1
|
Odella E, Fetherolf JH, Secor M, DiPaola L, Dominguez RE, Gonzalez EJ, Khmelnitskiy AY, Kodis G, Groy TL, Moore TA, Hammes-Schiffer S, Moore AL. When a Twist Makes a Difference: Exploring PCET and ESIPT on a Nonplanar Hydrogen-Bonded Donor-Acceptor System. J Phys Chem Lett 2024; 15:10835-10841. [PMID: 39436359 DOI: 10.1021/acs.jpclett.4c02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bioinspired benzimidazole-phenol constructs with an intramolecular hydrogen bond connecting the phenol and the benzimidazole have been synthesized to study both proton-coupled electron transfer (PCET) and excited-state intramolecular proton transfer (ESIPT) processes. Strategic incorporation of a methyl group disrupts the coplanarity between the aromatic units, causing a pronounced twist, weakening the intramolecular hydrogen bond, decreasing the phenol redox potential, reducing the chemical reversibility, and quenching the fluorescence emission. Infrared spectroelectrochemistry and transient absorption spectroscopy confirm the formation of the oxidized product upon PCET and probe excited-state relaxation mechanisms, respectively. Density functional theory calculations of redox potentials corroborate the experimental findings. Additionally, time-dependent density functional theory calculations uncover the fluorescence quenching mechanism, showing that the nonradiative twisted intramolecular charge transfer state responsible for fluorescence quenching is more energetically favorable in the methyl-substituted system. Incorporating groups causing steric hindrance expands the design of biomimetic systems capable of performing both PCET and ESIPT.
Collapse
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Jonathan H Fetherolf
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Maxim Secor
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Lydia DiPaola
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Rodrigo E Dominguez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Edwin J Gonzalez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anton Y Khmelnitskiy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gerdenis Kodis
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas L Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
2
|
Guerra WD, Odella E, Cui K, Secor M, Dominguez RE, Gonzalez EJ, Moore TA, Hammes-Schiffer S, Moore AL. The role of an intramolecular hydrogen bond in the redox properties of carboxylic acid naphthoquinones. Chem Sci 2024; 15:d4sc05277c. [PMID: 39371459 PMCID: PMC11445641 DOI: 10.1039/d4sc05277c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
A bioinspired naphthoquinone model of the quinones in photosynthetic reaction centers but bearing an intramolecular hydrogen-bonded carboxylic acid has been synthesized and characterized electrochemically, spectroscopically, and computationally to provide mechanistic insight into the role of proton-coupled electron transfer (PCET) of quinone reduction in photosynthesis. The reduction potential of this construct is 370 mV more positive than the unsubstituted naphthoquinone. In addition to the reversible cyclic voltammetry, infrared spectroelectrochemistry confirms that the naphthoquinone/naphthoquinone radical anion couple is fully reversible. Calculated redox potentials agree with the experimental trends arising from the intramolecular hydrogen bond. Molecular electrostatic potentials illustrate the reversible proton transfer driving forces, and analysis of the computed vibrational spectra supports the possibility of a combination of electron transfer and PCET processes. The significance of PCET, reversibility, and redox potential management relevant to the design of artificial photosynthetic assemblies involving PCET processes is discussed.
Collapse
Affiliation(s)
- Walter D Guerra
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Emmanuel Odella
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Kai Cui
- Department of Chemistry, Princeton University Princeton New Jersey 08544 USA
| | - Maxim Secor
- Department of Chemistry, Princeton University Princeton New Jersey 08544 USA
| | - Rodrigo E Dominguez
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Edwin J Gonzalez
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | | | - Ana L Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| |
Collapse
|
3
|
Krishnan S, Aksimentiev A, Lindsay S, Matyushov D. Long-Range Conductivity in Proteins Mediated by Aromatic Residues. ACS PHYSICAL CHEMISTRY AU 2023; 3:444-455. [PMID: 37780537 PMCID: PMC10540285 DOI: 10.1021/acsphyschemau.3c00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 09/30/2023]
Abstract
Single-molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen over 10 nm distances, implying that electrons can transit an entire protein in less than a nanosecond when subject to a potential difference of less than 1 V. This is puzzling because, for fast transport (i.e., a free energy barrier of zero), the hopping rate is determined by the reorganization energy of approximately 0.8 eV, and this sets the time scale of a single hop to at least 1 μs. Furthermore, the Fermi energies of typical metal electrodes are far removed from the energies required for sequential oxidation and reduction of the aromatic residues of the protein, which should further reduce the hopping current. Here, we combine all-atom molecular dynamics (MD) simulations of non-redox-active proteins (consensus tetratricopeptide repeats) with an electron transfer theory to demonstrate a molecular mechanism that can account for the unexpectedly fast electron transport. According to our MD simulations, the reorganization energy produced by the energy shift on charging (the Stokes shift) is close to the conventional value of 0.8 eV. However, the non-ergodic sampling of molecular configurations by the protein results in reaction-reorganization energies, extracted directly from the distribution of the electrostatic energy fluctuations, that are only ∼0.2 eV, which is small enough to enable long-range conductivity, without invoking quantum coherent transport. Using the MD values of the reorganization energies, we calculate a current decay with distance that is in agreement with experiment.
Collapse
Affiliation(s)
- Siddharth Krishnan
- Department
of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Department
of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stuart Lindsay
- Department
of Physics, Arizona State University, Tempe, Arizona 85281, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Dmitry Matyushov
- Department
of Physics, Arizona State University, Tempe, Arizona 85281, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
4
|
Hammes-Schiffer S. Exploring Proton-Coupled Electron Transfer at Multiple Scales. NATURE COMPUTATIONAL SCIENCE 2023; 3:291-300. [PMID: 37577057 PMCID: PMC10416817 DOI: 10.1038/s43588-023-00422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 08/15/2023]
Abstract
The coupling of electron and proton transfer is critical for chemical and biological processes spanning a wide range of length and time scales and often occurring in complex environments. Thus, diverse modeling strategies, including analytical theories, quantum chemistry, molecular dynamics, and kinetic modeling, are essential for a comprehensive understanding of such proton-coupled electron transfer reactions. Each of these computational methods provides one piece of the puzzle, and all these pieces must be viewed together to produce the full picture.
Collapse
|
5
|
Zhao Z, Liu M, Zhou K, Guo L, Shen Y, Lu D, Hong X, Bao Z, Yang Q, Ren Q, Schreiner PR, Zhang Z. Visible-Light-Induced Phenoxyl Radical-based Metal-Organic Framework for Selective Photooxidation of Sulfides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6982-6989. [PMID: 36715584 DOI: 10.1021/acsami.2c21304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phenoxyl radicals originating from phenols through oxidation or photoinduction are relatively stable and exhibit mild oxidative activity, which endows them with the potential for photocatalysis. Herein, a stable and recyclable metal-organic framework Zr-MOF-OH constructed of a binaphthol derivative ligand has been synthesized and functions as an efficient heterogeneous photocatalyst. Zr-MOF-OH shows fairly good catalytic activity and substrate compatibility toward the selective oxidation of sulfides to sulfoxides under visible light irradiation. Such irradiation of Zr-MOF-OH converts the phenolic hydroxyl groups of the binaphthol derivative ligand to phenoxyl radicals through excited state intramolecular proton transfer, and the excited state photocatalyst triggers the single-electron oxidation of the sulfide. No reactive oxygen species are produced in the photocatalytic process, and triplet O2 directly participates in the reaction, endowing Zr-MOF-OH with wide substrate compatibility and high selectivity, which also proposes a promising pathway for the direct activation of substrates via phenoxyl radicals.
