters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6868-6876. [PMID: 36695465 DOI: 10.1021/acsami.2c20370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface hydroxyl groups on metal oxides play significant roles in catalyst synthesis and catalytic reactions. Despite the importance of surface hydroxyls in broader material applications, quantitative measurements of surface acid-base properties are not regularly reported. Here, we describe direct methods to quantify fundamental properties of surface hydroxyls on several titania- and alumina-based supports. Comparing commercially available anatase, rutile, P25, and P90 titania, thermogravimetric analysis (TGA) indicated that the total surface hydroxyl density varied by a factor of 2, and each surface hydroxyl is associated with approximately one weakly adsorbed water molecule. Proton-exchange site densities, determined at 25 °C with slurry acid-base titrations, led to several conclusions: (i) the intrinsic acidity/basicity of surface hydroxyls were similar regardless of the titania source; (ii) differences in the surface isoelectric point (IEP) were primarily attributable to differences in the surface concentration of acid and base sites; (iii) rutile has a higher surface concentration of basic hydroxyls, leading to a higher IEP; and (iv) P25 and P90 titania have slightly higher surface concentrationsof acidic hydroxyls relative to anatase or rutile. Temperature effects on surface acid-base properties are rarely reported yet are significant: from 5 to 65 °C, IEP values change by roughly one pH unit. The IEP changes were associated with large changes to the intrinsic acid-base equilibrium constants over this temperature range, rather than changes in the composition or concentration of the surface sites.
Collapse
Affiliation(s)
- Tae Yong Yun
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, United States
| | - Bert D Chandler
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania16802, United States
| |
Collapse
|
15
|
Longato A, Vanzan M, Colusso E, Corni S, Martucci A. Enhancing Tungsten Oxide Gasochromism with Noble Metal Nanoparticles: The Importance of the Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205522. [PMID: 36464497 DOI: 10.1002/smll.202205522] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Crystalline tungsten trioxide (WO3 ) thin films covered by noble metal (gold and platinum) nanoparticles are synthesized via wet chemistry and used as optical sensors for gaseous hydrogen. Sensing performances are strongly influenced by the catalyst used, with platinum (Pt) resulting as best. Surprisingly, it is found that gold (Au) can provide remarkable sensing activity that tuned out to be strongly dependent on the nanoparticle size: devices sensitized with smaller nanoparticles display better H2 sensing performance. Computational insight based on density functional theory calculations suggested that this can be related to processes occurring specifically at the Au nanoparticle-WO3 interface (whose extent is in fact dependent on the nanoparticle size), where the hydrogen dissociative adsorption turns out to be possible. While both experiments and calculations single out Pt as better than Au for sensing, the present work reveals how an exquisitely nanoscopic effect can yield unexpected sensing performance for Au on WO3 , and how these performances can be tuned by controlling the nanoscale features of the system.
Collapse
Affiliation(s)
- Alessandro Longato
- Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131, Italy
| | - Mirko Vanzan
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
| | - Elena Colusso
- Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, Modena, 41125, Italy
| | - Alessandro Martucci
- Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131, Italy
| |
Collapse
|
16
|
Agarwal RG, Mayer JM. Coverage-Dependent Rate-Driving Force Relationships: Hydrogen Transfer from Cerium Oxide Nanoparticle Colloids. J Am Chem Soc 2022; 144:20699-20709. [DOI: 10.1021/jacs.2c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rishi G. Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut06520-8107, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut06520-8107, United States
| |
Collapse
|
17
|
Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts. Nat Commun 2022; 13:5186. [PMID: 36057603 PMCID: PMC9440920 DOI: 10.1038/s41467-022-32934-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Ruthenium (Ru) is the one of the most promising catalysts for polyolefin hydrogenolysis. Its performance varies widely with the support, but the reasons remain unknown. Here, we introduce a simple synthetic strategy (using ammonia as a modulator) to tune metal-support interactions and apply it to Ru deposited on titania (TiO2). We demonstrate that combining deuterium nuclear magnetic resonance spectroscopy with temperature variation and density functional theory can reveal the complex nature, binding strength, and H amount. H2 activation occurs heterolytically, leading to a hydride on Ru, an H+ on the nearest oxygen, and a partially positively charged Ru. This leads to partial reduction of TiO2 and high coverages of H for spillover, showcasing a threefold increase in hydrogenolysis rates. This result points to the key role of the surface hydrogen coverage in improving hydrogenolysis catalyst performance. Catalytic pathways of plastic waste valorization to lubricants are attractive avenues to foster circular economy. Tuning of catalyst electronic properties allows to significantly improve its activity due to boosted hydrogen storage on the surface.
