1
|
Waldbusser AL, Hematian S. Electrocatalytic Anaerobic Oxidation of Benzylic Amines Enabled by Ferrocene-Based Redox Mediators. Organometallics 2024; 43:2557-2564. [PMID: 39483128 PMCID: PMC11523463 DOI: 10.1021/acs.organomet.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 11/03/2024]
Abstract
The generation and functionalization of carbon- or nitrogen-centered radicals are of great interest for their potential synthetic utility. Here, we report the anaerobic electrocatalytic oxidation of two primary benzylic amines, benzylamine and 2-picolylamine, in the presence of a catalytic quantity of an electron deficient ferrocene derivative as a single-electron redox mediator. The use of the appropriate redox mediator prevented fouling of the electrode surface and significantly decreased the potential at which the catalytic oxidation reaction occurred. Simulation of the electrochemical results revealed an ErCi' catalytic process between the redox mediator and both substrates and significant difference in the electron transfer rate between the two substrates and electrochemically oxidized mediator. Through anaerobic controlled-potential electrolysis, we demonstrated a method with a Faradaic efficiency of 90% forming the desired coupled imine product of benzylamine oxidation while avoiding an excess of problematic overoxidation, hydrolysis, and other side reactions. Based on the electrochemical data along with the product analyses using IR and 1H and 13C NMR spectroscopies, the proposed mechanistic steps for the redox mediated electrocatalytic process were laid out.
Collapse
Affiliation(s)
- Amy L. Waldbusser
- Department of Chemistry and
Biochemistry, University of North Carolina
at Greensboro, Greensboro, North Carolina 27402, United States
| | - Shabnam Hematian
- Department of Chemistry and
Biochemistry, University of North Carolina
at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
2
|
Chen L, Yin ZH, Cui JY, Li CQ, Song K, Liu H, Wang JJ. Unlocking Lattice Oxygen on Selenide-Derived NiCoOOH for Amine Electrooxidation and Efficient Hydrogen Production. J Am Chem Soc 2024; 146:27090-27099. [PMID: 39305252 DOI: 10.1021/jacs.4c09252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In pursuit of advancing the electrooxidation of amines, which is typically encumbered by the inertness of C(sp3)-H/N(sp3)-H bonds, our study introduces a high-performance electrocatalyst that significantly enhances the production efficiency of vital chemicals and fuels. We propose a novel electrocatalytic strategy employing a uniquely designed (NixCo1-x)Se2-R electrocatalyst, which is activated through Se-O exchange and electron orbital spin manipulation. This catalyst efficiently generates M4+ species, thus enabling the activation of lattice oxygen and streamlining the electrooxidation of amines. Empirical evidence from isotope labeling, molecular probes, and computational analyses indicates that the electrocatalyst fosters the formation of energetically favorable peroxy radical intermediates, which substantially expedite the reaction kinetics. The refined electrocatalyst achieves an exceptional current density of 20 mA cm-2 at a potential of 1.315 V, with selectivity surpassing 99% for propionitrile, while demonstrating remarkable stability over 560 h. This work emphasizes the criticality of deciphering the fundamental mechanisms of amine electrooxidation and charts a more sustainable pathway for the nitrile and hydrogen production, marking a substantial advancement in the field of electrocatalysis.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jun-Yuan Cui
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Chao-Qun Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan 250022, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
3
|
Chen Y, Chen Q, Zhang S, Feng K, Xu YQ, Chen X, Cao ZY, Kong X. Electrochemically Driven Denitrative Cyanation of Nitroarenes. Org Lett 2024; 26:7555-7559. [PMID: 39226075 DOI: 10.1021/acs.orglett.4c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A practical denitrative cyanation of feedstock nitroarenes under mild and transition metal-free reaction conditions has been developed. The key to success lies in the use of electrochemically driven, inexpensive ionic liquid N-methylimidazolium p-toluenesulfonate-promoted selective cathode reduction of nitroarenes to anilines, followed by diazoation, cathode reduction to form the aryl radical, and the essential radical cyanation process in one pot. Our protocol shows broad functional group tolerance and can be applied for the modification of bioactive targets.
Collapse
Affiliation(s)
- Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qisheng Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shuangquan Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Kun Feng
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| |
Collapse
|
4
|
Liu J, Wei X, Wang Y, Qu J, Wang B. Asymmetric synthesis of atropisomeric arylpyrazoles via direct arylation of 5-aminopyrazoles with naphthoquinones. Org Biomol Chem 2024; 22:4254-4263. [PMID: 38738921 DOI: 10.1039/d4ob00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Construction of axially chiral arylpyrazoles represents an attractive challenge due to the relatively low rotational barrier of biaryl structures containing five-membered heterocycles. This work describes the catalytic asymmetric construction of axially chiral arylpyrazoles using 5-aminopyrazoles and naphthoquinone derivatives. The chiral axis could be formed through a central-to-axial chirality relay step of the chiral phosphoric acid-catalyzed arylation reaction, which features excellent yields and enantioselectivities with a broad substrate scope under mild reaction conditions.
Collapse
Affiliation(s)
- Jiamin Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yue Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
5
|
Mondal T, Leitner W, Hölscher M. Computational design of cooperatively acting molecular catalyst systems: carbene based tungsten- or molybdenum-catalysts with rhodium- or iridium-complexes for the ionic hydrogenation of N 2 to NH 3. Dalton Trans 2024; 53:7890-7898. [PMID: 38634911 DOI: 10.1039/d4dt00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This density functional theory (DFT) study explores the efficacy of cooperative catalytic systems in enabling the ionic hydrogenation of N2 with H2, leading to NH3 formation. A set of N-heterocyclic carbene-based pincer tungsten/molybdenum metal complexes of the form [(PCP)M1(H)2] (M1 = W/Mo) were chosen to bind N2 at the respective metal centres. Simultaneously, cationic rhodium/iridium complexes of type [Cp*M2{2-(2-pyridyl)phenyl}(CH3CN)]+ (Cp* = C5(CH3)5 and M2 = Rh/Ir), are employed as cooperative coordination partners for heterolytic H2 splitting. The stepwise transfer of protons and hydrides to the bound N2 and intermediate NxHy units results in the formation of NH3. Interestingly, the calculated results reveal an encouraging low range of energy spans ranging from ∼30 to 42 kcal mol-1 depending on different combinations of ligands and metal complexes. The optimal combination of pincer ligand and metal center allowed for an energy span of unprecedented 29.7 kcal mol-1 demonstrating significant potential for molecular catalysts for the N2/H2 reaction system. While exploring obvious potential off-cycle reactions leading to catalyst deactivation, the computed results indicate that no increase in energy span would need to be expected.
