1
|
Tavani F, Frateloreto F, Del Giudice D, Capocasa G, Di Berto Mancini M, Busato M, Lanzalunga O, Di Stefano S, D'Angelo P. Coupled X-ray Absorption/UV-vis Monitoring of a Prototypical Oscillating Reaction. J Phys Chem Lett 2024; 15:7312-7319. [PMID: 38984831 DOI: 10.1021/acs.jpclett.4c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Oscillating reactions are among the most intriguing phenomena in chemistry, but many questions on their mechanisms still remain unanswered, due to their intrinsic complexity and to the low sensitivity of the most common spectroscopic techniques toward the reaction brominated species. In this work, we investigate the cerium ion-catalyzed Belousov-Zhabotinsky (BZ) oscillating reaction by means of time-resolved X-ray absorption spectroscopy (XAS), in combination with UV-vis spectroscopy and unsupervised machine learning, multivariate curve resolution, and kinetic analyses. Altogether, we provide new insights into the collective oscillatory behavior of the key brominated species involved in the classical BZ reaction and measure previously unreported oscillations in their concentrations through Br K-edge XAS, while simultaneously tracking the oscillatory Ce4+-to-Ce3+ transformation by coupling XAS with UV-vis spectroscopy. Our work evidences the potential of the XAS technique to investigate the mechanisms of oscillatory chemical systems whose species are often not detectable with conventional experimental methods.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Federico Frateloreto
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Marika Di Berto Mancini
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Matteo Busato
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Paola D'Angelo
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
2
|
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024; 124:2352-2418. [PMID: 38408190 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.
Collapse
Affiliation(s)
- Max L Bols
- Laboratory for Chemical Technology (LCT), University of Ghent, Technologiepark Zwijnaarde 125, 9052 Ghent, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Fatima Rammal
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuejiao Wu
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sara Navarro-Jaén
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexander J Heyer
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
Tofoni A, Tavani F, Vandone M, Braglia L, Borfecchia E, Ghigna P, Stoian DC, Grell T, Stolfi S, Colombo V, D’Angelo P. Full Spectroscopic Characterization of the Molecular Oxygen-Based Methane to Methanol Conversion over Open Fe(II) Sites in a Metal-Organic Framework. J Am Chem Soc 2023; 145:21040-21052. [PMID: 37721732 PMCID: PMC10540213 DOI: 10.1021/jacs.3c07216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/19/2023]
Abstract
Iron-based enzymes efficiently activate molecular oxygen to perform the oxidation of methane to methanol (MTM), a reaction central to the contemporary chemical industry. Conversely, a very limited number of artificial catalysts have been devised to mimic this process. Herein, we employ the MIL-100(Fe) metal-organic framework (MOF), a material that exhibits isolated Fe sites, to accomplish the MTM conversion using O2 as the oxidant under mild conditions. We apply a diverse set of advanced operando X-ray techniques to unveil how MIL-100(Fe) can act as a catalyst for direct MTM conversion. Single-phase crystallinity and stability of the MOF under reaction conditions (200 or 100 °C, CH4 + O2) are confirmed by X-ray diffraction measurements. X-ray absorption, emission, and resonant inelastic scattering measurements show that thermal treatment above 200 °C generates Fe(II) sites that interact with O2 and CH4 to produce methanol. Experimental evidence-driven density functional theory (DFT) calculations illustrate that the MTM reaction involves the oxidation of the Fe(II) sites to Fe(III) via a high-spin Fe(IV)═O intermediate. Catalyst deactivation is proposed to be caused by the escape of CH3• radicals from the relatively large MOF pore cages, ultimately resulting in the formation of hydroxylated triiron units, as proven by valence-to-core X-ray emission spectroscopy. The O2-based MTM catalytic activity of MIL-100(Fe) in the investigated conditions is demonstrated for two consecutive reaction cycles, proving the MOF potential toward active site regeneration. These findings will desirably lay the groundwork for the design of improved MOF catalysts for the MTM conversion.