Collapse
|
18
|
Ro I, Qi J, Lee S, Xu M, Yan X, Xie Z, Zakem G, Morales A, Chen JG, Pan X, Vlachos DG, Caratzoulas S, Christopher P. Bifunctional hydroformylation on heterogeneous Rh-WO x pair site catalysts. Nature 2022; 609:287-292. [PMID: 36071187 DOI: 10.1038/s41586-022-05075-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Metal-catalysed reactions are often hypothesized to proceed on bifunctional active sites, whereby colocalized reactive species facilitate distinct elementary steps in a catalytic cycle1-8. Bifunctional active sites have been established on homogeneous binuclear organometallic catalysts9-11. Empirical evidence exists for bifunctional active sites on supported metal catalysts, for example, at metal-oxide support interfaces2,6,7,12. However, elucidating bifunctional reaction mechanisms on supported metal catalysts is challenging due to the distribution of potential active-site structures, their dynamic reconstruction and required non-mean-field kinetic descriptions7,12,13. We overcome these limitations by synthesizing supported, atomically dispersed rhodium-tungsten oxide (Rh-WOx) pair site catalysts. The relative simplicity of the pair site structure and sufficient description by mean-field modelling enable correlation of the experimental kinetics with first principles-based microkinetic simulations. The Rh-WOx pair sites catalyse ethylene hydroformylation through a bifunctional mechanism involving Rh-assisted WOx reduction, transfer of ethylene from WOx to Rh and H2 dissociation at the Rh-WOx interface. The pair sites exhibited >95% selectivity at a product formation rate of 0.1 gpropanal cm-3 h-1 in gas-phase ethylene hydroformylation. Our results demonstrate that oxide-supported pair sites can enable bifunctional reaction mechanisms with high activity and selectivity for reactions that are performed in industry using homogeneous catalysts.
Collapse
Affiliation(s)
- Insoo Ro
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.,Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea.,Catalysis Center for Energy Innovation, Newark, DE, USA
| | - Ji Qi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.,Catalysis Center for Energy Innovation, Newark, DE, USA
| | - Seungyeon Lee
- Catalysis Center for Energy Innovation, Newark, DE, USA.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Mingjie Xu
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, USA
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.,Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Gregory Zakem
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Austin Morales
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.,Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, USA.,Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA.,Irvine Materials Research Institute (IMRI), University of California Irvine, Irvine, Irvine, CA, USA
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation, Newark, DE, USA.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Stavros Caratzoulas
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA. .,Catalysis Center for Energy Innovation, Newark, DE, USA.
| |
Collapse
|
19
|
Zhang L, Bao Q, Zhang B, Zhang Y, Wan S, Wang S, Lin J, Xiong H, Mei D, Wang Y. Distinct Role of Surface Hydroxyls in Single-Atom Pt 1/CeO 2 Catalyst for Room-Temperature Formaldehyde Oxidation: Acid-Base Versus Redox. JACS AU 2022; 2:1651-1660. [PMID: 35911462 PMCID: PMC9327081 DOI: 10.1021/jacsau.2c00215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The development of highly efficient catalysts for room-temperature formaldehyde (HCHO) oxidation is of great interest for indoor air purification. In this work, it was found that the single-atom Pt1/CeO2 catalyst exhibits a remarkable activity with complete removal of HCHO even at 288 K. Combining density functional theory calculations and in situ DRIFTS experiments, it was revealed that the active OlatticeH site generated on CeO2 in the vicinity of Pt2+ via steam treatment plays a key role in the oxidation of HCHO to formate and its further oxidation to CO2. Such involvement of hydroxyls is fundamentally different from that of cofeeding water which dissociates on metal oxide and catalyzes the acid-base-related chemistry. This study provides an important implication for the design and synthesis of supported Pt catalysts with atom efficiency for a very important practical application-room-temperature HCHO oxidation.