Collapse
Affiliation(s)
- Totan Mondal
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Tian H, Ding CY, Liao RZ, Li M, Tang C. Cobalt-Catalyzed Acceptorless Dehydrogenation of Primary Amines to Nitriles. J Am Chem Soc 2024; 146:11801-11810. [PMID: 38626455 DOI: 10.1021/jacs.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The direct double dehydrogenation from primary amines to nitriles without an oxidant or hydrogen acceptor is both intriguing and challenging. In this paper, we describe a non-noble metal catalyst capable of realizing such a transformation with high efficiency. A cobalt-centered N,N-bidentate complex was designed and employed as a metal-ligand cooperative dehydrogenation catalyst. Detailed kinetic studies, control experiments, and DFT calculations revealed the crucial hydride transfer, proton transfer, and hydrogen evolution processes. Finally, a tandem outer-sphere/inner-sphere mechanism was proposed for the dehydrogenation of amines to nitriles through an imine intermediate.
Collapse
Affiliation(s)
- Haitao Tian
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Cai-Yun Ding
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Man Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
7
|
Zhao Y, Zhang Z, Qi Z, Liu R. Palladium-catalyzed dehydrogenation of α-cyclohexene-substituted nitriles to α-aryl nitriles. Chem Commun (Camb) 2024; 60:3425-3428. [PMID: 38441208 DOI: 10.1039/d4cc00326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The development of a practical, inexpensive, and cyanide-free method for synthesizing α-aryl nitriles remains a challenging goal in synthetic chemistry. Here, we report an approach for synthesizing α-aryl nitriles toward achieving this goal, by which α-cyclohexenyl acetonitriles and α-cyclohexenyl alkenyl nitriles are dehydrogenated to α-aryl nitriles.
Collapse
Affiliation(s)
- Yinglin Zhao
- School of Pharmacy, East China University of Science and Technology, Engineering Research Center of Pharmaceutical Process Chemistry, Meilong Road 130, Shanghai 200237, China.
| | - Zhida Zhang
- School of Pharmacy, East China University of Science and Technology, Engineering Research Center of Pharmaceutical Process Chemistry, Meilong Road 130, Shanghai 200237, China.
| | - Zehuan Qi
- School of Pharmacy, East China University of Science and Technology, Engineering Research Center of Pharmaceutical Process Chemistry, Meilong Road 130, Shanghai 200237, China.
| | - Renhua Liu
- School of Pharmacy, East China University of Science and Technology, Engineering Research Center of Pharmaceutical Process Chemistry, Meilong Road 130, Shanghai 200237, China.
| |
Collapse
|
8
|
Qian BC, Wang X, Wang Q, Zhu XQ, Shen GB. Thermodynamic evaluations of the acceptorless dehydrogenation and hydrogenation of pre-aromatic and aromatic N-heterocycles in acetonitrile. RSC Adv 2024; 14:222-232. [PMID: 38173608 PMCID: PMC10758765 DOI: 10.1039/d3ra08022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
N-heterocycles are important chemical hydrogen-storage materials, and the acceptorless dehydrogenation and hydrogenation of N-heterocycles as organic hydrogen carriers have been widely studied, with the main focus on the catalyst synthesis and design, investigation of the redox mechanisms, and extension of substrate scope. In this work, the Gibbs free energies of the dehydrogenation of pre-aromatic N-heterocycles (YH2) and the hydrogenation of aromatic N-heterocycles (Y), i.e., ΔGH2R(YH2) and ΔGH2A(Y), were derived by constructing thermodynamic cycles using Hess' law. The thermodynamic abilities for the acceptorless dehydrogenation and hydrogenation of 78 pre-aromatic N-heterocycles (YH2) and related 78 aromatic N-heterocycles (Y) were well evaluated and discussed in acetonitrile. Moreover, the applications of the two thermodynamic parameters in identifying pre-aromatic N-heterocycles possessing reversible dehydrogenation and hydrogenation properties and the selection of the pre-aromatic N-heterocyclic hydrogen reductants in catalytic hydrogenation were considered and are discussed in detail. Undoubtedly, this work focuses on two new thermodynamic parameters of pre-aromatic and aromatic N-heterocycles, namely ΔGH2R(YH2) and ΔGH2A(Y), which are important supplements to our previous work to offer precise insights into the chemical hydrogen storage and hydrogenation reactions of pre-aromatic and aromatic N-heterocycles.