Collapse
Affiliation(s)
- Alessandro Tofoni
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Francesco Tavani
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Marco Vandone
- Dipartimento
di Chimica & UdR INSTM di Milano, Università
degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Luca Braglia
- CNR-Istituto
Officina dei Materiali, TASC, 34149 Trieste, Italy
| | - Elisa Borfecchia
- Dipartimento
di Chimica & UdR INSTM di Torino, Università
di Torino, Via P. Giuria
7, 10125 Turin, Italy
| | - Paolo Ghigna
- Dipartimento
di Chimica, Università di Pavia, V.le Taramelli 13, I-27100 Pavia, Italy
| | - Dragos Costantin Stoian
- The Swiss-Norwegian
Beamlines (SNBL), European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Toni Grell
- Dipartimento
di Chimica & UdR INSTM di Milano, Università
degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Sara Stolfi
- CNR-Istituto
Officina dei Materiali, TASC, 34149 Trieste, Italy
| | - Valentina Colombo
- Dipartimento
di Chimica & UdR INSTM di Milano, Università
degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- CNR
− SCITEC − Istituto di Scienze e Tecnologie Chimiche
“Giulio Natta”, Via Golgi 19, 20133 Milan, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
4
|
Cao L, Liu X, Shen X, Wu D, Yao T. Uncovering the Nature of Active Sites during Electrocatalytic Reactions by In Situ Synchrotron-Based Spectroscopic Techniques. Acc Chem Res 2022; 55:2594-2603. [PMID: 36044043 DOI: 10.1021/acs.accounts.2c00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Catalysts can effectively accelerate the reaction kinetics process and are recognized as the core to realize the conversion and supply of carbon-free energy. However, the active sites of catalysts, especially nanocatalysts, usually undergo dynamic structural evolution under realistic working conditions, which may be induced by various reaction effects such as the applied voltages, electrolytes, or adsorbed intermediates. Therefore, in-depth and systemic insights into the nature of the active sites involved under the working conditions are prerequisites for correlating structure-performance relationships. However, uncovering and identifying active sites under operation conditions are still formidable scientific and technical challenges, which are severely hindered by the complex physical and chemical processes occurring on the active sites. Meanwhile, complementary and important information could be missed by conducting only the conventionally employed ex situ microscopic and spectroscopic measurements. Accordingly, it is highly desirable for us to develop the ever-increasing in situ synchrotron-based techniques to identify the nature of active sites, which renders the rational design of functional catalysts achievable.In this Account, we elaborately highlight the substantial achievements in cutting-edge in situ X-ray spectroscopy (XAS) techniques by presenting several representative carbon-neutral electrocatalytic examples performed in our group to broadcast the principles and virtues of identifying the active sites and tracing intermediate species during electrocatalytic water splitting and electrocatalytic CO2 reduction (ECR). Specifically, we believe that the interactions between the active sites and the support as well as the adsorption behaviors of intermediates are considered to be the important factors that govern the performance in the water splitting reaction. Meanwhile, the structural rearrangement of alloy catalysts driven by the cathodic potential significantly governs the activity and selectivity toward ECR. More importantly, the directions and suggestions for addressing the current limitations and pitfalls that we may encounter in the course of executing in situ experiments are also provided. Accordingly, it is necessary to use multiple in situ synchrotron-based techniques to obtain the comprehensive details. Furthermore, bridging the gap between the real energy devices and half-reactions could help us to approach the realistic mechanism. Beyond that, developing the rapid time resolution of in situ XAS will overcome the challenge of timescale mismatch to capture the faster structural kinetics of catalysts. Therefore, this Account is aimed to increase the awareness and appreciation of conducting in situ investigations on energy conversion reactions, which would be a guideline for us to explore catalytic scopes that remain challenging.
Collapse
Affiliation(s)
- Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China.,Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xinyi Shen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Dan Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
5
|
Tavani F, Busato M, Braglia L, Mauri S, Torelli P, D’Angelo P. Caught while Dissolving: Revealing the Interfacial Solvation of the Mg 2+ Ions on the MgO Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38370-38378. [PMID: 35968677 PMCID: PMC9412945 DOI: 10.1021/acsami.2c10005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Interfaces between water and materials are ubiquitous and are crucial in materials sciences and in biology, where investigating the interaction of water with the surface under ambient conditions is key to shedding light on the main processes occurring at the interface. Magnesium oxide is a popular model system to study the metal oxide-water interface, where, for sufficient water loadings, theoretical models have suggested that reconstructed surfaces involving hydrated Mg2+ metal ions may be energetically favored. In this work, by combining experimental and theoretical surface-selective ambient pressure X-ray absorption spectroscopy with multivariate curve resolution and molecular dynamics, we evidence in real time the occurrence of Mg2+ solvation at the interphase between MgO and solvating media such as water and methanol (MeOH). Further, we show that the Mg2+ surface ions undergo a reversible solvation process, we prove the dissolution/redeposition of the Mg2+ ions belonging to the MgO surface, and we demonstrate the formation of octahedral [Mg(H2O)6]2+ and [Mg(MeOH)6]2+ intermediate solvated species. The unique surface, electronic, and structural sensitivity of the developed technique may be beneficial to access often elusive properties of low-Z metal ion intermediates involved in interfacial processes of chemical and biological interest.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Matteo Busato
