1
|
Quintela Matos I, Escobedo FA. Effect of non-additive mixing on entropic bonding strength and phase behavior of binary nanocrystal superlattices. J Chem Phys 2024; 161:174501. [PMID: 39484902 DOI: 10.1063/5.0232433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
Non-additive mixing plays a key role in the properties of molecular fluids and solids. In this work, the potential for athermal order-disorder phase transitions is explored in non-additive binary colloidal nanoparticles that form substitutionally ordered compounds, namely, for equimolar mixtures of octahedra + spheres, which form a CsCl lattice compound, and cubes + spheres, which form a NaCl crystal. Monte Carlo simulations that target phase coexistence conditions were used to examine the effect on compound formation of varying degrees of negative non-additivity created by component size asymmetry and by size-tunable indentations in the polyhedra's facets, intended to allow the nestling of neighboring spheres. Our results indicate that the stabilization of the compound crystal requires a relatively large degree of negative non-additivity, which depends on particle geometry and the packing of the relevant phases. It is found that negative non-additivity can be achieved in mixtures of large spheres and small cubes having no indentations and lead to the athermal crystallization of the NaCl lattice. For similarly sized components, athermal congruent transitions are attainable and non-additivity can be generated through indentations, especially for the cubes + spheres system. Increasing indentation leads to lower phase coexistence free energy and pressure in the cubes + spheres system but has the opposite effect in the octahedra + spheres system. These results indicate a stronger stabilizing effect on the athermal compound phase by the cubes' indentations, where a deeper nestling of the spheres leads to a denser compound phase and a larger reduction in the associated pressure-volume free-energy term.
Collapse
Affiliation(s)
- Isabela Quintela Matos
- F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Fernando A Escobedo
- F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
2
|
Yu JW, Yun H, Lee WB, Kim Y. Two-Regime Conformation of Grafted Polymer on Nanoparticle Determines Symmetry of Nanoparticle Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406720. [PMID: 39073253 PMCID: PMC11422811 DOI: 10.1002/advs.202406720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 07/30/2024]
Abstract
One of the key design factors that regulate the properties of grafted nanoparticles (GNPs) and their self-assembly is the conformation of the grafted polymer. On the curved surface of the GNP core, the conformation of the polymer chain is not uniform in the radial direction. The segment is a non-Gaussian chain in the concentrated polymer brush (CPB) regime near the interface between GNP core and grafted polymer, while it is less constrained in the semidilute polymer brush (SDPB) regime near the surface of GNP. Here, the property of polymer conformation showing crossover behavior at the CPB/SDPB threshold through the coarse-grain molecular dynamics simulation of nanoparticles with explicit grafted chains is explored. Moreover, the self-assembly structure depends on the effective softness, which is defined as a function of the threshold of two regimes estimated from the conformation of the polymer.
Collapse
Affiliation(s)
- Ji Woong Yu
- Center for AI and Natural Sciences, Korea Institute for Advanced Study, Seoul, 02455, Republic of Korea
| | - Hongseok Yun
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, South Korea
- School of Transdisciplinary Innovations, Seoul National University, Seoul, 08826, Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
Price EK, Tisdale WA. Predictive Modeling of Nanocrystal Orientation in Superlattices: Insights from Ligand Entropy. NANO LETTERS 2024; 24:9983-9989. [PMID: 39078514 DOI: 10.1021/acs.nanolett.4c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The self-assembly of nanocrystals (NCs) into close-packed, ordered superlattices (SLs) is of broad, engineering interest. The coherent orientation of polyhedral nanocrystals within NC SLs enhances electronic, magnetic, and vibrational coupling, leading to a variety of emergent phenomena. Here, we show that coherent orientation of polyhedral NCs in many SLs can be understood simply by considering its effect on the conformational entropy of surface ligands. We report the predicted nanocrystal orientations and entropic driving force to orient for a broad range of nanocrystal shapes and superlattice unit cells, and we show that ligand entropy is sufficient to reproduce a host of reported experimental and computational observations. We additionally use this framework to predict the expected distribution of interstitial species such as solvent or unbound ligands in an oriented NC SL. This work offers intuition for understanding the orientation of NCs in superlattices and a future framework for analyzing multinary structures.