Collapse
Affiliation(s)
- Bao-Chen Qian
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao Wang
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Qi Wang
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University Tianjin 300071 China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| |
Collapse
|
9
|
Zhong LJ, Fan JH, Chen P, Huang PF, Xiong BQ, Tang KW, Liu Y. Recent advances in ring-opening of cyclobutanone oximes for capturing SO 2, CO or O 2via a radical process. Org Biomol Chem 2023; 22:10-24. [PMID: 38018531 DOI: 10.1039/d3ob01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Cyclobutanone oximes and their derivatives are pivotal core structural motifs in organic chemistry. Iminyl-radical-triggered C-C bond cleavage of cyclobutanone oximes delivers an efficient strategy to produce stable distal cyano-substituted alkyl radicals, which can capture SO2, CO or O2 to form cyanoalkylsulfonyl radicals, cyanoalkylcarbonyl radicals or cyanoalkoxyl radicals under mild conditions. In the past several years, cyanoalkylsulfonylation/cyanoalkylcarbonyaltion/cyanoalkoxylation has attracted a lot of interest. In this updated report, the strategies for trapping SO2, CO or O2via iminyl-radical-triggered ring-opening of cyclobutanone oximes are summarized.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
10
|
Gao X, Li C, Chen L, Li X. Asymmetric Synthesis of Axially Chiral Arylpyrazole via an Organocatalytic Arylation Reaction. Org Lett 2023; 25:7628-7632. [PMID: 37843395 DOI: 10.1021/acs.orglett.3c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, a highly enantioselective arylation reaction of 3-aryl-5-aminopyrazoles and quinone derivatives was realized using a chiral phosphoric acid catalyst under mild conditions. The reaction has a broad scope with respect to both arylation reaction partners and hence offers rapid access to an array of axially chiral arylpyrazoles with pretty outcomes (up to 95% yield and 99% ee). Notably, the reaction is very efficient, as the catalyst loadings for the model reaction can be reduced to 1 mol % and the enantioselectivity is still maintained. Besides, the synthetic utility of the protocol was proven by a gram-scale reaction and the transformation of the product.
Collapse
Affiliation(s)
- Xi Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chengwen Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
11
|
De S, Ranjan P, Chaurasia V, Pal S, Pal S, Pandey P, Bera JK. Synchronous Proton-Hydride Transfer by a Pyrazole-Functionalized Protic Mn(I) Complex in Catalytic Alcohol Dehydrogenative Coupling. Chemistry 2023; 29:e202301758. [PMID: 37490592 DOI: 10.1002/chem.202301758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
A series of Mn(I) complexes Mn(L1 )(CO)3 Br, Mn(L2 )(CO)3 Br, Mn(L1 )(CO)3 (OAc) and Mn(L3 )(CO)3 Br [L1 =2-(5-tert-butyl-1H-pyrazol-3-yl)-1,8-naphthyridine, L2 =2-(5-tert-butyl-1H-pyrazol-3-yl)pyridine, L3 =2-(5-tert-butyl-1-methyl-1H-pyrazol-3-yl)-1,8-naphthyridine] were synthesized and fully characterized. The acid-base equilibrium between the pyrazole and the pyrazolato forms of Mn(L1 )(CO)3 Br was studied by 1 H NMR and UV-vis spectra. These complexes are screened as catalysts for acceptorless dehydrogenative coupling (ADC) of primary alcohols and aromatic diamines for the synthesis of benzimidazole and quinoline derivatives with the release of H2 and H2 O as byproducts. The protic complex Mn(L1 )(CO)3 Br shows the highest catalytic activity for the synthesis of 2-substituted benzimidazole derivatives with broad substrate scope, whereas a related complex [Mn(L3 )(CO)3 Br], which is devoid of the proton responsive β-NH unit, shows significantly reduced catalytic efficiency validating the crucial role of the β-NH functionality for the alcohol dehydrogenation reactions. Control experiments, kinetic and deuterated studies, and density functional theory (DFT) calculations reveal a synchronous hydride-proton transfer by the metal-ligand construct in the alcohol dehydrogenation step.
Collapse
Affiliation(s)
- Subhabrata De
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Prabodh Ranjan
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vishal Chaurasia
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sourav Pal
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Saikat Pal
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Pragati Pandey
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jitendra K Bera
- Department of Chemistry and, Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
12
|
Coeck R, Houbrechts M, De Vos DE. Ammonolytic transfer dehydrogenation of amines and amides: a versatile method to valorize nitrogen compounds to nitriles. Chem Sci 2023; 14:7944-7955. [PMID: 37502329 PMCID: PMC10370574 DOI: 10.1039/d3sc02436a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
The dehydrogenation of amines has been identified as an efficient method for nitrile synthesis. At present, this approach is restricted to (oxidative) dehydrogenations of primary amines, most often with specialized homogeneous catalysts. In this work, amines were transfer dehydrogenated to nitriles using simple and cheap alkenes (e.g. ethylene or propene) as hydrogen scavengers. The scope was expanded to secondary amines, tertiary amines and even aldehydes. Additional nitrogen is built in from NH3. The versatility of the process was proven by coupling it to the ammonolysis of secondary amides. This enabled us to recycle long-chain polyamides (LCPA) into monomeric compounds, i.e. α,ω-amidonitriles and dinitriles. Reactions were performed with a recyclable heterogeneous Pt catalyst, at 200 °C and with limited addition of NH3 and ethylene. High yields of up to 94% were obtained for the corresponding nitriles.
Collapse
Affiliation(s)
- Robin Coeck
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven 3001 Leuven Belgium
| | - Margot Houbrechts
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven 3001 Leuven Belgium
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven 3001 Leuven Belgium
| |
Collapse
|
13
|
Lin WS, Kuwata S. Recent Developments in Reactions and Catalysis of Protic Pyrazole Complexes. Molecules 2023; 28:molecules28083529. [PMID: 37110763 PMCID: PMC10143336 DOI: 10.3390/molecules28083529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Protic pyrazoles (N-unsubstituted pyrazoles) have been versatile ligands in various fields, such as materials chemistry and homogeneous catalysis, owing to their proton-responsive nature. This review provides an overview of the reactivities of protic pyrazole complexes. The coordination chemistry of pincer-type 2,6-bis(1H-pyrazol-3-yl)pyridines is first surveyed as a class of compounds for which significant advances have made in the last decade. The stoichiometric reactivities of protic pyrazole complexes with inorganic nitrogenous compounds are then described, which possibly relates to the inorganic nitrogen cycle in nature. The last part of this article is devoted to outlining the catalytic application of protic pyrazole complexes, emphasizing the mechanistic aspect. The role of the NH group in the protic pyrazole ligand and resulting metal-ligand cooperation in these transformations are discussed.
