1
|
Yang R, Xu S, Wang X, Xiao Y, Li J, Hu C. Selective Stereoretention of Carbohydrates upon C-C Cleavage Enabling D-Glyceric Acid Production with High Optical Purity over a Ag/γ-Al 2O 3 Catalyst. Angew Chem Int Ed Engl 2024; 63:e202403547. [PMID: 38485666 DOI: 10.1002/anie.202403547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Indexed: 04/06/2024]
Abstract
Chiral carboxylic acid production from renewable biomass by chemocatalysis is vitally important for reducing our carbon footprint, but remains underdeveloped. We herein establish a strategy that make use of a stereogenic center of biomass to achieve a rare example of D-glyceric acid production with the highest yield (86.8 %) reported to date as well as an excellent ee value (>99 %). Unlike traditional asymmetric catalysis, chiral catalysts/additives are not required. Ample experiments combined with quantum chemical calculations established the origins of the stereogenic center and catalyst performance. The chirality at C4 in D-xylose was proved to be retained and successfully delivered to C2 in D-glyceric acid during C-C cleavage. The remarkable cooperative-roles of Ag+ and Ag0 in the constructed Ag/γ-Al2O3 catalyst are disclosed as the crucial contributors. Ag+ was responsible for low-temperature activation of D-xylose, while Ag0 facilitated the generation of active O* from O2. Ag+ and active O* cooperatively promoted the precise cleavage of the C2-C3 bond, and more importantly O* allowed the immediate fast oxidization of the D-glyceraldehyde intermediate to stabilize D-glyceric acid, thereby inhibiting the side reaction that induced racemization. This strategy makes a significant breakthrough in overcoming the limitation of poor enantioselectivity in current chemocatalytic conversion of biomass.
Collapse
Affiliation(s)
- Ruofeng Yang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Shuguang Xu
- College of Chemical Engineering, Sichuan University No.24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, PR China
| | - Xiaoyan Wang
- Analysis and Test Center, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Yuan Xiao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Jianmei Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| |
Collapse
|
2
|
Bozkurt OD, Toraman HE. Conversion of Polypropylene into Light Hydrocarbons and Aromatics by Metal Exchanged Zeolite Catalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9636-9650. [PMID: 38654550 DOI: 10.1021/acs.langmuir.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Polyolefins can be converted into C2-C5 hydrocarbons and benzene-toluene-xylene (BTX) aromatics as high-demand petrochemical feedstocks via catalytic pyrolysis on acidic zeolites. Bro̷nsted and Lewis acid sites are responsible for cracking polyolefins into olefins and subsequent aromatic formation. In this study, we have subjected the parent HZSM-5 zeolite to postsynthetic partial metal exchange with Fe, Co, Ni, Cu, and Ce cations to perturb Bro̷nsted/Lewis acidity. We have investigated these metal-modified HZSM-5 on the catalytic pyrolysis of polypropylene (PP) in a micropyrolyzer connected to a two-dimensional gas chromatograph coupled to a time-of-flight mass spectrometer and flame ionization detector (Tandem Pyrolyzer-GC × GC-TOF-MS/FID setup). Whereas Fe-, Co-, Cu-, and Ce-exchanged zeolites (with 2.5, 2.3, 1.9, and 0.8 wt % metal, respectively) had comparable product yields with the parent zeolite, Ni-exchanged zeolites with Ni content of 0.5 to 2 wt % were associated with enhanced BTX formation (28-38 wt %) compared to that of the parent zeolite (22 wt %). Pyridine-FTIR indicated that the Bro̷nsted/Lewis acid ratio of the parent zeolite decreased upon metal ion exchange. According to Pyridine-TPD, the parent zeolite's medium-strength acid sites were redistributed into weak and strong acid sites in Ni-exchanged zeolites. The higher amount of carbon deposits on Ni-exchanged zeolites compared to the parent and other metal ion exchanged zeolites was attributed to the enhanced aromatization activity by the simultaneous decrease in the Bro̷nsted/Lewis acid ratio and emergence of strong acid sites.