Collapse
Affiliation(s)
- Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Yajing Shen
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Dan Lu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| |
Collapse
|
6
|
Ariyageadsakul P, Baeck KK. Nuclear wave-packet-propagation-based study of the electron-coupled, proton-transfer process in the charge-transfer state of FHCl exhibiting three electronic states in full-dimensional space. J Chem Phys 2023; 158:014302. [PMID: 36610955 DOI: 10.1063/5.0131104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The charge-transfer (CT) excited state of FHCl (F+H-Cl-), generated by the photodetachment of an electron from its precursor anion (FHCl-) by a photon energy of ∼9.5 eV, is a realistic prototype of two bidirectional-coupled reaction pathways, namely the proton-transfer (PT) and electron-transfer (ET) channels, that produce F + HCl and FH + Cl combinations, respectively. The early-time dynamics of the CT was studied via the time-dependent propagations of nuclear wave packets comprising three nonadiabatically coupled electronic states defined within a three-dimensional space. The detailed analyses of the early-time dynamics revealed an interesting phenomenon in which the onset of PT was ∼80 fs earlier than that of ET, indicating that PT dominated ET in this case. A more significant finding was that the proper adjustment of the electronic-charge distribution for the onset of ET was obtained ∼80 fs after the onset of PT; this adjustment was mediated by the initial movement of the H atom, i.e., the F-H vibration mode. To avail experimental observables, the branching ratio, χ = PT/(PT + ET), and absorption spectrum generating the neutral FHCl molecule from its precursor anion were also simulated. The results further demonstrated the dependences of the χs and spectrum on the change in the initial vibration level of the precursor anion, as well as the isotopic substitution of the connecting H atom with deuterium, tritium, and muonium.
Collapse
Affiliation(s)
- Pinit Ariyageadsakul
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Republic of Korea
| | - Kyoung Koo Baeck
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
7
|
Volchek VV, Kompankov NB, Sokolov MN, Abramov PA. Proton Affinity in the Chemistry of Beta-Octamolybdate: HPLC-ICP-AES, NMR and Structural Studies. Molecules 2022; 27:8368. [PMID: 36500457 PMCID: PMC9738851 DOI: 10.3390/molecules27238368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The affinity of [β-Mo8O26]4- toward different proton sources has been studied in various conditions. The proposed sites for proton coordination were highlighted with single crystal X-ray diffraction (SCXRD) analysis of (Bu4N)3[β-{Ag(py-NH2)Mo8O26]}] (1) and from analysis of reported structures. Structural rearrangement of [β-Mo8O26]4- as a direct response to protonation was studied in solution with 95Mo NMR and HPLC-ICP-AES techniques. A new type of proton transfer reaction between (Bu4N)4[β-Mo8O26] and (Bu4N)4H2[V10O28] in DMSO results in both polyoxometalates transformation into [V2Mo4O19]4-, which was confirmed by the 95Mo, 51V NMR and HPLC-ICP-AES techniques. The same type of reaction with [H4SiW12O40] in DMSO leads to metal redistribution with formation of [W2Mo4O19]2-.
Collapse
Affiliation(s)
- Victoria V. Volchek
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Nikolay B. Kompankov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University Named after B.N. Yeltsin, 620075 Ekaterinburg, Russia
| |
Collapse
|
8
|
Odella E, Secor M, Reyes Cruz EA, Guerra WD, Urrutia MN, Liddell PA, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Managing the Redox Potential of PCET in Grotthuss-Type Proton Wires. J Am Chem Soc 2022; 144:15672-15679. [PMID: 35993888 DOI: 10.1021/jacs.2c05820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expanding proton-coupled electron transfer to multiproton translocations (MPCET) provides a bioinspired mechanism to transport protons away from the redox site. This expansion has been accomplished by separating the initial phenolic proton donor from the pyridine-based terminal proton acceptor by a Grotthuss-type proton wire made up of concatenated benzimidazoles that form a hydrogen-bonded network. However, it was found that the midpoint potential of the phenol oxidation that launched the Grotthuss-type proton translocations is a function of the number of benzimidazoles in the hydrogen-bonded network; it becomes less positive (i.e., a weaker oxidant) as the number of bridging benzimidazoles increases. Herein, we report a strategy to maintain the high redox potential necessary for oxidative processes relevant to artificial photosynthesis, e.g., water oxidation and long-range MPCET processes for managing protons. The integrated structural and functional roles of the benzimidazole-based bridge provide sites for substitution of the benzimidazoles with electron-withdrawing groups (e.g., trifluoromethyl groups). Such substitution increases the midpoint potential of the phenoxyl radical/phenol couple so that proton translocations over ∼11 Å become thermodynamically comparable to that of an unsubstituted system where one proton is transferred over ∼2.5 Å. The extended, substituted system maintains the hydrogen-bonded network; infrared spectroelectrochemistry confirms reversible proton translocations from the phenol to the pyridyl terminal proton acceptor upon oxidation and reduction. Theory supports the change in driving force with added electron-withdrawing groups and provides insight into the role of electron density and electrostatic potential in MPCET processes associated with these Grotthuss-type proton translocations.
Collapse
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Maxim Secor
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Edgar A Reyes Cruz
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Walter D Guerra
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - María N Urrutia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Paul A Liddell
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gary F Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
9
|
Zhou J, Li K, Shi L, Zhang H, Wang H, Shan Y, Chen S, Yu XQ. Hydrogen-bond locked purine chromophores with high photostability for lipid droplets imaging in cells and tissues. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Arsenault EA, Guerra WD, Shee J, Reyes Cruz EA, Yoneda Y, Wadsworth BL, Odella E, Urrutia MN, Kodis G, Moore GF, Head-Gordon M, Moore AL, Moore TA, Fleming GR. Concerted Electron-Nuclear Motion in Proton-Coupled Electron Transfer-Driven Grotthuss-Type Proton Translocation. J Phys Chem Lett 2022; 13:4479-4485. [PMID: 35575065 PMCID: PMC9150097 DOI: 10.1021/acs.jpclett.2c00585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Photoinduced proton-coupled electron transfer and long-range two-proton transport via a Grotthuss-type mechanism are investigated in a biomimetic construct. The ultrafast, nonequilibrium dynamics are assessed via two-dimensional electronic vibrational spectroscopy, in concert with electrochemical and computational techniques. A low-frequency mode is identified experimentally and found to promote double proton and electron transfer, supported by recent theoretical simulations of a similar but abbreviated (non-photoactive) system. Excitation frequency peak evolution and center line slope dynamics show direct evidence of strongly coupled nuclear and electronic degrees of freedom, from which we can conclude that the double proton and electron transfer processes are concerted (up to an uncertainty of 24 fs). The nonequilibrium pathway from the photoexcited Franck-Condon region to the E2PT state is characterized by an ∼110 fs time scale. This study and the tools presented herein constitute a new window into hot charge transfer processes involving an electron and multiple protons.