Collapse
Affiliation(s)
- Wei-Syuan Lin
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shigeki Kuwata
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
14
|
Blacquiere JM, Stubbs JM, Nanuwa AS, Hoffman MD. Catalyst Comparison for Additive-Free Acceptorless Dehydrogenation of Indoline Derivatives. Synlett 2023. [DOI: 10.1055/s-0042-1751417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
AbstractA group of thirteen catalysts of type [Ru(Cp/Cp*)(P–P)(MeCN)]PF6, bearing cooperative or noncooperative bidentate phosphine ligands, were evaluated for the catalytic acceptorless dehydrogenation of indoline. The systematic comparison revealed that the optimal cooperative catalyst structure included a Cp ancillary ligand, and an N,N-disubstituted P,P-disubstituted 1,5-diaza-3,7-diphosphacyclooctane ligand, denoted as (PR
2NR′
2). A cooperative complex bearing a PPh
2NPh
2 ligand exhibited about a twofold longer lifetime than a noncooperative analogue with (diphenylphosphino)ethane (dppe) as the supporting bisphosphine ligand. The cooperative catalyst effectively dehydrogenated a range of indoline substrates to give substituted indoles.
Collapse
|
15
|
A new facet of amide synthesis by tandem acceptorless dehydrogenation of amines and oxygen transfer of DMSO. J Catal 2023. [DOI: 10.1016/j.jcat.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Interactions of novel pyrazole ligand and its transition metal complexes with CT-DNA and BSA: a combination of experimental and computational studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Cui Y, Zhao Y, Shen J, Zhang G, Ding C. The stable "F-SO 2 +" donor provides a mild and efficient approach to nitriles and amides. RSC Adv 2022; 12:33064-33068. [PMID: 36425170 PMCID: PMC9672908 DOI: 10.1039/d2ra05890a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 10/17/2023] Open
Abstract
In this update, we developed a mild, efficient and practical method using fluorosulfuryl imidazolium salt A as an environment friendly promoter for conversion of oximes to nitriles or amides via β-elimination or Beckmann rearrangement in almost quantitative yield in 10 minutes. The target products were generated in gram-scale and could be collected through crystallization without silica gel column purification in excellent yield.
Collapse
Affiliation(s)
- Yin Cui
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center Hangzhou 310014 P. R. China
| | - Junjie Shen
- Zhejiang Kefeng New Material Co. LTD Huzhou 313200 P. R. China
| | - Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
18
|
Xu C, Huang Z, Zhou MJ, Liu G. Acceptorless Dehydrogenation of Aliphatics, Amines, and Alcohols with Homogeneous Catalytic Systems. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1753053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe dehydrogenation of saturated substrates is fundamentally essential for producing value-added unsaturated organic molecules both in academia and industry. In recent years, homogeneously catalyzed acceptorless C–C, C–N, and C–O bond desaturations have attracted increasing attention due to high atom economy, environmentally benign nature, and wide availability of the starting materials. This short review discusses the acceptorless dehydrogenation of aliphatics, alcohols, and amines by homogeneous catalytic systems based on two categories of reaction mechanisms: thermal transition-metal-catalyzed two-electron pathway and photoredox catalyzed or electrochemically driven one-electron pathway.1 Introduction2 Catalytic Acceptorless Dehydrogenation of Aliphatics3 Catalytic Acceptorless Dehydrogenation of Amines4 Catalytic Acceptorless Dehydrogenation of Alcohols5 Conclusion
Collapse
Affiliation(s)
- Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology
| | - Zheng Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences
| | - Min-Jie Zhou
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| |
Collapse
|
19
|
Moirangthem S, Ahanthem D, Khongbantabam SD, Laitonjam WS. Facile Conversion of Aryl Amines Having No α-Methylene to Aryl Nitriles. ACS OMEGA 2022; 7:31348-31351. [PMID: 36092588 PMCID: PMC9453805 DOI: 10.1021/acsomega.2c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Dimethyl carbonimidodithioates, 2 derived from various primary aryl amines (1) by reacting with carbon disulfide and methyl iodide in dimethyl formamide in the presence of concentrated sodium hydroxide, are converted to the diaziridine derivatives, 3 by reacting with hydrazine in ethanol. The diaziridines, 3 on oxidation with lead tetraacetate in refluxing xylene, extrudes nitrogen, and intramolecular stabilization, particularly 1,2-carbon migration, takes place to give the product, 5. The reaction may take place through the intermediates, diazirines, 4, which have not been isolated. This work provides a new approach for the conversion of aryl amines having no α-methylene to aryl nitriles.
Collapse
|
20
|
Wen Q, Lin Y, Yang Y, Gao R, Ouyang N, Ding D, Liu Y, Zhai T. In Situ Chalcogen Leaching Manipulates Reactant Interface toward Efficient Amine Electrooxidation. ACS NANO 2022; 16:9572-9582. [PMID: 35679123 DOI: 10.1021/acsnano.2c02838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Engineering the reaction interface is necessary for advancing various electrocatalytic processes. However, most designed catalysts tend to be ineffective due to the inevitable structural reconstruction. Here we utilize that operando electrocatalysis variations (i.e., chalcogen leaching) manipulate the reactant interface toward amine electrooxidation. Taking chalcogen-doped Ni(OH)2 as an example, operando techniques uncover that chalcogens leach from the matrix and then adsorb on the surface of NiOOH as chalcogenates during the electrooxidation process. The charged chalcogenates will induce the local electric field that pushes the polar amines through the inner Helmholtz plane to enrich on the catalyst surface. Meanwhile, the polarization effect of chalcogenates and amines boost amino C-N bond activation for dehydrogenation into nitrile C≡N bonds. Under the promotion effect of surface-adsorbed chalcogenate ions, our catalysts display over 99.5% propionitrile selectivity at the low potential of 1.317 V with an ultrahigh current density. This finding highlights the use of operando changes of catalysts to rationally design efficient catalysts and further clarifies the underlying role of chalcogen atoms in the electrooxidation process.