Collapse
Affiliation(s)
- Ozge Deniz Bozkurt
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hilal Ezgi Toraman
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute of Energy and the Environment, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Merle N, Tabassum T, Scott SL, Motta A, Szeto K, Taoufik M, Gauvin RM, Delevoye L. High-Field NMR, Reactivity, and DFT Modeling Reveal the γ-Al 2 O 3 Surface Hydroxyl Network. Angew Chem Int Ed Engl 2022; 61:e202207316. [PMID: 35785426 PMCID: PMC9541507 DOI: 10.1002/anie.202207316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/10/2022]
Abstract
Aluminas are strategic materials used in many major industrial processes, either as catalyst supports or as catalysts in their own right. The transition alumina γ-Al2 O3 is a privileged support, whose reactivity can be tuned by thermal activation. This study provides a qualitative and quantitative assessment of the hydroxyl groups present on the surface of γ-Al2 O3 at three different dehydroxylation temperatures. The principal [AlOH] configurations are identified and described in unprecedented detail at the molecular level. The structures were established by combining information from high-field 1 H and 27 Al solid-state NMR, IR spectroscopy and DFT calculations, as well as selective reactivity studies. Finally, the relationship between the hydroxyl structures and the molecular-level structures of the active sites in catalytic alkane metathesis is discussed.
Collapse
Affiliation(s)
- Nicolas Merle
- Univ. Lille, CNRSCentrale LilleUniv. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide59000LilleFrance
| | - Tarnuma Tabassum
- Department of Chemistry & Biochemistryand Department of Chemical EngineeringUniversity of California, Santa BarbaraSanta BarbaraCA 93106USA
| | - Susannah L. Scott
- Department of Chemistry & Biochemistryand Department of Chemical EngineeringUniversity of California, Santa BarbaraSanta BarbaraCA 93106USA
| | - Alessandro Motta
- Dipartimento di Scienze ChimicheUniversità di Roma “La Sapienza” and INSTM, UdR RomaPiazzale Aldo Moro 500185RomaItaly
| | - Kai Szeto
- Univ. Lyon 1, CPE Lyon, CNRS UMR 5265Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2)Université de Lyon69616VilleurbanneFrance
| | - Mostafa Taoufik
- Univ. Lyon 1, CPE Lyon, CNRS UMR 5265Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2)Université de Lyon69616VilleurbanneFrance
| | - Régis Michaël Gauvin
- Chimie ParisTechPSL University, CNRSInstitut de Recherche de Chimie Paris75005ParisFrance
| | - Laurent Delevoye
- Univ. Lille, CNRSCentrale LilleUniv. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide59000LilleFrance
| |
Collapse
|
4
|
Merle N, Tabassum T, Scott S, Motta A, Szeto K, Taoufik M, Gauvin RM, Delevoye L. High‐Field NMR, Reactivity, and DFT Modeling Reveal the γ‐Al2O3 Surface Hydroxyl Network. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nicolas Merle
- Universite de Lille Faculté des Sciences et Technologies: Universite de Lille Faculte des Sciences et Technologies UCCS FRANCE
| | - Tarnuma Tabassum
- UCSB: University of California Santa Barbara Department of Chemical Engineering FRANCE
| | - Susannah Scott
- UCSB: University of California Santa Barbara Department of Chemical Engineering FRANCE
| | - Alessandro Motta
- Sapienza Università di Roma: Universita degli Studi di Roma La Sapienza Dipartimento di Scienze Chimiche ITALY
| | - Kai Szeto
- Lyon 1 University: Universite Claude Bernard Lyon 1 CPE FRANCE
| | - Mostafa Taoufik
- Lyon 1 University: Universite Claude Bernard Lyon 1 CPE Lyon FRANCE
| | - Régis Michaël Gauvin
- Institut de Recherche de Chimie Paris Team COCP Chimie ParisTech11 rue Pierrre et Marie Curie 75005 Paris FRANCE
| | - Laurent Delevoye
- Universite de Lille Faculte des Sciences et Technologies UCCS FRANCE
| |
Collapse
|
5
|
Qi G, Wang Q, Xu J, Deng F. Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. Chem Soc Rev 2021; 50:8382-8399. [PMID: 34115080 DOI: 10.1039/d0cs01130d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Understanding the nature of heterogeneous catalysts is critical for the rational design of highly active catalysts, which necessitates in-depth characterization of the structure and properties of catalysts as well as reaction mechanisms. Solid-state NMR correlation spectroscopy is becoming increasingly recognized as a powerful tool in the study of catalysts and catalytic reactions because of its capability to provide atomic-level insights into the structure, interaction and dynamics of molecules by establishing connectivity and proximity between the same or distinct nuclei. This tutorial review focuses on the fundamentals and state-of-the-art applications of solid-state NMR correlation techniques to structural characterization of catalytic materials including zeolites, metal oxides, organometallic complexes and MOFs as well as relevant studies regarding synthesis, synergistic catalysis, host-guest interactions and reaction mechanisms. Various correlation NMR methods that have been employed to address the challenging issues in heterogeneous catalysis are highlighted. This review concludes with outlooks on the promising applications and potential developments of solid-state NMR correlation spectroscopy in catalytic materials.