Collapse
Affiliation(s)
- Eric A. Arsenault
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Walter D. Guerra
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - James Shee
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Edgar A. Reyes Cruz
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- The Biodesign
Institute Center for Applied Structural Discovery (CASD), Tempe, Arizona 85287, United States
| | - Yusuke Yoneda
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Brian L. Wadsworth
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- The Biodesign
Institute Center for Applied Structural Discovery (CASD), Tempe, Arizona 85287, United States
| | - Emmanuel Odella
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Maria N. Urrutia
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Gerdenis Kodis
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- The Biodesign
Institute Center for Applied Structural Discovery (CASD), Tempe, Arizona 85287, United States
| | - Gary F. Moore
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- The Biodesign
Institute Center for Applied Structural Discovery (CASD), Tempe, Arizona 85287, United States
| | - Martin Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ana L. Moore
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas A. Moore
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Graham R. Fleming
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Yang J, Zhang Y, Lu Y, Wang L, Lu F, Zhong D. Ultrafast Dynamics of Nonequilibrium Short-Range Electron Transfer in Semiquinone Flavodoxin. J Phys Chem Lett 2022; 13:3202-3208. [PMID: 35377652 DOI: 10.1021/acs.jpclett.2c00057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Short-range protein electron transfer (ET) is crucially important in light-induced biological processes such as in photoenzymes and photoreceptors and often occurs on time scales similar to those of environment fluctuations, leading to a coupled dynamic process. Herein, we use semiquinone Anabaena flavodoxin to characterize the ultrafast photoinduced redox cycle of the wild type and seven mutants by ultrafast spectroscopy. We have found that the forward and backward ET dynamics show stretched behaviors in a few picoseconds (1-5 ps), indicating a coupling with the local protein fluctuations. By comparison with the results from semiquinone D. vulgaris flavodoxin, we find that the electronic coupling is crucial to the ET rates. With our new nonergodic model, we obtain smaller values of the outer reorganization energy (λoγ) of environment fluctuations and the reaction free energy force (ΔGγ), a signature of nonequilibrium ET dynamics.
Collapse
Affiliation(s)
- Jie Yang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangyi Lu
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Faming Lu
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Odella E, Moore TA, Moore AL. Tuning the redox potential of tyrosine-histidine bioinspired assemblies. PHOTOSYNTHESIS RESEARCH 2022; 151:185-193. [PMID: 33432530 DOI: 10.1007/s11120-020-00815-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Photosynthesis powers our planet and is a source of inspiration for developing artificial constructs mimicking many aspects of the natural energy transducing process. In the complex machinery of photosystem II (PSII), the redox activity of the tyrosine Z (Tyrz) hydrogen-bonded to histidine 190 (His190) is essential for its functions. For example, the Tyrz-His190 pair provides a proton-coupled electron transfer (PCET) pathway that effectively competes against the back-electron transfer reaction and tunes the redox potential of the phenoxyl radical/phenol redox couple ensuring a high net quantum yield of photoinduced charge separation in PSII. Herein, artificial assemblies mimicking both the structural and redox properties of the Tyrz-His190 pair are described. The bioinspired constructs contain a phenol (Tyrz model) covalently linked to a benzimidazole (His190 model) featuring an intramolecular hydrogen bond which closely emulates the one observed in the natural counterpart. Incorporation of electron-withdrawing groups in the benzimidazole moiety systematically changes the intramolecular hydrogen bond strength and modifies the potential of the phenoxyl radical/phenol redox couple over a range of ~ 250 mV. Infrared spectroelectrochemistry (IRSEC) demonstrates the associated one-electron, one-proton transfer (E1PT) process upon electrochemical oxidation of the phenol. The present contribution provides insight regarding the factors controlling the redox potential of the phenol and highlights strategies for the design of futures constructs capable of transporting protons across longer distances while maintaining a high potential of the phenoxyl radical/phenol redox couple.
Collapse
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| |
Collapse
|
13
|
Zhang B, Ryan E, Wang X, Song W, Lindsay S. Electronic Transport in Molecular Wires of Precisely Controlled Length Built from Modular Proteins. ACS NANO 2022; 16:1671-1680. [PMID: 35029115 PMCID: PMC9279515 DOI: 10.1021/acsnano.1c10830] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA molecular wires have been studied extensively because of the ease with which molecules of controlled length and composition can be synthesized. The same has not been true for proteins. Here, we have synthesized and studied a series of consensus tetratricopeptide repeat (CTPR) proteins, spanning 4 to 20 nm in length, in increments of 4 nm. For lengths in excess of 6 nm, their conductance exceeds that of the canonical molecular wire, oligo(phenylene-ethylenene), because of the more gradual decay of conductance with length in the protein. We show that, while the conductance decay fits an exponential (characteristic of quantum tunneling) and not a linear increase of resistance with length (characteristic of hopping transport), it is also accounted for by a square-law dependence on length (characteristic of weakly driven hopping). Measurements of the energy dependence of the decay length rule out the quantum tunneling case. A resonance in the carrier injection energy shows that allowed states in the protein align with the Fermi energy of the electrodes. Both the energy of these states and the long-range of hopping suggest that the reorganization induced by hole formation is greatly reduced inside the protein. We outline a model for calculating the molecular-electronic properties of proteins.
Collapse
Affiliation(s)
- Bintian Zhang
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Eathen Ryan
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | - Weisi Song
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Stuart Lindsay
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Department of Physics, Arizona State University, Tempe, AZ 85281
- Corresponding Author: Stuart Lindsay: Phone 480 205 6432
| |
Collapse
|
14
|
Kim H, Lee D. Cascade proton relays facilitate electron transfer across hydrogen‐bonding network. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Heechan Kim
- Department of Chemistry Seoul National University Seoul South Korea
| | - Dongwhan Lee
- Department of Chemistry Seoul National University Seoul South Korea
| |
Collapse
|
15
|
Yan HW, Zhao LH, Zhang X, Yang YN, Yuan X, Zhang PC. Photoinduced Irreversible Intramolecular Proton Transfer of Arnebinones B, D, and E: The Case of Photoenolization at the p-Benzoquinone-CH 2/CH-π System. JOURNAL OF NATURAL PRODUCTS 2021; 84:2981-2989. [PMID: 34784203 DOI: 10.1021/acs.jnatprod.1c00830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Arnebinones B, E, and D (1-3) have been found to be sensitive to light, generating complex and diverse proton transfer products when triggered by light. A unique two-step irreversible intramolecular proton transfer of 1 produced five scalemic mixtures, of which four possessed intriguing dual planar chirality. The unprecedented orientation epimerization equilibrium of the intra-annular double bond was first observed and researched in the homologous meroterpenoids by HPLC monitoring and DFT calculations. A "p-benzoquinone-CH2/CH-π" moiety in the structure was the common key feature for the occurrence of this type of photoenolization reaction. The product transformation processes and universality of this photoinduced irreversible proton transfer reaction were analyzed together with the cytotoxic activities of arnebinones B, D, and E, and their photoreaction products.