Collapse
Affiliation(s)
- Qunlei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Yu Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China
| | - Yang Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Ruijian Gao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Nanqiu Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Defang Ding
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, People's Republic of China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
21
|
Wu G, Yang Z, Xu X, Hao L, Chen L, Wang Y, Ji Y. Metal-Free Boron-Mediated ortho-C-H Hydroxylation of N-Benzyl-3,4,5-tribromopyrazoles. Org Lett 2022; 24:3570-3575. [PMID: 35512319 DOI: 10.1021/acs.orglett.2c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel route has been reported for C-H hydroxylation of benzyl compounds directed by a 3,4,5-tribromopyrazole auxiliary via boronation/oxidation using BBr3 and NaBO3·4H2O. The strategy exhibits outstanding site selectivity and affords the corresponding phenols in moderate to excellent yields under metal-free conditions. Besides, this protocol can be achieved in one pot, which is highly promising as a practical method for use in a multistep organic synthetic process.
Collapse
Affiliation(s)
- Gaorong Wu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhaoziyuan Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiaobo Xu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Liqiang Hao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lu Chen
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yangyang Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yafei Ji
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
22
|
Dolna M, Nowacki M, Danylyuk O, Brotons-Rufes A, Poater A, Michalak M. NHC-BIAN-Cu(I)-Catalyzed Friedländer-Type Annulation of 2-Amino-3-(per)fluoroacetylpyridines with Alkynes on Water. J Org Chem 2022; 87:6115-6136. [PMID: 35394784 PMCID: PMC9087358 DOI: 10.1021/acs.joc.2c00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The direct catalytic
alkynylation/dehydrative cyclization of 2-amino-3-trifluoroacetyl-pyridines
on water was developed for the efficient synthesis of a broad range
of fluorinated 1,8-naphthyridines from terminal alkynes. A novel N-heterocyclic
carbene (NHC) ligand system that combines a π-extended acenaphthylene
backbone with sterically bulky pentiptycene pendant groups was successfully
utilized in a copper- or silver-mediated cyclization. Computational
analysis of the reaction pathway supports our explanation of the different
experimental conversions and yields for the set of copper and silver
catalysts. The impact of steric hindrance at the metal center and
the flexibility of substituents on the imidazole ring of the NHC on
catalytic performance are also discussed.
Collapse
Affiliation(s)
- Magdalena Dolna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Nowacki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Oksana Danylyuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Artur Brotons-Rufes
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ M. Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ M. Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Michał Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
23
|
Efficient iron single-atom catalysts for selective ammoxidation of alcohols to nitriles. Nat Commun 2022; 13:1848. [PMID: 35387970 PMCID: PMC8986860 DOI: 10.1038/s41467-022-29074-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/18/2022] [Indexed: 11/08/2022] Open
Abstract
Zeolitic imidazolate frameworks derived Fe1-N-C catalysts with isolated single iron atoms have been synthesized and applied for selective ammoxidation reactions. For the preparation of the different Fe-based materials, benzylamine as an additive proved to be essential to tune the morphology and size of ZIFs resulting in uniform and smaller particles, which allow stable atomically dispersed Fe-N4 active sites. The optimal catalyst Fe1-N-C achieves an efficient synthesis of various aryl, heterocyclic, allylic, and aliphatic nitriles from alcohols in water under very mild conditions. With its chemoselectivity, recyclability, high efficiency under mild conditions this new system complements the toolbox of catalysts for nitrile synthesis, which are important intermediates with many applications in life sciences and industry.
Collapse
|
24
|
Abe M, Nitta S, Miura E, Kimachi T, Inamoto K. Nitrile Synthesis via Desulfonylative-Smiles Rearrangement. J Org Chem 2022; 87:4460-4467. [PMID: 35229594 DOI: 10.1021/acs.joc.1c03011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we designed a simple nitrile synthesis from N-[(2-nitrophenyl)sulfonyl]benzamides via base-promoted intramolecular nucleophilic aromatic substitution. The process features redox-neutral conditions as well as no requirement of toxic cyanide species and transition metals. Our process shows broad scope and various functional group compatibility, affording a variety of (hetero)aromatic nitriles in good to excellent yields.
Collapse
Affiliation(s)
- Masahiro Abe
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Sayasa Nitta
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Erina Miura
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Tetsutaro Kimachi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kiyofumi Inamoto
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| |
Collapse
|
25
|
Kong X, Wang Y, Chen Y, Chen X, Lin L, Cao ZY. Cyanation and cyanomethylation of trimethylammonium salts via electrochemical cleavage of C–N bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01858b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A practical and mild electrochemical protocol for cyanation and cyanomethylation of trimethylammonium salts has been developed.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Yuchang Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Long Lin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
26
|
Tian H, Xue W, Wu J, Yang Z, Lu H, Tang C. A general and practical bifunctional cobalt catalytic system for N-heterocycle assembly via acceptorless dehydrogenation. Org Chem Front 2022. [DOI: 10.1039/d2qo00683a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel and highly-efficient N-heterocycle assembly methodology catalyzed by a cobalt-N,N-bidentate complex via acceptorless dehydrogenation coupling of alcohols and amines has been established.
Collapse
Affiliation(s)
- Haitao Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Wenxuan Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jingtao Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ziguang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
27
|
O'Sullivan L, Patel KV, Rowley BC, Brownsey DK, Gorobets E, Gelfand BS, Van Humbeck JF, Derksen DJ. Regioselective Synthesis of C3-Hydroxyarylated Pyrazoles. J Org Chem 2021; 87:846-854. [PMID: 34905376 DOI: 10.1021/acs.joc.1c02518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyrazoles are ubiquitous structures in medicinal chemistry. We report the first regioselective route to C3-hydroxyarylated pyrazoles obtained through reaction of pyrazole N-oxides with arynes using mild conditions. Importantly, this method does not require the C4 and C5 positions of the pyrazole to be functionalized to observe regioselectivity. Using this method, we completed the synthesis of a recently reported JAK 1/2 inhibitor. Our synthesis produces the desired product in 4 steps from commercially available starting materials.