Collapse
Affiliation(s)
- Guodong Qi
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | | | | | | |
Collapse
|
6
|
Zhao P, Ye L, Li G, Huang C, Wu S, Ho PL, Wang H, Yoskamtorn T, Sheptyakov D, Cibin G, Kirkland AI, Tang CC, Zheng A, Xue W, Mei D, Suriye K, Tsang SCE. Rational Design of Synergistic Active Sites for Catalytic Ethene/2-Butene Cross-Metathesis in a Rhenium-Doped Y Zeolite Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pu Zhao
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Lin Ye
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Guangchao Li
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, People’s Republic of China
| | - Chen Huang
- Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
| | - Simson Wu
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Ping-Luen Ho
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
- Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
| | - Haokun Wang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Tatchamapan Yoskamtorn
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | | | - Giannantonio Cibin
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Angus I. Kirkland
- Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Chiu C. Tang
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Anmin Zheng
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, People’s Republic of China
| | - Wenjuan Xue
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, People’s Republic of China
| | - Donghai Mei
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, People’s Republic of China
- Physical and Computational Sciences Directorate & Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| |
Collapse
|
7
|
Copéret C, Berkson ZJ, Chan KW, de Jesus Silva J, Gordon CP, Pucino M, Zhizhko PA. Olefin metathesis: what have we learned about homogeneous and heterogeneous catalysts from surface organometallic chemistry? Chem Sci 2021; 12:3092-3115. [PMID: 34164078 PMCID: PMC8179417 DOI: 10.1039/d0sc06880b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 11/21/2022] Open
Abstract
Since its early days, olefin metathesis has been in the focus of scientific discussions and technology development. While heterogeneous olefin metathesis catalysts based on supported group 6 metal oxides have been used for decades in the petrochemical industry, detailed mechanistic studies and the development of molecular organometallic chemistry have led to the development of robust and widely used homogeneous catalysts based on well-defined alkylidenes that have found applications for the synthesis of fine and bulk chemicals and are also used in the polymer industry. The development of the chemistry of high-oxidation group 5-7 alkylidenes and the use of surface organometallic chemistry (SOMC) principles unlocked the preparation of so-called well-defined supported olefin metathesis catalysts. The high activity and stability (often superior to their molecular analogues) and molecular-level characterisation of these systems, that were first reported in 2001, opened the possibility for the first direct structure-activity relationships for supported metathesis catalysts. This review describes first the history of SOMC in the field of olefin metathesis, and then focuses on what has happened since 2007, the date of our last comprehensive reviews in this field.
Collapse
Affiliation(s)
- Christophe Copéret
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Zachariah J Berkson
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Ka Wing Chan
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Jordan de Jesus Silva
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Christopher P Gordon
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Margherita Pucino
- ETH Zürich, Department of Chemistry and Applied Biosciences Vladimir Prelog Weg 2 CH-8093 Zürich Switzerland
| | - Pavel A Zhizhko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences Vavilov Str. 28 119991 Moscow Russia
| |
Collapse
|
8
|
Larabi C, Chen C, Merle N, Charlin M, Szeto KC, De Mallmann A, Benayad A, B. Meziane K, Kaddouri A, Nguyen HP, Taoufik M. Well-defined surface tungstenocarbyne complex through the reaction of [W(CtBu)(CH2tBu)3] with CeO2: a highly stable precatalyst for NOx reduction with NH3. NEW J CHEM 2021. [DOI: 10.1039/d0nj02146f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly-efficient NH3-SCR single site catalyst W(CtBu)(CH2tBu)3/CeO2–200, was prepared by surface organometallic chemistry approach. This catalyst showed high catalytic activity and stability with a broad operational temperature window.