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Luca Braglia
- CNR
- Istituto Officina dei Materiali, TASC, I-34149 Trieste, Italy
| | - Silvia Mauri
- CNR
- Istituto Officina dei Materiali, TASC, I-34149 Trieste, Italy
- Dipartimento
di Fisica, Università di Trieste, Via A. Valerio 2, 34127 Trieste, Italy
| | - Piero Torelli
- CNR
- Istituto Officina dei Materiali, TASC, I-34149 Trieste, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
6
|
Frateloreto F, Tavani F, Di Berto Mancini M, Del Giudice D, Capocasa G, Kieffer I, Lanzalunga O, Di Stefano S, D’Angelo P. Following a Silent Metal Ion: A Combined X-ray Absorption and Nuclear Magnetic Resonance Spectroscopic Study of the Zn 2+ Cation Dissipative Translocation between Two Different Ligands. J Phys Chem Lett 2022; 13:5522-5529. [PMID: 35695810 PMCID: PMC9234980 DOI: 10.1021/acs.jpclett.2c01468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The dissipative translocation of the Zn2+ ion between two prototypical coordination complexes has been investigated by combining X-ray absorption and 1H NMR spectroscopy. An integrated experimental and theoretical approach, based on state-of-the-art Multivariate Curve Resolution and DFT based theoretical analyses, is presented as a means to understand the concentration time evolution of all relevant Zn and organic species in the investigated processes, and accurately characterize the solution structures of the key metal coordination complexes. Specifically, we investigate the dissipative translocation of the Zn2+ cation from hexaaza-18-crown-6 to two terpyridine moieties and back again to hexaaza-18-crown-6 using 2-cyano-2-phenylpropanoic acid and its para-chloro derivative as fuels. Our interdisciplinary approach has been proven to be a valuable tool to shed light on reactive systems containing metal ions that are silent to other spectroscopic methods. These combined experimental approaches will enable future applications to chemical and biological systems in a predictive manner.
Collapse
Affiliation(s)
- Federico Frateloreto
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Francesco Tavani
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Marika Di Berto Mancini
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Daniele Del Giudice
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Giorgio Capocasa
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Isabelle Kieffer
- Observatoire
des Sciences de l’Univers de Grenoble (OSUG), Université Grenoble-Alpes, UMR
832 CNRS, Grenoble, Cedex 9 F-38041, France
- BM30/CRG-FAME, ESRF, Polygone scientifique, Grenoble, 38000, France
| | - Osvaldo Lanzalunga
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Stefano Di Stefano
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università degli Studi
di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
7
|
Sharma VK, Feng M, Dionysiou DD, Zhou HC, Jinadatha C, Manoli K, Smith MF, Luque R, Ma X, Huang CH. Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:30-47. [PMID: 34918915 DOI: 10.1021/acs.est.1c04616] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efforts are being made to tune the reactivity of the tetraoxy anion of iron in the +6 oxidation state (FeVIO42-), commonly called ferrate, to further enhance its applications in various environmental fields. This review critically examines the strategies to generate highly reactive high-valent iron intermediates, FeVO43- (FeV) and FeIVO44- or FeIVO32- (FeIV) species, from FeVIO42-, for the treatment of polluted water with greater efficiency. Approaches to produce FeV and FeIV species from FeVIO42- include additions of acid (e.g., HCl), metal ions (e.g., Fe(III)), and reductants (R). Details on applying various inorganic reductants (R) to generate FeV and FeIV from FeVIO42- via initial single electron-transfer (SET) and oxygen-atom transfer (OAT) to oxidize recalcitrant pollutants are presented. The common constituents of urine (e.g., carbonate, ammonia, and creatinine) and different solids (e.g., silica and hydrochar) were found to accelerate the oxidation of pharmaceuticals by FeVIO42-, with potential mechanisms provided. The challenges of providing direct evidence of the formation of FeV/FeIV species are discussed. Kinetic modeling and density functional theory (DFT) calculations provide opportunities to distinguish between the two intermediates (i.e., FeIV and FeV) in order to enhance oxidation reactions utilizing FeVIO42-. Further mechanistic elucidation of activated ferrate systems is vital to achieve high efficiency in oxidizing emerging pollutants in various aqueous streams.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Chetan Jinadatha
- Central Texas Veterans Health Care System, Temple, Texas 76504-7451, United States
- College of Medicine, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Kyriakos Manoli
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Mallory F Smith
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Rafael Luque
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C_3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation
| | - Xingmao Ma
- Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Tavani F, Fracchia M, Tofoni A, Braglia L, Jouve A, Morandi S, Manzoli M, Torelli P, Ghigna P, D'Angelo P. Structural and mechanistic insights into low-temperature CO oxidation over a prototypical high entropy oxide by Cu L-edge operando soft X-ray absorption spectroscopy. Phys Chem Chem Phys 2021; 23:26575-26584. [PMID: 34812450 DOI: 10.1039/d1cp03946f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High entropy oxides (HEOs) are an emerging class of materials constituted by multicomponent systems that are receiving special interest as candidates for obtaining novel and desirable properties. In this study we present a detailed investigation of the relevant intermediates arising at the surface of the prototypical HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O during low-temperature CO oxidation. By combining Cu L2,3-edge operando soft X-ray absorption spectroscopy (soft-XAS) with density functional theory simulations and in situ FT-IR spectroscopy, we propose that upon HEO exposure to CO at 235 °C reduced Cu(I) sites arise mostly coordinated to activated CO molecules and partly to bidentate carbonate species. When the HEO surface is then exposed to a stoichiometric mixture of CO + 1/2O2 at 250 °C, CO2 is produced while bidentate carbonate moieties remain interacting with the Cu(I) sites. We structurally characterize the carbonate and CO preferential adsorption geometries on the Cu(I) surface metal centers, and find that CO adopts a bent conformation that may energetically favor its subsequent oxidation. The unique surface, structural and electronic sensitivity of soft-XAS coupled with the developed data analysis work-flow and supported by FT-IR spectroscopy may be beneficial to characterize often elusive surface properties of systems of catalytic interest.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Martina Fracchia
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 16, 27100 Pavia, Italy
| | - Alessandro Tofoni
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Luca Braglia
- CNR - Istituto Officina dei Materiali, TASC, I-34149 Trieste, Italy
| | - Andrea Jouve
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Sara Morandi
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Maela Manzoli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Piero Torelli
- CNR - Istituto Officina dei Materiali, TASC, I-34149 Trieste, Italy
| | - Paolo Ghigna
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 16, 27100 Pavia, Italy
| | - Paola D'Angelo
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
9
|
Del Giudice D, Tavani F, Di Berto Mancini M, Frateloreto F, Busato M, Oliveira De Souza D, Cenesi F, Lanzalunga O, Di Stefano S, D'Angelo P. Two Faces of the Same Coin: Coupling X-Ray Absorption and NMR Spectroscopies to Investigate the Exchange Reaction Between Prototypical Cu Coordination Complexes. Chemistry 2021; 28:e202103825. [PMID: 34850474 DOI: 10.1002/chem.202103825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 12/21/2022]
Abstract
The satisfactory rationalization of complex reactive pathways in solution chemistry may greatly benefit from the combined use of advanced experimental and theoretical complementary methods of analysis. In this work, we combine X-Ray Absorption and 1 H NMR spectroscopies with state-of-the-art Multivariate Curve Resolution and theoretical analyses to gain a comprehensive view on a prototypical reaction involving the variation of the oxidation state and local structure environment of a selected metal ion coordinated by organic ligands. Specifically, we investigate the 2-cyano-2-phenylpropanoic acid reduction of the octahedral complex established by the Cu2+ ion with terpyridine to the tetrahedral complex formed by Cu+ and neocuproine. Through our interdisciplinary approach we gain insights into the nature, concentration time evolution and structures of the key metal (XAS measurements) and organic (1 H NMR measurements) species under reaction. We believe our method may prove to be useful in the toolbox necessary to understand the mechanisms of reactive processes of interest in solution.
Collapse
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185, Rome, Italy
| | - Francesco Tavani
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185, Rome, Italy
| | - Marika Di Berto Mancini
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185, Rome, Italy
| | - Federico Frateloreto
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185, Rome, Italy
| | - Matteo Busato
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185, Rome, Italy
| | - Danilo Oliveira De Souza
- Elettra-Sincrotrone Trieste, Strada Statale 14, km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Flavia Cenesi
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185, Rome, Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185, Rome, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185, Rome, Italy
| | - Paola D'Angelo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185, Rome, Italy
| |
Collapse
|
10
|
Di Berto Mancini M, Del Gelsomino A, Di Stefano S, Frateloreto F, Lapi A, Lanzalunga O, Olivo G, Sajeva S. Change of Selectivity in C-H Functionalization Promoted by Nonheme Iron(IV)-oxo Complexes by the Effect of the N-hydroxyphthalimide HAT Mediator. ACS OMEGA 2021; 6:26428-26438. [PMID: 34661000 PMCID: PMC8515612 DOI: 10.1021/acsomega.1c03679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
A kinetic analysis of the hydrogen atom transfer (HAT) reactions from a series of organic compounds to the iron(IV)-oxo complex [(N4Py)FeIV(O)]2+ and to the phthalimide N-oxyl radical (PINO) has been carried out. The results indicate that a higher activating effect of α-heteroatoms toward the HAT from C-H bonds is observed with the more electrophilic PINO radical. When the N-hydroxy precursor of PINO, N-hydroxyphthalimide (NHPI), is used as a HAT mediator in the oxidation promoted by [(N4Py)FeIV(O)]2+, significant differences in terms of selectivity have been found. Product studies of the competitive oxidations of primary and secondary aliphatic alcohols (1-decanol, cyclopentanol, and cyclohexanol) with alkylaromatics (ethylbenzene and diphenylmethane) demonstrated that it is possible to modify the selectivity of the oxidations promoted by [(N4Py)FeIV(O)]2+ in the presence of NHPI. In fact, alkylaromatic substrates are more reactive in the absence of the mediator while alcohols are preferably oxidized in the presence of NHPI.