Collapse
Affiliation(s)
- Leonie O'Sullivan
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | - Ketul V Patel
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | - Ben C Rowley
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | - Duncan K Brownsey
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | - Evgueni Gorobets
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | | | - Darren J Derksen
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| |
Collapse
|
28
|
Yadav S, Vijayan P, Gupta R. Ruthenium complexes of N/O/S based multidentate ligands: Structural diversities and catalysis perspectives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Ma F, Wang S, Han L, Guo Y, Wang Z, Wang P, Liu Y, Cheng H, Dai Y, Zheng Z, Huang B. Targeted Regulation of the Electronic States of Nickel Toward the Efficient Electrosynthesis of Benzonitrile and Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56140-56150. [PMID: 34792329 DOI: 10.1021/acsami.1c16048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Highly efficient electro-oxidation of benzylamine to generate value-added chemicals coupled with the hydrogen evolution reaction (HER) is crucial but challenging. Herein, targeted regulation of the electronic states of Ni sites was realized via simple yet precise nitridation engineering. Benefiting from the insertion of N atoms into the Ni lattice, the Ni3N electrode exhibits superior activity, selectivity, and stability for the benzylamine oxidation reaction (BOR). Especially, under the industrially relevant current (∼250 mA), the Ni3N catalyst remains ∼95% selective for benzonitrile production, reaching 1.43 mmol h-1 cm-2. Experimental and theoretical findings reveal that the formation of Ni-N bonds upshifts the Ni d-band center and optimizes the electrophilic properties of Ni sites, which contributes to the adsorption and dehydrogenations process of benzylamine. Furthermore, due to the work function difference between Ni and Ni3N, a strong mutual interaction occurs at the heterogeneous interface for Ni-Ni3N, which endows it with the appropriate H* adsorption energy and thus excellent HER performance. Impressively, the integrated solar-energy-driven BOR coupled with the HER electrolyzer affords 10 mA cm-2 at an ultralow voltage of 1.4 V and exhibits a promising practical application (ηsolar-to-hydrogen = 13.8%). This work offers a new perspective for the bifunctional design of nitrides in the field of electrosynthesis.
Collapse
Affiliation(s)
- Fahao Ma
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Shuhua Wang
- School of Physics, Shandong University, Jinan 250100, P.R. China
| | - Liuyuan Han
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Yuhao Guo
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, P.R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
30
|
Yoo HS, Yang YS, Kim SL, Son SH, Jang YH, Shin JW, Kim NJ. Syntheses of 1H-Indoles, Quinolines, and 6-Membered Aromatic N-Heterocycle-Fused Scaffolds via Palladium(II)-Catalyzed Aerobic Dehydrogenation under Alkoxide-Free Conditions. Chem Asian J 2021; 16:3469-3475. [PMID: 34494376 DOI: 10.1002/asia.202100861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Aromatic N-heterocycle-fused scaffolds such as indoles and quinolines are important core structures found in various bioactive natural products and synthetic compounds. Recently, various dehydrogenation methods with the help of alkoxides, known to significantly promote dihydro- or tetrahydro-heterocycles to be oxidized, were developed for the heterocycle synthesis. However, these approaches are sometimes unsuitable due to resulting undesired side reactions such as reductive dehalogenation. Herein, expedient syntheses of 1H-indoles, quinolines, and 6-membered N-heterocycle-fused scaffolds from their hydrogenated forms through palladium(II)-catalyzed aerobic dehydrogenation under alkoxide-free conditions are reported. A total of 48 compounds were successfully synthesized with a wide range of functional groups including halogens (up to 99% yield). These methodologies provide facile routes for various privileged structures possessing aromatic N-heterocycles without the help of alkoxides, in highly efficient manners.
Collapse
Affiliation(s)
- Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yo-Sep Yang
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung Hwan Son
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
31
|
Liao X, Zhou Y, Ai C, Ye C, Chen G, Yan Z, Lin S. SO2F2-mediated oxidation of primary and tertiary amines with 30% aqueous H2O2 solution. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Li B, Fang J, Xu D, Zhao H, Zhu H, Zhang F, Dong Z. Atomically Dispersed Co Clusters Anchored on N-doped Carbon Nanotubes for Efficient Dehydrogenation of Alcohols and Subsequent Conversion to Carboxylic Acids. CHEMSUSCHEM 2021; 14:4536-4545. [PMID: 34370902 DOI: 10.1002/cssc.202101330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The catalytic dehydrogenation of readily available alcohols to high value-added carbonyl compounds is a research hotspot with scientific significance. Most of the current research about this reaction is performed with noble metal-based homogeneous catalysts of high price and poor reusability. Herein, highly dispersed Co-cluster-decorated N-doped carbon nanotubes (Co/N-CNTs) were fabricated via a facile strategy and used for the dehydrogenation of alcohols with high efficiency. Various characterization techniques confirmed the presence of metallic Co clusters with almost atomic dispersion, and the N-doped carbon supports also enhanced the catalytic activity of Co clusters in the dehydrogenation reaction. Aldehydes as dehydrogenation products were further transformed in situ to carboxylic acids through a Cannizzaro-type pathway under alkaline conditions. The reaction pathway of the dehydrogenation of alcohols was clearly confirmed by theoretical calculations. This work should provide an effective and simple approach for the accurate design and synthesis of small Co-clusters catalysts for the efficient dehydrogenation-based transformation of alcohols to carboxylic acids under mild reaction conditions.