Collapse
Affiliation(s)
- Hai-Wei Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ling-Hao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
Abstract
The pathway of activationless proton transfer induced by an electron-transfer reaction is studied theoretically. Long-range electron transfer produces highly nonequilibrium medium polarization that can drive proton transfer through an activationless transition during the process of thermalization, dynamically altering the screening of the electron-proton Coulomb interaction by the medium. The cross electron-proton reorganization energy is the main energy parameter of the theory, which exceeds in magnitude the proton-transfer reorganization energy roughly by the ratio of the electron-transfer to proton-transfer distance. This parameter, which can be either positive or negative, is related to the difference in pKa values in two electron-transfer states. The relaxation time of the medium is on the (sub)picosecond time scale, which establishes the characteristic time for activationless proton transfer. Microscopic calculations predict substantial retardation of the collective relaxation dynamics compared to the continuum estimates due to the phenomenology analogous to de Gennes narrowing. Nonequilibrium medium configuration promoting proton transfer can be induced by either thermal or photoinduced charge transfer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| | - Marshall D Newton
- Chemistry Department, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, United States
| |
Collapse
|
17
|
Odella E, Secor M, Elliott M, Groy TL, Moore TA, Hammes-Schiffer S, Moore AL. Multi PCET in symmetrically substituted benzimidazoles. Chem Sci 2021; 12:12667-12675. [PMID: 34703552 PMCID: PMC8494046 DOI: 10.1039/d1sc03782j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/21/2021] [Indexed: 12/02/2022] Open
Abstract
Proton-coupled electron transfer (PCET) reactions depend on the hydrogen-bond connectivity between sites of proton donors and acceptors. The 2-(2′-hydroxyphenyl) benzimidazole (BIP) based systems, which mimic the natural TyrZ-His190 pair of Photosystem II, have been useful for understanding the associated PCET process triggered by one-electron oxidation of the phenol. Substitution of the benzimidazole by an appropriate terminal proton acceptor (TPA) group allows for two-proton translocations. However, the prototropic properties of substituted benzimidazole rings and rotation around the bond linking the phenol and the benzimidazole can lead to isomers that interrupt the intramolecular hydrogen-bonded network and thereby prevent a second proton translocation. Herein, a strategic symmetrization of a benzimidazole based system with two identical TPAs yields an uninterrupted network of intramolecular hydrogen bonds regardless of the isomeric form. NMR data confirms the presence of a single isomeric form in the disubstituted system but not in the monosubstituted system in certain solvents. Infrared spectroelectrochemistry demonstrates a two-proton transfer process associated with the oxidation of the phenol occurring at a lower redox potential in the disubstituted system relative to its monosubstituted analogue. Computational studies support these findings and show that the disubstituted system stabilizes the oxidized two-proton transfer product through the formation of a bifurcated hydrogen bond. Considering the prototropic properties of the benzimidazole heterocycle in the context of multiple PCET will improve the next generation of novel, bioinspired constructs built by concatenated units of benzimidazoles, thus allowing proton translocations at nanoscale length. Proton-coupled electron transfer (PCET) reactions depend on the hydrogen-bond connectivity between sites of proton donors and acceptors.![]()
Collapse
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Maxim Secor
- Department of Chemistry, Yale University New Haven Connecticut 06520-8107 USA
| | - Mackenna Elliott
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Thomas L Groy
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | | | - Ana L Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| |
Collapse
|
18
|
Fontana LA, Rigolin VH, Braga CB, Ornelas C, Megiatto JD. Methodology for functionalization of water oxidation catalyst IrO x nanoparticles with hydrophobic and multi-functionalized chromophores. Chem Commun (Camb) 2021; 57:7398-7401. [PMID: 34225355 DOI: 10.1039/d1cc02931b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a straightforward "click chemistry" methodology for the functionalization of water-oxidation catalyst iridium oxide nanoparticles (IrOx-NPs) with a multi-functionalized porphyrin-based photosynthetic model as sensitizer for the preparation of bioinspired photo-catalysts. This efficient method overcomes the usual aggregation issue found when decorating water oxidation nanocolloidal catalysts with hydrophobic sensitizers.
Collapse
Affiliation(s)
- Liniquer A Fontana
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, Campinas, 13083-970, Brazil.
| | - Vitor H Rigolin
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, Campinas, 13083-970, Brazil.
| | - Carolyne B Braga
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, Campinas, 13083-970, Brazil.
| | - Catia Ornelas
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, Campinas, 13083-970, Brazil.
| | - Jackson D Megiatto
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, Campinas, 13083-970, Brazil.
| |
Collapse
|
19
|
Guerra WD, Odella E, Urrutia MN, Liddell PA, Moore TA, Moore AL. Models to study photoinduced multiple proton coupled electron transfer processes. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In water-oxidizing photosynthetic organisms, excitation of the reaction-center chlorophylls (P680) triggers a cascade of electron and proton transfer reactions that establish charge separation across the membrane and proton-motive force. An early oxidation step in this process involves proton-coupled electron transfer (PCET) via a tyrosine-histidine redox relay (Yz-H190). Herein, we report the synthesis and structural characterization of two isomeric dyads designed to model this PCET process. Both are based on the same high potential fluorinated porphyrin (model for P680), linked to isomeric pyridylbenzimidazole-phenols (models for Yz-H190). The two isomeric dyads have different hydrogen bond frameworks, which is expected to change the PCET photooxidation mechanism. In these dyads, 1H NMR evidence indicates that in one dyad the hydrogen bond network would support a Grotthuss-type proton transfer process, whereas in the other the hydrogen bond network is interrupted. Photoinduced one-electron, two-proton transfer is expected to occur in the fully hydrogen-bonded dyad upon oxidation of the phenol by the excited state of the porphyrin. In contrast for the isomer with the interrupted hydrogen bond network, an ultrafast photoinduced one-electron one-proton transfer process is anticipated, followed by a much slower proton transfer to the terminal proton acceptor. Understanding the nature of photoinduced PCET mechanisms in these biomimetic models will provide insights into the design of future generations of artificial constructs involved in energy conversion schemes.
Collapse
Affiliation(s)
- Walter D. Guerra
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - María N. Urrutia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Paul A. Liddell
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Ana L. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
20
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
21
|
Tyburski R, Liu T, Glover SD, Hammarström L. Proton-Coupled Electron Transfer Guidelines, Fair and Square. J Am Chem Soc 2021; 143:560-576. [PMID: 33405896 PMCID: PMC7880575 DOI: 10.1021/jacs.0c09106] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 12/23/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions are fundamental to energy transformation reactions in natural and artificial systems and are increasingly recognized in areas such as catalysis and synthetic chemistry. The interdependence of proton and electron transfer brings a mechanistic richness of reactivity, including various sequential and concerted mechanisms. Delineating between different PCET mechanisms and understanding why a particular mechanism dominates are crucial for the design and optimization of reactions that use PCET. This Perspective provides practical guidelines for how to discern between sequential and concerted mechanisms based on interpretations of thermodynamic data with temperature-, pressure-, and isotope-dependent kinetics. We present new PCET-zone diagrams that show how a mechanism can switch or even be eliminated by varying the thermodynamic (ΔGPT° and ΔGET°) and coupling strengths for a PCET system. We discuss the appropriateness of asynchronous concerted PCET to rationalize observations in organic reactions, and the distinction between hydrogen atom transfer and other concerted PCET reactions. Contemporary issues and future prospects in PCET research are discussed.