Collapse
Affiliation(s)
- Marika Di Berto Mancini
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Andrea Del Gelsomino
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Stefano Di Stefano
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Federico Frateloreto
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Andrea Lapi
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Osvaldo Lanzalunga
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
- CIRCC
Interuniversity Consortium Chemical Reactivity and Catalysis, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Giorgio Olivo
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Stefano Sajeva
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| |
Collapse
|
11
|
Latifi R, Palluccio TD, Ye W, Minnick JL, Glinton KS, Rybak-Akimova EV, de Visser SP, Tahsini L. pH Changes That Induce an Axial Ligand Effect on Nonheme Iron(IV) Oxo Complexes with an Appended Aminopropyl Functionality. Inorg Chem 2021; 60:13821-13832. [PMID: 34291939 DOI: 10.1021/acs.inorgchem.1c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonheme iron enzymes often utilize a high-valent iron(IV) oxo species for the biosynthesis of natural products, but their high reactivity often precludes structural and functional studies of these complexes. In this work, a combined experimental and computational study is presented on a biomimetic nonheme iron(IV) oxo complex bearing an aminopyridine macrocyclic ligand and its reactivity toward olefin epoxidation upon changes in the identity and coordination ability of the axial ligand. Herein, we show a dramatic effect of the pH on the oxygen-atom-transfer (OAT) reaction with substrates. In particular, these changes have occurred because of protonation of the axial-bound pendant amine group, where its coordination to iron is replaced by a solvent molecule or anionic ligand. This axial ligand effect influences the catalysis, and we observe enhanced cyclooctene epoxidation yields and turnover numbers in the presence of the unbound protonated pendant amine group. Density functional theory studies were performed to support the experiments and highlight that replacement of the pendant amine with a neutral or anionic ligand dramatically lowers the rate-determining barriers of cyclooctene epoxidation. The computational work further establishes that the change in OAT is due to electrostatic interactions of the pendant amine cation that favorably affect the barrier heights.
Collapse
Affiliation(s)
- Reza Latifi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Taryn D Palluccio
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Wanhua Ye
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jennifer L Minnick
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Kwame S Glinton
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Elena V Rybak-Akimova
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
12
|
Beckmann F, Kass D, Keck M, Yelin S, Hoof S, Cula B, Herwig C, Krause KB, Ar D, Limberg C. High‐spin square planar iron(II) alkali metal siloxide complexes – influence of the alkali metal and reactivity towards O
2
and NO. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian Beckmann
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Dustin Kass
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Matthias Keck
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Stefan Yelin
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Santina Hoof
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Beatrice Cula
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Herwig
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Konstantin B. Krause
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Deniz Ar
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Limberg
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
13
|
Hong YH, Jang Y, Ezhov R, Seo MS, Lee YM, Pandey B, Hong S, Pushkar Y, Fukuzumi S, Nam W. A Highly Reactive Chromium(V)–Oxo TAML Cation Radical Complex in Electron Transfer and Oxygen Atom Transfer Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yuri Jang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bhawana Pandey
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|
14
|
Tavani F, Capocasa G, Martini A, Sessa F, Di Stefano S, Lanzalunga O, D'Angelo P. Activation of C-H bonds by a nonheme iron(IV)-oxo complex: mechanistic evidence through a coupled EDXAS/UV-Vis multivariate analysis. Phys Chem Chem Phys 2021; 23:1188-1196. [PMID: 33355324 DOI: 10.1039/d0cp04304d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The understanding of reactive processes involving organic substrates is crucial to chemical knowledge and requires multidisciplinary efforts for its advancement. Herein, we apply a combined multivariate, statistical and theoretical analysis of coupled time-resolved X-ray absorption (XAS)/UV-Vis data to obtain detailed mechanistic information for on the C-H bond activation of 9,10-dihydroanthracene (DHA) and diphenylmethane (Ph2CH2) by the nonheme FeIV-oxo complex [N4Py·FeIV(O)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) in CH3CN at room temperature. Within this approach, we determine the number of key chemical species present in the reaction mixtures and derive spectral and concentration profiles for the reaction intermediates. From the quantitative analysis of the XAS spectra the transient intermediate species are structurally determined. As a result, it is suggested that, while DHA is oxidized by [N4Py·FeIV(O)]2+ with a hydrogen atom transfer-electron transfer (HAT-ET) mechanism, Ph2CH2 is oxidized by the nonheme iron-oxo complex through a HAT-radical dissociation pathway. In the latter process, we prove that the intermediate FeIII complex [N4Py·FeIII(OH)]2+ is not able to oxidize the diphenylmethyl radical and we provide its structural characterization in solution. The employed combined experimental and theoretical strategy is promising for the spectroscopic characterization of transient intermediates as well as for the mechanistic investigation of redox chemical transformations on the second to millisecond time scales.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Andrea Martini
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy and The Smart Materials Research Institute, Southern Federal University, 344090 Sladkova 178/24 Rostov-on-Don, Russia
| | - Francesco Sessa
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Paola D'Angelo
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
15
|
Tavani F, Capocasa G, Martini A, Sessa F, Di Stefano S, Lanzalunga O, D'Angelo P. Direct structural and mechanistic insights into fast bimolecular chemical reactions in solution through a coupled XAS/UV–Vis multivariate statistical analysis. Dalton Trans 2021; 50:131-142. [DOI: 10.1039/d0dt03083j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined multivariate and theoretical analysis of coupled XAS/UV–Vis data was proven to be an innovative method to obtain direct structural and mechanistic evidence for bimolecular reactions in solution involving organic substrates.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Giorgio Capocasa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Andrea Martini
- Dipartimento di Chimica
- Università degli Studi di Torino
- 10125 Torino
- Italy
- The Smart Materials Research Institute
| | - Francesco Sessa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | | | | | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
16
|
Tavani F, Fracchia M, Pianta N, Ghigna P, Quartarone E, D’Angelo P. Multivariate curve resolution analysis of operando XAS data for the investigation of the lithiation mechanisms in high entropy oxides. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Ansari M, Senthilnathan D, Rajaraman G. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe III-O-Fe IV[double bond, length as m-dash]O] 2+ species towards C-H bond activation: role of spin-states, spin-coupling, and spin-cooperation. Chem Sci 2020; 11:10669-10687. [PMID: 33209248 PMCID: PMC7654192 DOI: 10.1039/d0sc02624g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
High-valent metal-oxo species have been characterised as key intermediates in both heme and non-heme enzymes that are found to perform efficient aliphatic hydroxylation, epoxidation, halogenation, and dehydrogenation reactions. Several biomimetic model complexes have been synthesised over the years to mimic both the structure and function of metalloenzymes. The diamond-core [Fe2(μ-O)2] is one of the celebrated models in this context as this has been proposed as the catalytically active species in soluble methane monooxygenase enzymes (sMMO), which perform the challenging chemical conversion of methane to methanol at ease. In this context, a report of open core [HO(L)FeIII-O-FeIV(O)(L)]2+ (1) gains attention as this activates C-H bonds a million-fold faster compared to the diamond-core structure and has the dual catalytic ability to perform hydroxylation as well as desaturation with organic substrates. In this study, we have employed density functional methods to probe the origin of the very high reactivity observed for this complex and also to shed light on how this complex performs efficient hydroxylation and desaturation of alkanes. By modelling fifteen possible spin-states for 1 that could potentially participate in the reaction mechanism, our calculations reveal a doublet ground state for 1 arising from antiferromagnetic coupling between the quartet FeIV centre and the sextet FeIII centre, which regulates the reactivity of this species. The unusual stabilisation of the high-spin ground state for FeIV[double bond, length as m-dash]O is due to the strong overlap of with the orbital, reducing the antibonding interactions via spin-cooperation. The electronic structure features computed for 1 are consistent with experiments offering confidence in the methodology chosen. Further, we have probed various