Collapse
Affiliation(s)
- Cherif Larabi
- Université Lyon 1
- Institut de Chimie Lyon
- CPE Lyon CNRS
- UMR 5128 CP2M
- PCM
| | - Cuirong Chen
- Université Lyon 1
- Institut de Chimie Lyon
- CPE Lyon CNRS
- UMR 5128 CP2M
- PCM
| | - Nicolas Merle
- Université Lyon 1
- Institut de Chimie Lyon
- CPE Lyon CNRS
- UMR 5128 CP2M
- PCM
| | - Marc Charlin
- Université Lyon 1
- Institut de Chimie Lyon
- CPE Lyon CNRS
- UMR 5128 CP2M
- PCM
| | - Kai C. Szeto
- Université Lyon 1
- Institut de Chimie Lyon
- CPE Lyon CNRS
- UMR 5128 CP2M
- PCM
| | | | - Anass Benayad
- Université Grenoble Alpes
- CEA-LITEN
- 38054 Grenoble Cedex 9
- France
| | - Karima B. Meziane
- Université de Lille
- CNRS
- UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions
- la Réactivité et l'Environnement
- F-59000 Lille
| | - Akim Kaddouri
- Université Lyon 1 - CNRS
- UMR 5256
- IRCELYON
- F-69626 Villeurbanne
- France
| | | | - Mostafa Taoufik
- Université Lyon 1
- Institut de Chimie Lyon
- CPE Lyon CNRS
- UMR 5128 CP2M
- PCM
| |
Collapse
|
9
|
Nelson NC, Chen L, Meira D, Kovarik L, Szanyi J. In Situ Dispersion of Palladium on TiO 2 During Reverse Water-Gas Shift Reaction: Formation of Atomically Dispersed Palladium. Angew Chem Int Ed Engl 2020; 59:17657-17663. [PMID: 32589820 DOI: 10.1002/anie.202007576] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Indexed: 11/08/2022]
Abstract
The application of single-atom catalysts (SACs) to high-temperature hydrogenation requires materials that thermodynamically favor metal atom isolation over cluster formation. We demonstrate that Pd can be predominantly dispersed as isolated atoms onto TiO2 during the reverse water-gas shift (rWGS) reaction at 400 °C. Achieving atomic dispersion requires an artificial increase of the absolute TiO2 surface area by an order of magnitude and can be accomplished by physically mixing a precatalyst (Pd/TiO2 ) with neat TiO2 prior to the rWGS reaction. The in situ dispersion of Pd was reflected through a continuous increase of rWGS activity over 92 h and supported by kinetic analysis, infrared and X-ray absorption spectroscopies and scanning transmission electron microscopy. The thermodynamic stability of Pd under high-temperature rWGS conditions is associated with Pd-Ti coordination, which manifests upon O-vacancy formation, and the artificial increase in TiO2 surface area.
Collapse
Affiliation(s)
- Nicholas C Nelson
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Linxiao Chen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Debora Meira
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA.,Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - János Szanyi
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
10
|
Nelson NC, Chen L, Meira D, Kovarik L, Szanyi J. In Situ Dispersion of Palladium on TiO
2
During Reverse Water–Gas Shift Reaction: Formation of Atomically Dispersed Palladium. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas C. Nelson
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Linxiao Chen
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Debora Meira
- CLS@APS sector 20 Advanced Photon Source Argonne National Laboratory 9700 S. Cass Avenue Argonne IL 60439 USA
- Canadian Light Source Inc. 44 Innovation Boulevard Saskatoon Saskatchewan S7N 2V3 Canada
| | - Libor Kovarik
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| | - János Szanyi
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
11
|
Qi J, Finzel J, Robatjazi H, Xu M, Hoffman AS, Bare SR, Pan X, Christopher P. Selective Methanol Carbonylation to Acetic Acid on Heterogeneous Atomically Dispersed ReO4/SiO2 Catalysts. J Am Chem Soc 2020; 142:14178-14189. [DOI: 10.1021/jacs.0c05026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ji Qi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Jordan Finzel
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Hossein Robatjazi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | | | - Adam S. Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
12
|
Wu J, Ramanathan A, Kersting R, Jystad A, Zhu H, Hu Y, Marshall CP, Caricato M, Subramaniam B. Enhanced Olefin Metathesis Performance of Tungsten and Niobium Incorporated Bimetallic Silicates: Evidence of Synergistic Effects. ChemCatChem 2020. [DOI: 10.1002/cctc.201902131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian‐Feng Wu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
- Center for Environmentally Beneficial CatalysisThe University of Kansas Lawrence KS-66047 USA
| | - Anand Ramanathan
- Center for Environmentally Beneficial CatalysisThe University of Kansas Lawrence KS-66047 USA
| | | | - Amy Jystad
- Department of ChemistryThe University of Kansas Lawrence KS-66045 USA
| | - Hongda Zhu
- Center for Environmentally Beneficial CatalysisThe University of Kansas Lawrence KS-66047 USA