Collapse
Affiliation(s)
- Robin Tyburski
- Ångström
Laboratory, Department of Chemistry, Uppsala
University, Box 523, SE75120 Uppsala, Sweden
| | - Tianfei Liu
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599-3290, United States
| | - Starla D. Glover
- Ångström
Laboratory, Department of Chemistry, Uppsala
University, Box 523, SE75120 Uppsala, Sweden
| | - Leif Hammarström
- Ångström
Laboratory, Department of Chemistry, Uppsala
University, Box 523, SE75120 Uppsala, Sweden
| |
Collapse
|
22
|
Zhou Z, Kong X, Liu T. Applications of Proton-Coupled Electron Transfer in Organic Synthesis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Guerra WD, Odella E, Secor M, Goings JJ, Urrutia MN, Wadsworth BL, Gervaldo M, Sereno LE, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Role of Intact Hydrogen-Bond Networks in Multiproton-Coupled Electron Transfer. J Am Chem Soc 2020; 142:21842-21851. [DOI: 10.1021/jacs.0c10474] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Walter D. Guerra
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Maxim Secor
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joshua J. Goings
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - María N. Urrutia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L. Wadsworth
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Miguel Gervaldo
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal No. 3, 5800 Río Cuarto, Córdoba, Argentina
| | - Leónides E. Sereno
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal No. 3, 5800 Río Cuarto, Córdoba, Argentina
| | - Thomas A. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gary F. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ana L. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
24
|
Wild U, Walter P, Hübner O, Kaifer E, Himmel H. Evaluation of the Synthetic Scope and the Reaction Pathways of Proton-Coupled Electron Transfer with Redox-Active Guanidines in C-H Activation Processes. Chemistry 2020; 26:16504-16513. [PMID: 32893902 PMCID: PMC7756729 DOI: 10.1002/chem.202003424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron transfer (PCET) is currently intensively studied because of its importance in synthetic chemistry and biology. In recent years it was shown that redox-active guanidines are capable PCET reagents for the selective oxidation of organic molecules. In this work, the scope of their PCET reactivity regarding reactions that involve C-H activation is explored and kinetic studies carried out to disclose the reaction mechanisms. Organic molecules with potential up to 1.2 V vs. ferrocenium/ferrocene are efficiently oxidized. Reactions are initiated by electron transfer, followed by slow proton transfer from an electron-transfer equilibrium.
Collapse
Affiliation(s)
- Ute Wild
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Petra Walter
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Olaf Hübner
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Institut für Anorganische ChemieRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
25
|
Park H, Lee D. Biomimetic hydrogen-bonding cascade for chemical activation: telling a nucleophile from a base. Chem Sci 2020; 12:590-598. [PMID: 34163789 PMCID: PMC8178988 DOI: 10.1039/d0sc05067a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hydrogen bonding-assisted polarization is an effective strategy to promote bond-making and bond-breaking chemical reactions. Taking inspiration from the catalytic triad of serine protease active sites, we have devised a conformationally well-defined benzimidazole platform that can be systematically functionalized to install multiple hydrogen bonding donor (HBD) and acceptor (HBA) pairs in a serial fashion. We found that an increasing number of interdependent and mutually reinforcing HBD–HBA contacts facilitate the bond-forming reaction of a fluorescence-quenching aldehyde group with the cyanide ion, while suppressing the undesired Brønsted acid–base reaction. The most advanced system, evolved through iterative rule-finding studies, reacts rapidly and selectively with CN− to produce a large (>180-fold) enhancement in the fluorescence intensity at λmax = 450 nm. Biomimetic cascade hydrogen bonds promote covalent capture of a nucleophile by polarizing the electrophilic reaction site, while suppressing non-productive acid–base chemistry as the competing reaction pathway.![]()
Collapse
Affiliation(s)
- Hyunchang Park
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| |
Collapse
|
26
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mardis KL, Niklas J, Omodayo H, Odella E, Moore TA, Moore AL, Poluektov OG. One Electron Multiple Proton Transfer in Model Organic Donor-Acceptor Systems: Implications for High Frequency EPR. APPLIED MAGNETIC RESONANCE 2020; 51:977-991. [PMID: 34764625 PMCID: PMC8579843 DOI: 10.1007/s00723-020-01252-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Indexed: 06/12/2023]
Abstract
EPR spectroscopy is an important spectroscopic method for identification and characterization of radical species involved in many biological reactions. The tyrosyl radical is one of the most studied amino acid radical intermediates in biology. Often in conjunction with histidine residues, it is involved in many fundamental biological electron and proton transfer processes, such as in the water oxidation in photosystem II. As biological processes are typically extremely complicated and hard to control, molecular bio-mimetic model complexes are often used to clarify the mechanisms of the biological reactions. Here we present theoretical calculations to investigate the sensitivity of magnetic resonance parameters to proton-coupled electron transfer events, as well as conformational substates of the molecular constructs which mimic the tyrosine-histidine (Tyr-His) pairs found in a large variety of proteins. Upon oxidation of the phenol, the Tyr analogue, these complexes can perform not only one-electron one-proton transfer (EPT), but also one-electron two-proton transfers (E2PT). It is shown that in aprotic environment the gX-components of the electronic g-tensor are extremely sensitive to the first proton transfer from the phenoxyl oxygen to the imidazole nitrogen (EPT product), leading to a significant increase of the gX-value of up to 0.003, but are not sensitive to the second proton transfer (E2PT product). In the latter case the change of the gX-value is much smaller (ca. 0.0001), which is too small to be distinguished even by high frequency EPR. The 14N hyperfine values are also too similar to allow differentiation between the different protonation states in EPT and E2PT. The magnetic resonance parameters were also calculated as a function of the rotation angles around single bonds. It was demonstrated that rotation of the phenoxyl group results in large positive changes (>0.001) in the gX-values. Analysis of the data reveals that the main source of these changes is related to the strength of the H-bond between phenoxyl oxygen and the proton(s) on N1 and N2 positions of the imidazole.
Collapse
Affiliation(s)
- Kristy L Mardis
- Department of Chemistry, Physics, and Engineering Studies, Chicago State University, Chicago, Illinois 60628, USA
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Harriet Omodayo
- Department of Chemistry, Physics, and Engineering Studies, Chicago State University, Chicago, Illinois 60628, USA
| | - Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
28
|
Analysis of Photosynthetic Systems and Their Applications with Mathematical and Computational Models. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In biological and life science applications, photosynthesis is an important process that involves the absorption and transformation of sunlight into chemical energy. During the photosynthesis process, the light photons are captured by the green chlorophyll pigments in their photosynthetic antennae and further funneled to the reaction center. One of the most important light harvesting complexes that are highly important in the study of photosynthesis is the membrane-attached Fenna–Matthews–Olson (FMO) complex found in the green sulfur bacteria. In this review, we discuss the mathematical formulations and computational modeling of some of the light harvesting complexes including FMO. The most recent research developments in the photosynthetic light harvesting complexes are thoroughly discussed. The theoretical background related to the spectral density, quantum coherence and density functional theory has been elaborated. Furthermore, details about the transfer and excitation of energy in different sites of the FMO complex along with other vital photosynthetic light harvesting complexes have also been provided. Finally, we conclude this review by providing the current and potential applications in environmental science, energy, health and medicine, where such mathematical and computational studies of the photosynthesis and the light harvesting complexes can be readily integrated.
Collapse
|
29
|
Goings JJ, Hammes-Schiffer S. Nonequilibrium Dynamics of Proton-Coupled Electron Transfer in Proton Wires: Concerted but Asynchronous Mechanisms. ACS CENTRAL SCIENCE 2020; 6:1594-1601. [PMID: 32999935 PMCID: PMC7517869 DOI: 10.1021/acscentsci.0c00756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 05/29/2023]
Abstract
The coupling between electrons and protons and the long-range transport of protons play important roles throughout biology. Biomimetic systems derived from benzimidazole-phenol (BIP) constructs have been designed to undergo proton-coupled electron transfer (PCET) upon electrochemical or photochemical oxidation. Moreover, these systems can transport protons along hydrogen-bonded networks or proton wires through multiproton PCET. Herein, the nonequilibrium dynamics of both single and double proton transfer in BIP molecules initiated by oxidation are investigated with first-principles molecular dynamics simulations. Although these processes are concerted in that no thermodynamically stable intermediate is observed, the simulations predict that they are predominantly asynchronous on the ultrafast time scale. For both systems, the first proton transfer typically occurs ∼100 fs after electron transfer. For the double proton transfer system, typically the second proton transfer occurs hundreds of femtoseconds after the initial proton transfer. A machine learning algorithm was used to identify the key molecular vibrational modes essential for proton transfer: a slow, in-plane bending mode that dominates the overall inner-sphere reorganization, the proton donor-acceptor motion that leads to vibrational coherence, and the faster donor-hydrogen stretching mode. The asynchronous double proton transfer mechanism can be understood in terms of a significant mode corresponding to the two anticorrelated proton donor-acceptor motions, typically decreasing only one donor-acceptor distance at a time. Although these PCET processes appear concerted on the time scale of typical electrochemical experiments, attaching these BIP constructs to photosensitizers may enable the detection of the asynchronicity of the electron and multiple proton transfers with ultrafast two-dimensional spectroscopy. Understanding the fundamental PCET mechanisms at this level will guide the design of PCET systems for catalysis and energy conversion processes.