Collapse
Affiliation(s)
- Lina Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qianqian Bao
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Bangjie Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanbao Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shaolong Wan
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuai Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingdong Lin
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haifeng Xiong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
- National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Mei
- State
Key Laboratory of Separation Membranes and Membrane Processes, School
of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Yong Wang
- Voiland
School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
20
|
Sampath A, Ricciardulli T, Priyadarshini P, Ghosh R, Adams JS, Flaherty DW. Spectroscopic Evidence for the Involvement of Interfacial Sites in O–O Bond Activation over Gold Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abinaya Sampath
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 125, Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Tomas Ricciardulli
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 125, Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Pranjali Priyadarshini
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 125, Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Richa Ghosh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 125, Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jason S. Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 125, Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 125, Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Aireddy D, Yu H, Cullen DA, Ding K. Elucidating the Roles of Amorphous Alumina Overcoat in Palladium-Catalyzed Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24290-24298. [PMID: 35584363 PMCID: PMC9164194 DOI: 10.1021/acsami.2c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Amorphous alumina overcoats generated by atomic layer deposition (ALD) have been shown to improve the selectivity and durability of supported metal catalysts in many reactions. Several mechanisms have been proposed to explain the enhanced catalytic performance, but the accessibilities of reactants through the amorphous overcoats remain elusive, which is crucial for understanding reaction mechanisms. Here, we show that an AlOx ALD overcoat is able to improve the alkene product selectivity of a supported Pd catalyst in acetylene (C2H2) hydrogenation. We further demonstrate that the AlOx ALD overcoat blocks the access of C2H2 (kinetic diameter of 0.33 nm), O2 (0.35 nm), and CO (0.38 nm) but allows H2 (0.29 nm) to access Pd surfaces. A H-D exchange experiment suggests that H2 might dissociate heterolytically at the Pd-AlOx interface. These findings are in favor of a hydrogen spillover mechanism.
Collapse
Affiliation(s)
- Divakar
R. Aireddy
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Haoran Yu
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David A. Cullen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Ding
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
22
|
Prabhu AM, Choksi TS. Data-driven methods to predict the stability metrics of catalytic nanoparticles. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Liu X, Li G, Liu Z, Zou J, Yang D, Du S, Yang W, Jiang L, Xie H. Observation of unsaturated platinum carbenes Pt 2C 2n - (n = 1-3) clusters: A photoelectron imaging spectroscopic and theoretical study. J Chem Phys 2022; 156:164302. [PMID: 35490029 DOI: 10.1063/5.0079854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural and bonding properties of the Pt2C2n - (n = 1-3) complexes have been investigated by mass-selected photoelectron velocity-map imaging spectroscopy with quantum chemical calculations. The adiabatic detachment energies and vertical detachment energies of Pt2C2n - have been obtained from the measured photoelectron imaging spectra. Theoretical results indicate that the lowest-energy isomers of Pt2C2n - (n = 1-3) possess linear chain-shaped configurations. The binding motif in the most stable isomer of Pt2C2 - has a linear cumulenic structure with a Pt=C=C=Pt configuration, and the structural characteristic persists up to all the lowest-energy isomers of the Pt2C4 - and Pt2C6 - anions. The chemical bonding analyses indicate that the Pt2C2n - (n = 1-3) complexes have multicenter two-electron characteristics.
Collapse
Affiliation(s)
- Xuegang Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Zhiling Liu
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Shanxi Normal University, 339 Taiyu Road, Taiyuan, Shanxi 030000, China
| | - Jinghan Zou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Shihu Du
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Wenshao Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
| |
Collapse
|
24
|
Affiliation(s)
- Divakar R. Aireddy
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kunlun Ding
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
25
|
Su HY, Sun K, Gu XK, Wang SS, Zhu J, Li WX, Sun C, Calle-Vallejo F. Finding Key Factors for Efficient Water and Methanol Activation at Metals, Oxides, MXenes, and Metal/Oxide Interfaces. ACS Catal 2022; 12:1237-1246. [PMID: 35096469 PMCID: PMC8788388 DOI: 10.1021/acscatal.1c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/24/2021] [Indexed: 11/28/2022]
Abstract
![]()
Activating
water
and methanol is crucial in numerous catalytic,
electrocatalytic, and photocatalytic reactions. Despite extensive
research, the optimal active sites for water/methanol activation are
yet to be unequivocally elucidated. Here, we combine transition-state
searches and electronic charge analyses on various structurally different
materials to identify two features of favorable O–H bond cleavage
in H2O, CH3OH, and hydroxyl: (1) low barriers
appear when the charge of H moieties remains approximately constant
during the dissociation process, as observed on metal oxides, MXenes,
and metal/oxide interfaces. Such favorable kinetics is closely related
to adsorbate/substrate hydrogen bonding and is enhanced by nearly
linear O–H–O angles and short O–H distances.