mechanistic pathways for the C-H bond activation as well as -OH rebound/desaturation of alkanes. An extremely small barrier height computed for the first hydrogen atom abstraction by the terminal FeIV[double bond, length as m-dash]O unit was found to be responsible for the million-fold activation observed in the experiments. The barrier height computed for -OH rebound by the FeIII-OH unit is also smaller suggesting a facile hydroxylation of organic substrates by 1. A strong spin-cooperation between the two iron centres also reduces the barrier for second hydrogen atom abstraction, thus making the desaturation pathway competitive. Both the spin-state as well as spin-coupling between the two metal centres play a crucial role in dictating the reactivity for species 1. By exploring various mechanistic pathways, our study unveils the fact that the bridged μ-oxo group is a poor electrophile for both C-H activation as well for -OH rebound. As more and more evidence is gathered in recent years for the open core geometry of sMMO enzymes, the idea of enhancing the reactivity via an open-core motif has far-reaching consequences.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| | - Dhurairajan Senthilnathan
- Center for Computational Chemistry , CRD , PRIST University , Vallam , Thanjavur , Tamilnadu 613403 , India
| | - Gopalan Rajaraman
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| |
Collapse
|
18
|
Gericke R, Doyle LM, Farquhar ER, McDonald AR. Oxo-Free Hydrocarbon Oxidation by an Iron(III)-Isoporphyrin Complex. Inorg Chem 2020; 59:13952-13961. [PMID: 32955871 DOI: 10.1021/acs.inorgchem.0c01618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-halides that perform proton coupled electron-transfer (PCET) oxidation are an important new class of high-valent oxidant. In investigating metal-dihalides, we reacted [FeIII(Cl)(T(OMe)PP)] (1, T(OMe)PP = meso-tetra(4-methoxyphenyl)porphyrinyl) with (dichloroiodo)benzene. An FeIII-meso-chloro-isoporphyrin complex [FeIII(Cl)2(T(OMe)PP-Cl)] (2) was obtained. 2 was characterized by electronic absorption, 1H NMR, EPR, and X-ray absorption spectroscopies and mass spectrometry with support from computational analyses. 2 was reacted with a series of hydrocarbon substrates. The measured kinetic data exhibited a nonlinear behavior, whereby the oxidation followed a hydrogen-atom-transfer (HAT) PCET mechanism. The meso-chlorine atom was identified as the HAT agent. In one case, a halogenated product was identified by mass spectrometry. Our findings demonstrate that oxo-free hydrocarbon oxidation with heme systems is possible and show the potential for iron-dihalides in oxidative hydrocarbon halogenation.
Collapse
Affiliation(s)
- Robert Gericke
- School of Chemistry, College Green, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Lorna M Doyle
- School of Chemistry, College Green, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Erik R Farquhar
- National Synchrotron Light Source II, Brookhaven National Laboratory, Case Western Reserve University Center for Synchrotron Biosciences, Upton, New York 11973, United States
| | - Aidan R McDonald
- School of Chemistry, College Green, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
19
|
Mesoza Cordova DL, Kam TM, Gannon RN, Lu P, Johnson DC. Controlling the Self-Assembly of New Metastable Tin Vanadium Selenides Using Composition and Nanoarchitecture of Precursors. J Am Chem Soc 2020; 142:13145-13154. [PMID: 32602716 DOI: 10.1021/jacs.0c05505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In solid-state chemistry, the direct reaction of elements at low temperatures is limited by low solid-state interdiffusion rates. This and the limited number of processing parameters often prevent the synthesis of metastable compounds. Precisely controlling the number of atoms and nanoarchitecture of layered elemental precursors enabled the selective synthesis of two closely related metastable tin vanadium selenides via near-diffusionless reactions at low temperatures. Although the nanoarchitectures of the precursors required to form [(SnSe2)0.80]1(VSe2)1 and [(SnSe)1.15]1(VSe2)1 are very similar, controlling the local composition of the Sn|Se layers in the precursors enables the selective synthesis of either compound. The metastable alloy SnxV1-xSe2 was preferentially formed over [(SnSe2)0.80]1(VSe2)1, which has the identical composition, by modifying the nanoarchitecture of the precursor. Ex situ in-plane X-ray diffraction and X-ray reflectivity collected as a function of annealing temperature provided information on lateral and perpendicular growth of [(SnSe2)0.80]1(VSe2)1. The presence of Laue oscillations throughout the self-assembly provided atomic-scale information on the thickness of the [(SnSe2)0.80]1(VSe2)1 domains, giving insights into the self-assembly process. A reaction mechanism is proposed and used to rationalize how composition and nanoarchitecture control the reaction pathway through the free energy landscape.