Collapse
Affiliation(s)
- Joshua J. Goings
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
30
|
Artes Vivancos JM, van Stokkum IHM, Saccon F, Hontani Y, Kloz M, Ruban A, van Grondelle R, Kennis JTM. Unraveling the Excited-State Dynamics and Light-Harvesting Functions of Xanthophylls in Light-Harvesting Complex II Using Femtosecond Stimulated Raman Spectroscopy. J Am Chem Soc 2020; 142:17346-17355. [PMID: 32878439 PMCID: PMC7564077 DOI: 10.1021/jacs.0c04619] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Photosynthesis
in plants starts with the capture of photons by
light-harvesting complexes (LHCs). Structural biology and spectroscopy
approaches have led to a map of the architecture and energy transfer
pathways between LHC pigments. Still, controversies remain regarding
the role of specific carotenoids in light-harvesting and photoprotection,
obligating the need for high-resolution techniques capable of identifying
excited-state signatures and molecular identities of the various pigments
in photosynthetic systems. Here we demonstrate the successful application
of femtosecond stimulated Raman spectroscopy (FSRS) to a multichromophoric
biological complex, trimers of LHCII. We demonstrate the application
of global and target analysis (GTA) to FSRS data and utilize it to
quantify excitation migration in LHCII trimers. This powerful combination
of techniques allows us to obtain valuable insights into structural,
electronic, and dynamic information from the carotenoids of LHCII
trimers. We report spectral and dynamical information on ground- and
excited-state vibrational modes of the different pigments, resolving
the vibrational relaxation of the carotenoids and the pathways of
energy transfer to chlorophylls. The lifetimes and spectral characteristics
obtained for the S1 state confirm that lutein 2 has a distorted conformation
in LHCII and that the lutein 2 S1 state does not transfer to chlorophylls,
while lutein 1 is the only carotenoid whose S1 state plays a significant
energy-harvesting role. No appreciable energy transfer takes place
from lutein 1 to lutein 2, contradicting recent proposals regarding
the functions of the various carotenoids (Son et al. Chem.2019, 5 (3), 575–584). Also, our results demonstrate that FSRS can be used in combination
with GTA to simultaneously study the electronic and vibrational landscapes
in LHCs and pave the way for in-depth studies of photoprotective conformations
in photosynthetic systems.
Collapse
Affiliation(s)
- Juan M Artes Vivancos
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.,Department of Chemistry, Kennedy College of Science, University of Massachusetts-Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road/E1 4NS London, U.K
| | - Yusaku Hontani
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Alexander Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road/E1 4NS London, U.K
| | - Rienk van Grondelle
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
31
|
Méndez-Hernández DD, Baldansuren A, Kalendra V, Charles P, Mark B, Marshall W, Molnar B, Moore TA, Lakshmi KV, Moore AL. HYSCORE and DFT Studies of Proton-Coupled Electron Transfer in a Bioinspired Artificial Photosynthetic Reaction Center. iScience 2020; 23:101366. [PMID: 32738611 PMCID: PMC7394912 DOI: 10.1016/j.isci.2020.101366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 11/24/2022] Open
Abstract
The photosynthetic water-oxidation reaction is catalyzed by the oxygen-evolving complex in photosystem II (PSII) that comprises the Mn4CaO5 cluster, with participation of the redox-active tyrosine residue (YZ) and a hydrogen-bonded network of amino acids and water molecules. It has been proposed that the strong hydrogen bond between YZ and D1-His190 likely renders YZ kinetically and thermodynamically competent leading to highly efficient water oxidation. However, a detailed understanding of the proton-coupled electron transfer (PCET) at YZ remains elusive owing to the transient nature of its intermediate states involving YZ⋅. Herein, we employ a combination of high-resolution two-dimensional 14N hyperfine sublevel correlation spectroscopy and density functional theory methods to investigate a bioinspired artificial photosynthetic reaction center that mimics the PCET process involving the YZ residue of PSII. Our results underscore the importance of proximal water molecules and charge delocalization on the electronic structure of the artificial reaction center. Structural factors are critical in the design of artificial photosynthetic systems Correlation between hyperfine couplings of the N atoms and electron spin density Spin density distribution affected by charge delocalization and explicit waters Spin density modulation by electronic coupling as observed with P680 and YZ in PSII
Collapse
Affiliation(s)
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Philip Charles
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian Mark
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - William Marshall
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian Molnar
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
32
|
Morawski OW, Kielesiński Ł, Gryko DT, Sobolewski AL. Highly Polarized Coumarin Derivatives Revisited: Solvent-Controlled Competition Between Proton-Coupled Electron Transfer and Twisted Intramolecular Charge Transfer. Chemistry 2020; 26:7281-7291. [PMID: 32212353 DOI: 10.1002/chem.202001079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Indexed: 11/08/2022]
Abstract
Linking a polarized coumarin unit with an aromatic substituent via an amide bridge results in weak electronic coupling that affects the intramolecular electron-transfer (ET) process. As a result of this, interesting solvent-dependent photophysical properties can be observed. In polar solvents, electron transfer in coumarin derivatives of this type induces a mutual twist of the electron-donating and -accepting molecular units (TICT process) that facilitates radiationless decay processes (internal conversion). In the dyad with the strongest intramolecular hydrogen bond, the planar form is stabilized, such that twisting can only occur in highly polar solvents, whereas a fast proton-coupled electron-transfer (PCET process) occurs in nonpolar n-alkanes. The kPCET rate constant decreases linearly with the energy of the fluorescence maximum in different solvents. This observation can be explained in terms of competition between electron- and proton-transfer from a highly polarized (ca. 15 D) and fluorescent locally excited (1 LE) state to a much less polarized (ca. 4 D) charge-transfer (1 CT) state, a unique occurrence. Photophysical measurements performed for a family of related coumarin dyads, together with results of quantum-chemical computations, give insight into the mechanism of the ET process, which is followed by either a TICT or a PCET process. Our results reveal that dielectric solvation of the excited state slows down the PCET process, even in nonpolar solvents.
Collapse
Affiliation(s)
- Olaf W Morawski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Łukasz Kielesiński
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland.,Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Andrzej L Sobolewski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| |
Collapse
|
33
|
Lindsay S. Ubiquitous Electron Transport in Non-Electron Transfer Proteins. Life (Basel) 2020; 10:life10050072. [PMID: 32443721 PMCID: PMC7281237 DOI: 10.3390/life10050072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Many proteins that have no known role in electron transfer processes are excellent electronic conductors. This surprising characteristic is not generally evident in bulk aggregates or crystals, or in isolated, solvated peptides, because the outer hydrophilic shell of the protein presents a barrier to charge injection. Ligands that penetrate this barrier make excellent electrical contacts, yielding conductivities on the order of a S/m. The Fermi Energy of metal electrodes is aligned with the energy of internal electronic states of the protein, as evidenced by resonant transmission peaks at about 0.3V on the Normal Hydrogen Electrode scale. This energy is about 0.7 V less than the oxidation potential of aromatic amino acids, indicating a large reduction in electrostatic reorganization energy losses in the interior of the proteins. Consistent with a possible biological role for this conductance, there is a strong dependence on protein conformation. Thus, direct measurement of conductance is a powerful new way to read out protein conformation in real time, opening the way to new types of single molecule sensors and sequencing devices.