(2) Fast dissociation is observed when the rotation of O–H
bonds is facile, which is favored by weak adsorbate binding and effective
orbital overlap. Interestingly, we find that the two features are
energetically proportional. Finally, we find conspicuous differences
between H2O/CH3OH and OH activation, which hints
toward the use of carefully engineered interfaces.
Collapse
Affiliation(s)
- Hai-Yan Su
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Keju Sun
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, 438 Hebei Avenue, Qinhuangdao 066004, China
| | - Xiang-Kui Gu
- Department of Chemical Physics, College of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Sha-Sha Wang
- Department of Chemical Physics, College of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Jing Zhu
- Department of Chemical Physics, College of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Xue Li
- Department of Chemical Physics, College of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Chenghua Sun
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Federico Calle-Vallejo
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
26
|
Shun K, Mori K, Masuda S, Hashimoto N, Hinuma Y, Kobayashi H, Yamashita H. Revealing hydrogen spillover pathways in reducible metal oxides. Chem Sci 2022; 13:8137-8147. [PMID: 35919430 PMCID: PMC9278487 DOI: 10.1039/d2sc00871h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogen spillover, the migration of dissociated hydrogen atoms from noble metals to their support materials, is a ubiquitous phenomenon and is widely utilized in heterogeneous catalysis and hydrogen storage materials. However, in-depth understanding of the migration of spilled hydrogen over different types of supports is still lacking. Herein, hydrogen spillover in typical reducible metal oxides, such as TiO2, CeO2, and WO3, was elucidated by combining systematic characterization methods involving various in situ techniques, kinetic analysis, and density functional theory calculations. TiO2 and CeO2 were proven to be promising platforms for the synthesis of non-equilibrium RuNi binary solid solution alloy nanoparticles displaying a synergistic promotional effect in the hydrolysis of ammonia borane. Such behaviour was driven by the simultaneous reduction of both metal cations under a H2 atmosphere over TiO2 and CeO2, in which hydrogen spillover favorably occurred over their surfaces rather than within their bulk phases. Conversely, hydrogen atoms were found to preferentially migrate within the bulk prior to the surface over WO3. Thus, the reductions of both metal cations occurred individually on WO3, which resulted in the formation of segregated NPs with no activity enhancement. The hydrogen spillover pathway in typical reducible metal oxides, such as TiO2, CeO2, and WO3, was investigated by combining various in situ characterization techniques, kinetic analysis, and density functional theory calculations.![]()
Collapse
Affiliation(s)
- Kazuki Shun
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinya Masuda
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Hashimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoyo Hinuma
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hisayoshi Kobayashi
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Zhou M, Wang HF. Insight into the photoexcitation effect on the catalytic activation of H2 and C-H bonds on TiO2(110) surface. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Deng X, Qin B, Liu R, Qin X, Dai W, Wu G, Guan N, Ma D, Li L. Zeolite-Encaged Isolated Platinum Ions Enable Heterolytic Dihydrogen Activation and Selective Hydrogenations. J Am Chem Soc 2021; 143:20898-20906. [PMID: 34855383 DOI: 10.1021/jacs.1c09535] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the unique behaviors of atomically dispersed catalysts and the origin thereof is a challenging topic. Herein, we demonstrate a facile strategy to encapsulate Ptδ+ species within Y zeolite and reveal the nature of selective hydrogenation over a Pt@Y model catalyst. The unique configuration of Pt@Y, namely atomically dispersed Ptδ+ stabilized by the surrounding oxygen atoms of six-membered rings shared by sodalite cages and supercages, enables the exclusive heterolytic activation of dihydrogen over Ptδ+···O2- units, resembling the well-known classical Lewis pairs. The charged hydrogen species, i.e., H+ and Hδ-, are active reagents for selective hydrogenations, and therefore, the Pt@Y catalyst exhibits remarkable performance in the selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols and of nitroarenes to arylamines.