Collapse
Affiliation(s)
- Boyang Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jian Fang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Dan Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hong Zhao
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hanghang Zhu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Fengwei Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, P. R. China
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
33
|
Zhou N, Wu S, Kuang K, Wu M, Zhang M. Ni-Catalyzed radical cyclization of vinyl azides with cyclobutanone oxime esters to access cyanoalkyl containing quinoxalin-2(1 H)-ones. Org Biomol Chem 2021; 19:4697-4700. [PMID: 33982738 DOI: 10.1039/d1ob00610j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed cascade addition/cyclization of 2-azido-N-arylacrylamides and cyclobutanone oxime esters for the construction of 3-cyanoalkylated quinoxalin-2(1H)-ones is developed. This reaction proceeds under mild conditions with good functional group tolerance and broad substrate scope. A preliminary mechanistic experiment indicated that the cyanoalkyl radical might be involved in this transformation.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
34
|
Wang Z, Johnson SI, Wu G, Ménard G. Multiple N-H and C-H Hydrogen Atom Abstractions Through Coordination-Induced Bond Weakening at Fe-Amine Complexes. Inorg Chem 2021; 60:8242-8251. [PMID: 34011142 DOI: 10.1021/acs.inorgchem.1c00923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the use of the reported Fe-phthalocyanine complex, PcFe (1; Pc = 1,4,8,11,15,18,22,25-octaethoxy-phthalocyanine), to generate PcFe-amine complexes 1-(NH3)2, 1-(MeNH2)2, and 1-(Me2NH)2. Treatment of 1 or 1-(NH3)2 to an excess of the stable aryloxide radical, 2,4,6-tritert-butylphenoxyl radical (tBuArO•), under NH3 resulted in catalytic H atom abstraction (HAA) and C-N coupling to generate the product 4-amino-2,4,6-tritert-butylcyclohexa-2,5-dien-1-one (2) and tBuArOH. Exposing 1-(NH3)2 to an excess of the trityl (CPh3) variant, 2,6-di-tert-butyl-4-tritylphenoxyl radical (TrArO•), under NH3 did not lead to catalytic ammonia oxidation as previously reported in a related Ru-porphyrin complex. However, pronounced coordination-induced bond weakening of both α N-H and β C-H in the alkylamine congeners, 1-(MeNH2)2 and 1-(Me2NH)2, led to multiple HAA events yielding the unsaturated cyanide complex, 1-(MeNH2)(CN), and imine complex, 1-(MeN═CH2)2, respectively. Subsequent C-N bond formation was also observed in the latter upon addition of a coordinating ligand. Detailed computational studies support an alternating mechanism involving sequential N-H and C-H HAA to generate these unsaturated products.
Collapse
Affiliation(s)
- Zongheng Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
35
|
Tian Z, Han C, Zhao Y, Dai W, Lian X, Wang Y, Zheng Y, Shi Y, Pan X, Huang Z, Li H, Chen W. Efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation over defective ZrS 3 nanobelts. Nat Commun 2021; 12:2039. [PMID: 33795681 PMCID: PMC8016833 DOI: 10.1038/s41467-021-22394-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Photocatalytic hydrogen peroxide (H2O2) generation represents a promising approach for artificial photosynthesis. However, the sluggish half-reaction of water oxidation significantly limits the efficiency of H2O2 generation. Here, a benzylamine oxidation with more favorable thermodynamics is employed as the half-reaction to couple with H2O2 generation in water by using defective zirconium trisulfide (ZrS3) nanobelts as a photocatalyst. The ZrS3 nanobelts with disulfide (S22-) and sulfide anion (S2-) vacancies exhibit an excellent photocatalytic performance for H2O2 generation and simultaneous oxidation of benzylamine to benzonitrile with a high selectivity of >99%. More importantly, the S22- and S2- vacancies can be separately introduced into ZrS3 nanobelts in a controlled manner. The S22- vacancies are further revealed to facilitate the separation of photogenerated charge carriers. The S2- vacancies can significantly improve the electron conduction, hole extraction, and kinetics of benzylamine oxidation. As a result, the use of defective ZrS3 nanobelts yields a high production rate of 78.1 ± 1.5 and 32.0 ± 1.2 μmol h-1 for H2O2 and benzonitrile, respectively, under a simulated sunlight irradiation.
Collapse
Affiliation(s)
- Zhangliu Tian
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China ,grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Cheng Han
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yao Zhao
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
| | - Wenrui Dai
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Xu Lian
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Yanan Wang
- grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Yue Zheng
- grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Yi Shi
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Xuan Pan
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China ,grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Zhichao Huang
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China ,grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Hexing Li
- grid.412531.00000 0001 0701 1077International Joint Lab on Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Wei Chen
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China ,grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| |
Collapse
|
36
|
Azpeitia S, Mendicute‐Fierro C, Huertos MA, Rodríguez‐Diéguez A, Seco JM, Mota AJ, Garralda MA. Experimental and DFT studies on Hexacoordinated acyl(alkyl)and Pentacooordinated Hydroxyalkyl(phosphinite)erhodium(III). Catalytic Hydrolysis of Ammonia Borane. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Susan Azpeitia
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| | - Claudio Mendicute‐Fierro
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| | - Miguel A. Huertos
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
- Ikerbasque Basque Foundation for Science 48011 Bilbao Spain
| | | | - José M. Seco
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| | - Antonio J. Mota
- Departamento de Química Inorgánica Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - María A. Garralda
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| |
Collapse
|
37
|
Cooksey JP, Saidi O, Williams JM, Blacker AJ, Marsden SP. Oxidative Pictet-Spengler cyclisations through acceptorless iridium-catalysed dehydrogenation of tertiary amines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Zhang XW, He XL, Yan N, Zheng HX, Hu XG. Oxidize Amines to Nitrile Oxides: One Type of Amine Oxidation and Its Application to Directly Construct Isoxazoles and Isoxazolines. J Org Chem 2020; 85:15726-15735. [PMID: 33174420 DOI: 10.1021/acs.joc.0c02281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile oxidative heterocyclization of commercially available amines and tert-butyl nitrite with alkynes or alkenes leading to isoxazoles or isoxazolines is described. The unprecedented strategy of the oxidation of an amine directly to a nitrile oxide was used in this cyclization process. This reaction is highly efficient, regiospecific, operationally simple, mild, and tolerant of a variety of functional groups. Control experiments support a nitrile oxide intermediate mechanism for this novel class of oxidative cyclization reactions. Moreover, synthetic applications toward bioactive molecular skeletons and the late-stage modification of drugs were realized.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.,School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Xiao-Lin He