Collapse
Affiliation(s)
- Stuart Lindsay
- Biodesign Institute, Department of Physics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
34
|
Zhang B, Song W, Brown J, Nemanich R, Lindsay S. Electronic Conductance Resonance in Non-Redox-Active Proteins. J Am Chem Soc 2020; 142:6432-6438. [PMID: 32176496 DOI: 10.1021/jacs.0c01805] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bioelectronics research has mainly focused on redox-active proteins because of their role in biological charge transport. In these proteins, electronic conductance is a maximum when electrons are injected at the known redox potential of the protein. It has been shown recently that many non-redox-active proteins are good electronic conductors, though the mechanism of conduction is not yet understood. Here, we report single-molecule measurements of the conductance of three non-redox-active proteins, maintained under potential control in solution, as a function of electron injection energy. All three proteins show a conductance resonance at a potential ∼0.7 V removed from the nearest oxidation potential of their constituent amino acids. If this shift reflects a reduction of reorganization energy in the interior of the protein, it would account for the long-range conductance observed when carriers are injected into the interior of a protein.
Collapse
Affiliation(s)
- Bintian Zhang
- Biodesign Institute, Arizona State University, Tempe, Arizona 87287, United States
| | - Weisi Song
- Biodesign Institute, Arizona State University, Tempe, Arizona 87287, United States
| | - Jesse Brown
- Department of Physics, Arizona State University, Tempe, Arizona 87287, United States
| | - Robert Nemanich
- Department of Physics, Arizona State University, Tempe, Arizona 87287, United States
| | - Stuart Lindsay
- Biodesign Institute, Arizona State University, Tempe, Arizona 87287, United States.,Department of Physics, Arizona State University, Tempe, Arizona 87287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 87287, United States
| |
Collapse
|
35
|
Odella E, Mora SJ, Wadsworth BL, Goings JJ, Gervaldo MA, Sereno LE, Groy TL, Gust D, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires. Chem Sci 2020; 11:3820-3828. [PMID: 34122850 PMCID: PMC8152432 DOI: 10.1039/c9sc06010c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Designing molecular platforms for controlling proton and electron movement in artificial photosynthetic systems is crucial to efficient catalysis and solar energy conversion. The transfer of both protons and electrons during a reaction is known as proton-coupled electron transfer (PCET) and is used by nature in myriad ways to provide low overpotential pathways for redox reactions and redox leveling, as well as to generate bioenergetic proton currents. Herein, we describe theoretical and electrochemical studies of a series of bioinspired benzimidazole-phenol (BIP) derivatives and a series of dibenzimidazole-phenol (BI2P) analogs with each series bearing the same set of terminal proton-accepting (TPA) groups. The set of TPAs spans more than 6 pKa units. These compounds have been designed to explore the role of the bridging benzimidazole(s) in a one-electron oxidation process coupled to intramolecular proton translocation across either two (the BIP series) or three (the BI2P series) acid/base sites. These molecular constructs feature an electrochemically active phenol connected to the TPA group through a benzimidazole-based bridge, which together with the phenol and TPA group form a covalent framework supporting a Grotthuss-type hydrogen-bonded network. Infrared spectroelectrochemistry demonstrates that upon oxidation of the phenol, protons translocate across this well-defined hydrogen-bonded network to a TPA group. The experimental data show the benzimidazole bridges are non-innocent participants in the PCET process in that the addition of each benzimidazole unit lowers the redox potential of the phenoxyl radical/phenol couple by 60 mV, regardless of the nature of the TPA group. Using a series of hypothetical thermodynamic steps, density functional theory calculations correctly predicted the dependence of the redox potential of the phenoxyl radical/phenol couple on the nature of the final protonated species and provided insight into the thermodynamic role of dibenzimidazole units in the PCET process. This information is crucial for developing molecular “dry proton wires” with these moieties, which can transfer protons via a Grotthuss-type mechanism over long distances without the intervention of water molecules. Experimental and theoretical methods characterize the thermodynamics of electrochemically driven proton-coupled electron transfer processes in bioinspired constructs involving multiple proton translocations over Grotthus-type proton wires.![]()
Collapse
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - S Jimena Mora
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Brian L Wadsworth
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Joshua J Goings
- Department of Chemistry, Yale University New Haven Connecticut 06520-8107 USA
| | - Miguel A Gervaldo
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal No 3 5800 Río Cuarto Córdoba Argentina
| | - Leonides E Sereno
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal No 3 5800 Río Cuarto Córdoba Argentina
| | - Thomas L Groy
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Devens Gust
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Gary F Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | | | - Ana L Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| |
Collapse
|
36
|
Mora SJ, Heredia DA, Odella E, Vrudhula U, Gust D, Moore TA, Moore AL. Design and synthesis of benzimidazole phenol-porphyrin dyads for the study of bioinspired photoinduced proton-coupled electron transfer. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Benzimidazole phenol-porphyrin dyads have been synthesized to study proton-coupled electron transfer (PCET) reactions induced by photoexcitation. High-potential porphyrins have been chosen to model P680, the photoactive chlorophyll cluster of photosynthetic photosystem II (PSII). They have either two or three pentafluorophenyl groups at the meso positions to impart the high redox potential. The benzimidazole phenol (BIP) moiety models the Tyr[Formula: see text]-His190 pair of PSII, which is a redox mediator that shuttles electrons from the water oxidation catalyst to P680[Formula: see text]. The dyads consisting of a porphyrin and an unsubstituted BIP are designed to study one-electron one-proton transfer (E1PT) processes upon excitation of the porphyrin. When the BIP moiety is substituted with proton-accepting groups such as imines, one-electron two-proton transfer (E2PT) processes are expected to take place upon oxidation of the phenol by the excited state of the porphyrin. The bis-pentafluorophenyl porphyrins linked to BIPs provide platforms for introducing a variety of electron-accepting moieties and/or anchoring groups to attach semiconductor nanoparticles to the macrocycle. The triads thus formed will serve to study the PCET process involving the BIPs when the oxidation of the phenol is achieved by the photochemically produced radical cation of the porphyrin.