Collapse
Affiliation(s)
- Xin Deng
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Bin Qin
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Runze Liu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuetao Qin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and BIC-ESAT Peking University, Beijing 100871, People's Republic of China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Guangjun Wu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and BIC-ESAT Peking University, Beijing 100871, People's Republic of China
| | - Landong Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China.,Frontiers Science Center for New Organic Matter & Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
29
|
Mahdavi-Shakib A, Rich LC, Whittaker TN, Chandler BD. Hydrogen Adsorption at the Au/TiO2 Interface: Quantitative Determination and Spectroscopic Signature of the Reactive Interface Hydroxyl Groups at the Active Site. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akbar Mahdavi-Shakib
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lauren C. Rich
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Todd N. Whittaker
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
- Department of Chemical and Biological Engineering, The University of Colorado, Boulder, Colorado 80303, United States
| | - Bert D. Chandler
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
30
|
The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Li M, Xie Z, Zheng X, Li L, Li J, Ding W, Wei Z. Revealing the Regulation Mechanism of Ir–MoO 2 Interfacial Chemical Bonding for Improving Hydrogen Oxidation Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mengting Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044, P. R. China
| | - Zhenyang Xie
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044, P. R. China
| | - Xingqun Zheng
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044, P. R. China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044, P. R. China
| | - Jing Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044, P. R. China
| | - Wei Ding
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044, P. R. China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044, P. R. China
| |
Collapse
|
32
|
Potts DS, Bregante DT, Adams JS, Torres C, Flaherty DW. Influence of solvent structure and hydrogen bonding on catalysis at solid-liquid interfaces. Chem Soc Rev 2021; 50:12308-12337. [PMID: 34569580 DOI: 10.1039/d1cs00539a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Chris Torres
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
33
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
34
|
Etim UJ, Bai P, Gazit OM, Zhong Z. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1919044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| | - Peng Bai
- College of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Oz M. Gazit
- Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- Technion Israel Institute of Technology (IIT), Haifa, Israel
| |
Collapse
|
35
|
Zhou H, Li B, Zhang Y, Yan X, Lv W, Wang X, Yuan B, Liu Y, Yang Z, Lou X. Au 3+ Species Boost the Catalytic Performance of Au/ZnO for the Semi-hydrogenation of Acetylene. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40429-40440. [PMID: 34425673 DOI: 10.1021/acsami.1c02723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Au nanoparticles have garnered remarkable attention in the chemoselective hydrogenation due to their extraordinary selectivity. However, the activity is far from satisfactory. Knowledge of the structure-performance relationship is a key prerequisite for rational designing of highly efficient Au-based hydrogenation catalysts. Herein, diverse Au sites were created through engineering their interactions with supports, specifically via adjusting the support morphology, that is, flower-like ZnO (ZnO-F) and disc-like ZnO (ZnO-D), and the catalyst pretreatment atmosphere, that is, 10 vol % O2/Ar and 10 vol % H2/Ar (denoted as -O and -H, respectively). The four samples of Au/ZnO were characterized by various techniques and evaluated in the semi-hydrogenation of acetylene. The transmission electron microscopy results indicated that the Au particle sizes are almost similar for our Au/ZnO catalysts. The charge states of Au species demonstrated by X-ray photoelectron spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy with CO as the probe molecule, and simulation based on density functional theory, however, are greatly dependent on the ZnO shape and pretreatment atmosphere, that is, the percentage of Au3+ reduces following the order of Au/ZnO-F-O > Au/ZnO-F-H > Au/ZnO-D-O > Au/ZnO-D-H. The testing results showed that the Au/ZnO-F-O catalyst containing maximum of Au3+ possesses the optimal activity with 1.8 × 10-2 s-1 of specific activity at 200 °C, around 16.5-fold of that for Au/ZnO-D-H. More interestingly, the specific rate at 200 °C and the average conversion/selectivity in the entire operating temperature range are well correlated with the redox states of the Au species, indicating that Au3+ sites are more active for acetylene hydrogenation. A plausible explanation is that the Au3+ species not only facilitate acetylene adsorption via electrostatic interactions but also favor the heterolysis of H2 via constructing frustrated Lewis pairs with O.