- Department of Chemical and Petroleum EngineeringThe University of Kansas Lawrence KS-66045 USA
| | - Yongfeng Hu
- Canadian Light Source Inc.University of Saskatchewan Saskatoon Saskatchewan S7 N 2 V3 Canada
| | - Craig P. Marshall
- Department of ChemistryThe University of Kansas Lawrence KS-66045 USA
- Department of GeologyThe University of Kansas Lawrence KS-66045 USA
| | - Marco Caricato
- Department of ChemistryThe University of Kansas Lawrence KS-66045 USA
| | - Bala Subramaniam
- Center for Environmentally Beneficial CatalysisThe University of Kansas Lawrence KS-66047 USA
- Department of Chemical and Petroleum EngineeringThe University of Kansas Lawrence KS-66045 USA
| |
Collapse
|
13
|
Wang F, Ma J, Xin S, Wang Q, Xu J, Zhang C, He H, Cheng Zeng X. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al 2O 3 surface for high catalytic performance. Nat Commun 2020; 11:529. [PMID: 31988282 PMCID: PMC6985108 DOI: 10.1038/s41467-019-13937-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022] Open
Abstract
Ag/γ-Al2O3 is widely used for catalyzing various reactions, and its performance depends on the valence state, morphology and dispersion of Ag species. However, detailed anchoring mechanism of Ag species on γ-Al2O3 remains largely unknown. Herein, we reveal that the terminal hydroxyls on γ-Al2O3 are responsible for anchoring Ag species. The abundant terminal hydroxyls existed on nanosized γ-Al2O3 can lead to single-atom silver dispersion, thereby resulting in markedly enhanced performance than the Ag cluster on microsized γ-Al2O3. Density-functional-theory calculations confirm that Ag atom is mainly anchored by the terminal hydroxyls on (100) surface, forming a staple-like local structure with each Ag atom bonded with two or three terminal hydroxyls. Our finding resolves the puzzle on why the single-atom silver dispersion can be spontaneously achieved only on nanosized γ-Al2O3, but not on microsized γ-Al2O3. The obtained insight into the Ag species dispersion will benefit future design of more efficient supported Ag catalysts.
Collapse
Affiliation(s)
- Fei Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shaohui Xin
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qiang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiao Cheng Zeng
- Department of Chemistry, Department of Chemical & Biomolecular Engineering, and Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
14
|
Sharkey BE, Jentoft FC. Fundamental Insights into Deactivation by Leaching during Rhenium-Catalyzed Deoxydehydration. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bryan E. Sharkey
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Friederike C. Jentoft
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
15
|
Samantaray MK, D'Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem Rev 2019; 120:734-813. [PMID: 31613601 DOI: 10.1021/acs.chemrev.9b00238] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single atom catalysis (SAC) is a recent discipline of heterogeneous catalysis for which a single atom on a surface is able to carry out various catalytic reactions. A kind of revolution in heterogeneous catalysis by metals for which it was assumed that specific sites or defects of a nanoparticle were necessary to activate substrates in catalytic reactions. In another extreme of the spectrum, surface organometallic chemistry (SOMC), and, by extension, surface organometallic catalysis (SOMCat), have demonstrated that single atoms on a surface, but this time with specific ligands, could lead to a more predictive approach in heterogeneous catalysis. The predictive character of SOMCat was just the result of intuitive mechanisms derived from the elementary steps of molecular chemistry. This review article will compare the aspects of single atom catalysis and surface organometallic catalysis by considering several specific catalytic reactions, some of which exist for both fields, whereas others might see mutual overlap in the future. After a definition of both domains, a detailed approach of the methods, mostly modeling and spectroscopy, will be followed by a detailed analysis of catalytic reactions: hydrogenation, dehydrogenation, hydrogenolysis, oxidative dehydrogenation, alkane and cycloalkane metathesis, methane activation, metathetic oxidation, CO2 activation to cyclic carbonates, imine metathesis, and selective catalytic reduction (SCR) reactions. A prospective resulting from present knowledge is showing the emergence of a new discipline from the overlap between the two areas.
Collapse
Affiliation(s)
- Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Valerio D'Elia
- School of Molecular Science and Engineering (MSE) , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wang Chan, Payupnai , 21210 Rayong , Thailand
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Samy Ould Chikh
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|