Collapse
Affiliation(s)
- S. Jimena Mora
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Daniel A. Heredia
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, 5800 Río Cuarto, Córdoba, Argentina
| | - Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Uma Vrudhula
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Thomas A. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Ana L. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
37
|
|
38
|
Gu C, Nie X, Jiang J, Chen Z, Dong Y, Zhang X, Liu J, Yu Z, Zhu Z, Liu J, Liu X, Shao Y. Mechanistic Study of Oxygen Reduction at Liquid/Liquid Interfaces by Hybrid Ultramicroelectrodes and Mass Spectrometry. J Am Chem Soc 2019; 141:13212-13221. [PMID: 31353892 DOI: 10.1021/jacs.9b06299] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions at various interfaces (liquid/membrane, solid/electrolyte, liquid/liquid) lie at the heart of many processes in biology and chemistry. Mechanistic study can provide profound understanding of PCET and rational design of new systems. However, most mechanisms of PCET reactions at a liquid/liquid interface have been proposed based on electrochemical and spectroscopic data, which lack direct evidence for possible intermediates. Moreover, a liquid/liquid interface as one type of soft interface is dynamic, making the investigation of interfacial reactions very challenging. Herein a novel electrochemistry method coupled to mass spectrometry (EC-MS) was introduced for in situ study of the oxygen reduction reaction (ORR) by ferrocene (Fc) under catalysis from cobalt tetraphenylporphine (CoTPP) at liquid/liquid interfaces. The key units are two types of gel hybrid ultramicroelectrodes (agar-gel/organic hybrid ultramicroelectrodes and water/PVC-gel hybrid ultramicroelectrodes), which were made based on dual micro- or nanopipettes. A solidified liquid/liquid interface can be formed at the tip of these pipettes, and it serves as both an electrochemical cell and a nanospray emitter for mass spectrometry. We demonstrated that the solidified L/L interfaces were very similar to typical L/L interfaces. Key CoTPP intermediates of the ORR at the liquid/liquid interfaces were identified for the first time, and the four-electron oxygen reduction pathway predominated, which provides valuable insights into the mechanism of the ORR. Theoretical simulation has further supported the possibility of formation of intermediates. This type of platform is promising for in situ tracking and identifying intermediates to study complicated reactions at liquid/liquid interfaces or other soft interfaces.
Collapse
Affiliation(s)
- Chaoyue Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xin Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jiezhang Jiang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zifei Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yifan Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xin Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
39
|
Lacombat F, Espagne A, Dozova N, Plaza P, Müller P, Brettel K, Franz-Badur S, Essen LO. Ultrafast Oxidation of a Tyrosine by Proton-Coupled Electron Transfer Promotes Light Activation of an Animal-like Cryptochrome. J Am Chem Soc 2019; 141:13394-13409. [PMID: 31368699 DOI: 10.1021/jacs.9b03680] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The animal-like cryptochrome of Chlamydomonas reinhardtii (CraCRY) is a recently discovered photoreceptor that controls the transcriptional profile and sexual life cycle of this alga by both blue and red light. CraCRY has the uncommon feature of efficient formation and longevity of the semireduced neutral form of its FAD cofactor upon blue light illumination. Tyrosine Y373 plays a crucial role by elongating , as fourth member, the electron transfer (ET) chain found in most other cryptochromes and DNA photolyases, which comprises a conserved tryptophan triad. Here, we report the full mechanism of light-induced FADH• formation in CraCRY using transient absorption spectroscopy from hundreds of femtoseconds to seconds. Electron transfer starts from ultrafast reduction of excited FAD to FAD•- by the proximal tryptophan (0.4 ps) and is followed by delocalized migration of the produced WH•+ radical along the tryptophan triad (∼4 and ∼50 ps). Oxidation of Y373 by coupled ET to WH•+ and deprotonation then proceeds in ∼800 ps, without any significant kinetic isotope effect, nor a pH effect between pH 6.5 and 9.0. The FAD•-/Y373• pair is formed with high quantum yield (∼60%); its intrinsic decay by recombination is slow (∼50 ms), favoring reduction of Y373• by extrinsic agents and protonation of FAD•- to form the long-lived, red-light absorbing FADH• species. Possible mechanisms of tyrosine oxidation by ultrafast proton-coupled ET in CraCRY, a process about 40 times faster than the archetypal tyrosine-Z oxidation in photosystem II, are discussed in detail.
Collapse
Affiliation(s)
- Fabien Lacombat
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Agathe Espagne
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Nadia Dozova
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Pascal Plaza
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Pavel Müller
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , 91198 , Gif-sur-Yvette cedex , France
| | - Klaus Brettel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , 91198 , Gif-sur-Yvette cedex , France
| | - Sophie Franz-Badur
- Department of Chemistry, Center for Synthetic Microbiology , Philipps University , 35032 Marburg , Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Center for Synthetic Microbiology , Philipps University , 35032 Marburg , Germany
| |
Collapse
|
40
|
Odella E, Wadsworth BL, Mora SJ, Goings JJ, Huynh MT, Gust D, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Proton-Coupled Electron Transfer Drives Long-Range Proton Translocation in Bioinspired Systems. J Am Chem Soc 2019; 141:14057-14061. [DOI: 10.1021/jacs.9b06978] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L. Wadsworth
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - S. Jimena Mora
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Joshua J. Goings
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Mioy T. Huynh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gary F. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ana L. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
41
|
Schneider J, Bangle RE, Swords WB, Troian-Gautier L, Meyer GJ. Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts. J Am Chem Soc 2019; 141:9758-9763. [DOI: 10.1021/jacs.9b01296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jenny Schneider
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Rachel E. Bangle
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Wesley B. Swords
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| |
Collapse
|
42
|
Abstract
The measured electronic properties of proteins are known to depend critically on contacts, although little is known at the single-molecule level. Here, we have measured the conductance of single-protein molecules in their natural aqueous environment, but in conditions where no ion current flows, finding large conductances (nanosiemens) over long paths (many nanometers) when the protein is tethered by chemical contacts formed by binding-specific ligands. This provides a method for forming reliable contacts to proteins, and for the specific detection of single molecules. Thus, single antibodies, such as anti-Ebola IgG, can be detected electrically when they bind a peptide epitope tethered to electrodes, with no background signal from molecules that do not bind specifically. Proteins are widely regarded as insulators, despite reports of electrical conductivity. Here we use measurements of single proteins between electrodes, in their natural aqueous environment to show that the factor controlling measured conductance is the nature of the electrical contact to the protein, and that specific ligands make highly selective electrical contacts. Using six proteins that lack known electrochemical activity, and measuring in a potential region where no ion current flows, we find characteristic peaks in the distributions of measured single-molecule conductances. These peaks depend on the contact chemistry, and hence, on the current path through the protein. In consequence, the measured conductance distribution is sensitive to changes in this path caused by ligand binding, as shown with streptavidin–biotin complexes. Measured conductances are on the order of nanosiemens over distances of many nanometers, orders of magnitude more than could be accounted for by electron tunneling. The current is dominated by contact resistance, so the conductance for a given path is independent of the distance between electrodes, as long as the contact points on the protein can span the gap between electrodes. While there is no currently known biological role for high electronic conductance, its dependence on specific contacts has important technological implications, because no current is observed at all without at least one strongly bonded contact, so direct electrical detection is a highly selective and label-free single-molecule detection method. We demonstrate single-molecule, highly specific, label- and background free-electronic detection of IgG antibodies to HIV and Ebola viruses.
Collapse
|
43
|
Chai J, Zheng Z, Pan H, Zhang S, Lakshmi KV, Sun YY. Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective. Phys Chem Chem Phys 2019; 21:8721-8728. [DOI: 10.1039/c9cp00868c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All quantum-mechanical calculations provide insights into the effect of the hydrogen bonding network on the proton-coupled electron transfer at YZ and YD in photosystem II.
Collapse
Affiliation(s)
- Jun Chai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 201899
- China
| | - Zhaoyang Zheng
- National Key Laboratory of Shock Wave and Detonation Physics
- Institute of Fluid Physics
- China Academy of Engineering Physics
- Mianyang 621900
- China
| | - Hui Pan
- Joint Key Laboratory of the Ministry of Education
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Taipa
- China
| | - Shengbai Zhang
- Department of Physics
- Applied Physics, and Astronomy
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Yi-Yang Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 201899
- China
| |
Collapse
|