Collapse
Affiliation(s)
- Huiran Zhou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingxin Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- Luoyang Refinery Hongda Industrial Co., Ltd., Luoyang, Henan 471012, China
| | - Yanxing Zhang
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinyu Yan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenxin Lv
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaobing Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingbing Yuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zongxian Yang
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiangdong Lou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
36
|
Chen J, Wang C, Zong C, Chen S, Wang P, Chen Q. High Catalytic Performance of Au/Bi 2O 3 for Preferential Oxidation of CO in H 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29532-29540. [PMID: 34133119 DOI: 10.1021/acsami.1c04644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preferential oxidation (PROX) of CO in hydrogen is of great significance for proton exchange membrane fuel cells (PEMFCs) that need a CO-free hydrogen stream as fuel. The key technical problem is developing catalysts that can efficiently remove CO from the H2-rich stream within the working temperature range of PEMFCs. Herein, we design a Au/Bi2O3 interfacial catalyst for PROX with excellent catalytic performance, which can achieve 100% CO conversion in the PROX reaction over a wide temperature window (70-200 °C) and is perfectly compatible with the operating temperature window (80-180 °C) of PEMFCs. Moreover, the catalyst also demonstrates excellent high flow performance and long-term stability. Density functional theory (DFT) calculations reveal that the electrons transferring from Bi2O3 to Au and then to adsorbed perimeter CO and O2 molecules promote the activation of CO and O2, thus enhancing the catalytic performance of PROX.
Collapse
Affiliation(s)
- Jing Chen
- Department of Materials Science and Engineering, Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Changlai Wang
- Department of Materials Science and Engineering, Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Cichang Zong
- Department of Materials Science and Engineering, Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
- The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shi Chen
- Department of Materials Science and Engineering, Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Pengcheng Wang
- Department of Materials Science and Engineering, Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qianwang Chen
- Department of Materials Science and Engineering, Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
- The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
37
|
Hua M, Song J, Huang X, Hou M, Fan H, Zhang Z, Wu T, Han B. Support Effect of Ru Catalysts for Efficient Conversion of Biomass-Derived 2,5-Hexanedione to Different Products. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00971] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Manli Hua
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Huang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Chen J, Ma Q, Li M, Chao D, Huang L, Wu W, Fang Y, Dong S. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat Commun 2021; 12:3375. [PMID: 34099730 PMCID: PMC8184917 DOI: 10.1038/s41467-021-23737-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Au nanoparticles (NPs) have been found to be excellent glucose oxidase mimics, while the catalytic processes have rarely been studied. Here, we reveal that the process of glucose oxidation catalyzed by Au NPs is as the same as that of natural glucose oxidase, namely, a two-step reaction including the dehydrogenation of glucose and the subsequent reduction of O2 to H2O2 by two electrons. Pt, Pd, Ru, Rh, and Ir NPs can also catalyze the dehydrogenation of glucose, except that O2 is preferably reduced to H2O. By the electron transfer feature of noble metal NPs, we overcame the limitation that H2O2 must be produced in the traditional two-step glucose assay and realize the rapid colorimetric detections of glucose. Inspired by the electron transport pathway in the catalytic process of natural enzymes, noble metal NPs have also been found to mimic various enzymatic electron transfer reactions including cytochrome c, coenzymes as well as nitrobenzene reductions.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Minghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China
| | - Daiyong Chao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China. .,University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
39
|
Rafat MN, Lim CS, Cho KY, Jung CH, Oh WC. 3D ternary LaCdSe-GO-TiO2 nanocomposite synthesized with high powersonic method and sonophotocatalytic efficiency for hydrogen evolution with different scavengers. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Srinivasan PD, Zhu H, Bravo-Suárez JJ. In situ UV–vis plasmon resonance spectroscopic assessment of oxygen and hydrogen adsorption location on supported gold catalysts. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Ricciardulli T, Gorthy S, Adams JS, Thompson C, Karim AM, Neurock M, Flaherty DW. Effect of Pd Coordination and Isolation on the Catalytic Reduction of O 2 to H 2O 2 over PdAu Bimetallic Nanoparticles. J Am Chem Soc 2021; 143:5445-5464. [PMID: 33818086 DOI: 10.1021/jacs.1c00539] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The direct synthesis of hydrogen peroxide (H2 + O2 → H2O2) may enable low-cost H2O2 production and reduce environmental impacts of chemical oxidations. Here, we synthesize a series of Pd1Aux nanoparticles (where 0 ≤ x ≤ 220, ∼10 nm) and show that, in pure water solvent, H2O2 selectivity increases with the Au to Pd ratio and approaches 100% for Pd1Au220. Analysis of in situ XAS and ex situ FTIR of adsorbed 12CO and 13CO show that materials with Au to Pd ratios of ∼40 and greater expose only monomeric Pd species during catalysis and that the average distance between Pd monomers increases with further dilution. Ab initio quantum chemical simulations and experimental rate measurements indicate that both H2O2 and H2O form by reduction of a common OOH* intermediate by proton-electron transfer steps mediated by water molecules over Pd and Pd1Aux nanoparticles. Measured apparent activation enthalpies and calculated activation barriers for H2O2 and H2O formation both increase as Pd is diluted by Au, even beyond the complete loss of Pd-Pd coordination. These effects impact H2O formation more significantly, indicating preferential destabilization of transition states that cleave O-O bonds reflected by increasing H2O2 selectivities (19% on Pd; 95% on PdAu220) but with only a 3-fold reduction in H2O2 formation rates. The data imply that the transition states for H2O2 and H2O formation pathways differ in their coordination to the metal surface, and such differences in site requirements require that we consider second coordination shells during the design of bimetallic catalysts.