Collapse
Affiliation(s)
- Dmitri Leo Mesoza Cordova
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Taryn Mieko Kam
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Renae N Gannon
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Ping Lu
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David C Johnson
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
20
|
Tavani F, Martini A, Capocasa G, Di Stefano S, Lanzalunga O, D'Angelo P. Direct Mechanistic Evidence for a Nonheme Complex Reaction through a Multivariate XAS Analysis. Inorg Chem 2020; 59:9979-9989. [PMID: 32598841 PMCID: PMC8008396 DOI: 10.1021/acs.inorgchem.0c01132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
In
this work, we propose a method to directly determine the mechanism
of the reaction between the nonheme complex FeII(tris(2-pyridylmethyl)amine)
([FeII(TPA)(CH3CN)2]2+) and peracetic acid (AcOOH) in CH3CN, working at room
temperature. A multivariate analysis is applied to the time-resolved
coupled energy-dispersive X-ray absorption spectroscopy (EDXAS) reaction
data, from which a set of spectral and concentration profiles for
the reaction key species is derived. These “pure” extracted
EDXAS spectra are then quantitatively characterized by full multiple
scattering (MS) calculations. As a result, structural information
for the elusive reaction intermediates [FeIII(TPA)(κ2-OOAc)]2+ and [FeIV(TPA)(O)(X)]+/2+ is obtained, and it is suggested that X = AcO– in opposition to X = CH3CN. The employed strategy is
promising both for the spectroscopic characterization of reaction
intermediates that are labile or silent to the conventional spectroscopic
techniques, as well as for the mechanistic understanding of complex
redox reactions involving organic substrates. A combined multivariate and theoretical XAS analysis was
proven to be a powerful method to obtain direct evidence for the mechanism
of the reaction between the nonheme complex FeII(tris(2-pyridymethyl)amine)
([FeII(TPA)(CH3CN)2]2+) and peroxyacetic acid. This approach allowed to determine the time
evolution of the concentration profiles for all reaction intermediates
and to quantitatively characterize their structures, suggesting the
sixth coordinating ligand of the nonheme oxo complex [FeIV(TPA)(O)(X)]+/2+ is X = AcO− in
opposition to X = CH3CN.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Martini
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.,The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Paola D'Angelo
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
21
|
Feldt M, Martín-Fernández C, Harvey JN. Energetics of non-heme iron reactivity: can ab initio calculations provide the right answer? Phys Chem Chem Phys 2020; 22:23908-23919. [DOI: 10.1039/d0cp04401f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We use a variety of computational methods to characterize and compare the hydrogen atom transfer (HAT) and epoxidation reaction pathways for oxidation of cyclohexene by an iron(iv)-oxo complex.
Collapse
Affiliation(s)
- Milica Feldt
- Division of Quantum Chemistry and Physical Chemistry
- Department of Chemistry
- Katholieke Universiteit Leuven
- 3001 Leuven
- Belgium
| | - Carlos Martín-Fernández
- Division of Quantum Chemistry and Physical Chemistry
- Department of Chemistry
- Katholieke Universiteit Leuven
- 3001 Leuven
- Belgium
| | - Jeremy N. Harvey
- Division of Quantum Chemistry and Physical Chemistry
- Department of Chemistry
- Katholieke Universiteit Leuven
- 3001 Leuven
- Belgium
| |
Collapse
|
22
|
Barbieri A, Lanzalunga O, Lapi A, Di Stefano S. N-Hydroxyphthalimide: A Hydrogen Atom Transfer Mediator in Hydrocarbon Oxidations Promoted by Nonheme Iron(IV)-Oxo Complexes. J Org Chem 2019; 84:13549-13556. [PMID: 31532207 DOI: 10.1021/acs.joc.9b01813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The oxidation of a series of hydrocarbons by the nonheme iron(IV)-oxo complex [(N4Py)FeIV═O]2+ is efficiently mediated by N-hydroxyphthalimide. The increase of reactivity is associated to the oxidation of the mediator to the phthalimide N-oxyl radical, which efficiently abstracts a hydrogen atom from the substrates, regenerating the mediator in its reduced form.
Collapse
Affiliation(s)
- Alessia Barbieri
- Dipartimento di Chimica , Università di Roma "La Sapienza", Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione , P.le A. Moro , 5 I-00185 Rome , Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica , Università di Roma "La Sapienza", Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione , P.le A. Moro , 5 I-00185 Rome , Italy
| | - Andrea Lapi
- Dipartimento di Chimica , Università di Roma "La Sapienza", Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione , P.le A. Moro , 5 I-00185 Rome , Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica , Università di Roma "La Sapienza", Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione , P.le A. Moro , 5 I-00185 Rome , Italy
| |
Collapse
|
23
|
Phung QM, Martín-Fernández C, Harvey JN, Feldt M. Ab Initio Calculations for Spin-Gaps of Non-Heme Iron Complexes. J Chem Theory Comput 2019; 15:4297-4304. [DOI: 10.1021/acs.jctc.9b00370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Quan Manh Phung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Box 2404, 3001 Leuven, Belgium
| | | | - Jeremy N. Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Box 2404, 3001 Leuven, Belgium
| | - Milica Feldt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Box 2404, 3001 Leuven, Belgium
| |
Collapse
|