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.,School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.,School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Hong-Xing Zheng
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.,School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.,School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| |
Collapse
|
39
|
|
40
|
Li M, Hsu YP, Liu YH, Peng SM, Liu ST. Iridium complexes with ligands of 1,8-Naphthyridine-2-carboxylic acid derivatives-preparation and catalysis. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Nie X, Zheng Y, Ji L, Fu H, Chen H, Li R. Acceptorless dehydrogenation of amines to nitriles catalyzed by N-heterocyclic carbene-nitrogen-phosphine chelated bimetallic ruthenium (II) complex. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Patil RD, Gupta MK. Methods of Nitriles Synthesis from Amines through Oxidative Dehydrogenation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rajendra D. Patil
- School of Chemical Sciences KCES's Moolji Jaitha College, Jalgaon (An Autonomous college affiliated to KBC, North Maharashtra University, Jalgaon) Maharashtra India- 425002
| | - Maneesh Kumar Gupta
- Department of Chemistry Hotilal Ramnath College (A constituent unit of Jai Prakash University), Amnour, Chapra Bihar 841401
| |
Collapse
|
43
|
Nitrile Synthesis by Aerobic Oxidation of Primary Amines and
in
situ
Generated Imines from Aldehydes and Ammonium Salt with Grubbs Catalyst. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Wang W, Wang Y, Yang R, Wen Q, Liu Y, Jiang Z, Li H, Zhai T. Vacancy‐Rich Ni(OH)
2
Drives the Electrooxidation of Amino C−N Bonds to Nitrile C≡N Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Yutang Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Ruoou Yang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Qunlei Wen
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Youwen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| |
Collapse
|
45
|
Wang W, Wang Y, Yang R, Wen Q, Liu Y, Jiang Z, Li H, Zhai T. Vacancy‐Rich Ni(OH)
2
Drives the Electrooxidation of Amino C−N Bonds to Nitrile C≡N Bonds. Angew Chem Int Ed Engl 2020; 59:16974-16981. [DOI: 10.1002/anie.202005574] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/22/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Yutang Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Ruoou Yang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Qunlei Wen
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Youwen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| |
Collapse
|
46
|
Chen Z, Zhou Q, Wang Q, Chen P, Xiong B, Liang Y, Tang K, Liu Y. Iron‐Mediated Cyanoalkylsulfonylation/Arylation of Active Alkenes with Cycloketone Oxime Derivatives via Sulfur Dioxide Insertion. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000369] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zan Chen
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Quan Zhou
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Qiao‐Lin Wang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Pu Chen
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Bi‐Quan Xiong
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic FunctionalMolecules of Hunan ProvinceHunan Normal University Changsha Hunan 410081 People's Republic of China
| | - Ke‐Wen Tang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
- Key Laboratory of the Assembly and Application of Organic FunctionalMolecules of Hunan ProvinceHunan Normal University Changsha Hunan 410081 People's Republic of China
| |
Collapse
|
47
|
Kannan M, Barteja P, Devi P, Muthaiah S. Acceptorless dehydrogenation of amines and alcohols using simple ruthenium chloride. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Hazra S, Malik E, Nair A, Tiwari V, Dolui P, Elias AJ. Catalytic Oxidation of Alcohols and Amines to Value‐Added Chemicals using Water as the Solvent. Chem Asian J 2020; 15:1916-1936. [DOI: 10.1002/asia.202000299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/20/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Susanta Hazra
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| | - Ekta Malik
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| | - Abhishek Nair
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| | - Vikas Tiwari
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| | - Pritam Dolui
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| | - Anil J. Elias
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
49
|
Jiang X, Zhao Z, Shen Z, Chen K, Fang L, Yu C. Flavin/I2
-Catalyzed Aerobic Oxidative C-H Sulfenylation of Aryl-Fused Cyclic Amines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zongchen Zhao
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zhifeng Shen
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Keda Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P.R. China
| | - Liyun Fang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| |
Collapse
|
50
|
Cui X, Li W, Junge K, Fei Z, Beller M, Dyson PJ. Selective Acceptorless Dehydrogenation of Primary Amines to Imines by Core-Shell Cobalt Nanoparticles. Angew Chem Int Ed Engl 2020; 59:7501-7507. [PMID: 32049401 PMCID: PMC7217016 DOI: 10.1002/anie.201915526] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/16/2020] [Indexed: 01/25/2023]
Abstract
Core-shell nanocatalysts are attractive due to their versatility and stability. Here, we describe cobalt nanoparticles encapsulated within graphitic shells prepared via the pyrolysis of a cationic poly-ionic liquid (PIL) with a cobalt(II) chloride anion. The resulting material has a core-shell structure that displays excellent activity and selectivity in the self-dehydrogenation and hetero-dehydrogenation of primary amines to their corresponding imines. Furthermore, the catalyst exhibits excellent activity in the synthesis of secondary imines from substrates with various reducible functional groups (C=C, C≡C and C≡N) and amino acid derivatives.
Collapse
Affiliation(s)
- Xinjiang Cui
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fedérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Wu Li
- Leibniz-Institute for CatalysisAlbert Einstein Str. 29a18059RostockGermany
| | - Kathrin Junge
- Leibniz-Institute for CatalysisAlbert Einstein Str. 29a18059RostockGermany
| | - Zhaofu Fei
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fedérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Matthias Beller
- Leibniz-Institute for CatalysisAlbert Einstein Str. 29a18059RostockGermany
| | - Paul J. Dyson
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fedérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|