Collapse
Affiliation(s)
- Tomas Ricciardulli
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sahithi Gorthy
- Department of Chemical and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Coogan Thompson
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Matthew Neurock
- Department of Chemical and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Mahdavi-Shakib A, Kumar KBS, Whittaker TN, Xie T, Grabow LC, Rioux RM, Chandler BD. Kinetics of H 2 Adsorption at the Metal-Support Interface of Au/TiO 2 Catalysts Probed by Broad Background IR Absorbance. Angew Chem Int Ed Engl 2021; 60:7735-7743. [PMID: 33403732 DOI: 10.1002/anie.202013359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Indexed: 11/08/2022]
Abstract
H2 adsorption on Au catalysts is weak and reversible, making it difficult to quantitatively study. We demonstrate H2 adsorption on Au/TiO2 catalysts results in electron transfer to the support, inducing shifts in the FTIR background. This broad background absorbance (BBA) signal is used to quantify H2 adsorption; adsorption equilibrium constants are comparable to volumetric adsorption measurements. H2 adsorption kinetics measured with the BBA show a lower Eapp value (23 kJ mol-1 ) for H2 adsorption than previously reported from proxy H/D exchange (33 kJ mol-1 ). We also identify a previously unreported H-O-H bending vibration associated with proton adsorption on electronically distinct Ti-OH metal-support interface sites, providing new insight into the nature and dynamics of H2 adsorption at the Au/TiO2 interface.
Collapse
Affiliation(s)
| | - K B Sravan Kumar
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA.,Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA
| | - Todd N Whittaker
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
| | - Tianze Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lars C Grabow
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.,Texas Center for Superconductivity at the, University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bert D Chandler
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA.,Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
43
|
Hensley AJ, Bray J, Shangguan J, Chin YH(C, McEwen JS. Catalytic consequences of hydrogen addition events and solvent-adsorbate interactions during guaiacol-H2 reactions at the H2O-Ru(0 0 0 1) interface. J Catal 2021. [DOI: 10.1016/j.jcat.2020.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Mahdavi‐Shakib A, Kumar KBS, Whittaker TN, Xie T, Grabow LC, Rioux RM, Chandler BD. Kinetics of H
2
Adsorption at the Metal–Support Interface of Au/TiO
2
Catalysts Probed by Broad Background IR Absorbance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - K. B. Sravan Kumar
- Department of Chemistry Trinity University San Antonio TX 78212-7200 USA
- Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204-4004 USA
| | - Todd N. Whittaker
- Department of Chemistry Trinity University San Antonio TX 78212-7200 USA
| | - Tianze Xie
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Lars C. Grabow
- Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204-4004 USA
- Texas Center for Superconductivity at the University of Houston (TcSUH) University of Houston Houston TX 77204 USA
| | - Robert M. Rioux
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Bert D. Chandler
- Department of Chemistry Trinity University San Antonio TX 78212-7200 USA
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
45
|
Sun T, Mitchell S, Li J, Lyu P, Wu X, Pérez-Ramírez J, Lu J. Design of Local Atomic Environments in Single-Atom Electrocatalysts for Renewable Energy Conversions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003075. [PMID: 33283369 DOI: 10.1002/adma.202003075] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Indexed: 05/27/2023]
Abstract
Single-atom electrocatalysts (SAECs) have recently attracted tremendous research interest due to their often remarkable catalytic responses, unmatched by conventional catalysts. The electrocatalytic performance of SAECs is closely related to the specific metal species and their local atomic environments, including their coordination number, the determined structure of the coordination sites, and the chemical identity of nearest and second nearest neighboring atoms. The wide range of distinct chemical bonding configurations of a single-metal atom with its surrounding host atoms creates virtually limitless opportunities for the rational design and synthesis of SAECs with tunable local atomic environment for high-performance electrocatalysis. In this review, the authors first identify fundamental hurdles in electrochemical conversions and highlight the relevance of SAECs. They then critically examine the role of the local atomic structures, encompassing the first and second coordination spheres of the isolated metal atoms, on the design of high-performance SAECs. The relevance of single-atom dopants for host activation is also discussed. Insights into the correlation between local structures of SAECs and their catalytic response are analyzed and discussed. Finally, the authors summarize major challenges to be addressed in the field of SAECs and provide some perspectives in the rational construction of superior SAECs for a wide range of electrochemical conversions.
Collapse
Affiliation(s)
- Tao Sun
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Jing Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xinbang Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Science Drive 4, Singapore, 117585, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| |
Collapse
|
46
|
Fiorio JL, Rossi LM. Clean protocol for deoxygenation of epoxides to alkenes via catalytic hydrogenation using gold. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01695k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Au NP catalyst combined with triethylphosphite, P(OEt)3, is remarkably more reactive than solely Au NPs for the selective deoxygenation of epoxides to alkenes.
Collapse
Affiliation(s)
- Jhonatan L. Fiorio
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Liane M. Rossi
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
47
|
Cano I, Martínez-Prieto LM, van Leeuwen PWNM. Heterolytic cleavage of dihydrogen (HCD) in metal nanoparticle catalysis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02399j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Supports, ligands and additives can promote heterolytic H2 splitting by a cooperative mechanism with metal nanoparticles.
Collapse
Affiliation(s)
- Israel Cano
- Applied Physics Department
- University of Cantabria
- 39005 Santander
- Spain
| | - Luis M. Martínez-Prieto
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- 46022 Valencia
- Spain
| | | |
Collapse
|
48
|
Zhang L, Chang MW, Su YQ, Filot IA, Hensen EJ. A theoretical study of CO oxidation and O2 activation for transition metal overlayers on SrTiO3 perovskite. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Zhang Z, Jing M, Chen H, Okejiri F, Liu J, Leng Y, Liu H, Song W, Hou Z, Lu X, Fu J, Liu J. Transfer Hydrogenation of Fatty Acids on Cu/ZrO 2: Demystifying the Role of Carrier Structure and Metal–Support Interface. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02320] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zihao Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Meizan Jing
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, P. R. China
| | - Hao Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Francis Okejiri
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Jixing Liu
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Yan Leng
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Haolan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, Zhejiang, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, P. R. China
| | - Zhaoyin Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, Zhejiang, China
| | - Xiuyang Lu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum-Beijing, Beijing 102249, P. R. China
| |
Collapse
|
50
|
Rocchigiani L, Klooster WT, Coles SJ, Hughes DL, Hrobárik P, Bochmann M. Hydride Transfer to Gold: Yes or No? Exploring the Unexpected Versatility of Au⋅⋅⋅H−M Bonding in Heterobimetallic Dihydrides. Chemistry 2020; 26:8267-8280. [DOI: 10.1002/chem.202000016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Luca Rocchigiani
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR47TJ UK
| | - Wim T. Klooster
- National Crystallography ServiceSchool of ChemistryUniversity of Southampton Southampton SO171BJ UK
| | - Simon J. Coles
- National Crystallography ServiceSchool of ChemistryUniversity of Southampton Southampton SO171BJ UK
| | - David L. Hughes
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR47TJ UK
| | - Peter Hrobárik
- Department of Inorganic ChemistryFaculty of Natural SciencesComenius University 84215 Bratislava Slovakia
| | - Manfred Bochmann
- School of ChemistryUniversity of East Anglia Norwich Research Park Norwich NR47TJ UK
| |
Collapse
|