Collapse
Affiliation(s)
- Eliza K Price
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
5
|
Missoni LL, Upah A, Zaldívar G, Travesset A, Tagliazucchi M. Solvent Isotherms and Structural Transitions in Nanoparticle Superlattice Assembly. NANO LETTERS 2024; 24:5270-5276. [PMID: 38647381 DOI: 10.1021/acs.nanolett.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We introduce a Molecular Theory for Compressible Fluids (MOLT-CF) that enables us to compute free energies and other thermodynamic functions for nanoparticle superlattices with any solvent content, including the dry limit. Quantitative agreement is observed between MOLT-CF and united-atom molecular dynamics simulations performed to assess the reliability and precision of the theory. Among other predictions, MOLT-CF shows that the amount of solvent within the superlattice decreases approximately linearly with its vapor pressure and that in the late stages of drying, solvent-filled voids form at lattice interstitials. Applied to single-component superlattices, MOLT-CF predicts fcc-to-bcc Bain transitions for decreasing vapor pressure and for increasing ligand length, both in agreement with experimental results. We explore the stability of other single-component phases and show that the C14 Frank-Kasper phase, which has been reported in experiments, is not a global free-energy minimum. Implications for precise assembly and prediction of multicomponent nanoparticle systems are discussed.
Collapse
Affiliation(s)
- Leandro L Missoni
- Departamento de Química Inorgánica Analítica y Química Física, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, C1428EGA Buenos Aires, Argentina
- Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Ciudad Universitaria, CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Alex Upah
- Department of Physics and Astronomy, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| | - Gervasio Zaldívar
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica Analítica y Química Física, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, C1428EGA Buenos Aires, Argentina
- Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Ciudad Universitaria, CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Pabellón 2, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
6
|
Giunta G, Campos-Villalobos G, Dijkstra M. Coarse-Grained Many-Body Potentials of Ligand-Stabilized Nanoparticles from Machine-Learned Mean Forces. ACS NANO 2023; 17:23391-23404. [PMID: 38011344 PMCID: PMC10722599 DOI: 10.1021/acsnano.3c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Colloidal nanoparticles self-assemble into a variety of superstructures with distinctive optical, structural, and electronic properties. These nanoparticles are usually stabilized by a capping layer of organic ligands to prevent aggregation in the solvent. When the ligands are sufficiently long compared to the dimensions of the nanocrystal cores, the effective coarse-grained forces between pairs of nanoparticles are largely affected by the presence of neighboring particles. In order to efficiently investigate the self-assembly behavior of these complex colloidal systems, we propose a machine-learning approach to construct effective coarse-grained many-body interaction potentials. The multiscale methodology presented in this work constitutes a general bottom-up coarse-graining strategy where the coarse-grained forces acting on coarse-grained sites are extracted from measuring the vectorial mean forces on these sites in reference fine-grained simulations. These effective coarse-grained forces, i.e., gradients of the potential of mean force or of the free-energy surface, are represented by a simple linear model in terms of gradients of structural descriptors, which are scalar functions that are rotationally invariant. In this way, we also directly obtain the free-energy surface of the coarse-grained model as a function of all coarse-grained coordinates. We expect that this simple yet accurate coarse-graining framework for the many-body potential of mean force will enable the characterization, understanding, and prediction of the structure and phase behavior of relevant soft-matter systems by direct simulations. The key advantage of this method is its generality, which allows it to be applicable to a broad range of systems. To demonstrate the generality of our method, we also apply it to a colloid-polymer model system, where coarse-grained many-body interactions are pronounced.
Collapse
Affiliation(s)
| | - Gerardo Campos-Villalobos
- Soft Condensed Matter, Debye
Institute for Nanomaterials Science, Utrecht
University, Princetonplein
5, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye
Institute for Nanomaterials Science, Utrecht
University, Princetonplein
5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
7
|
Cao W, Yakimov A, Qian X, Li J, Peng X, Kong X, Copéret C. Surface Sites and Ligation in Amine-capped CdSe Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202312713. [PMID: 37869935 DOI: 10.1002/anie.202312713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Converting colloidal nanocrystals (NCs) into devices for various applications is facilitated by designing and controlling their surface properties. One key strategy for tailoring surface properties is thus to choose tailored surface ligands. In that context, amines have been universally used, with the goal to improve NCs synthesis, processing and performances. However, understanding the nature of surface sites in amine-capped NCs remains challenging, due to the complex surface compositions as well as surface ligands dynamic. Here, we investigate both surface sites and amine ligation in CdSe NCs by combining advanced NMR spectroscopy and computational modelling. Notably, dynamic nuclear polarization (DNP) enhanced 113 Cd and 77 Se 1D NMR helps to identify both bulk and surface sites of NCs, while 113 Cd 2D NMR spectroscopy enables to resolve amines terminated sites on both Se-rich and nonpolar surfaces. In addition to directly bonding to surface sites, amines are shown to also interact through hydrogen-bonding with absorbed water as revealed by 15 N NMR, augmented with computations. The characterization methodology developed for this work provides unique molecular-level insight into the surface sites of a range of amine-capped CdSe NCs, and paves the way to identify structure-function relationships and rational approaches towards colloidal NCs with tailored properties.
Collapse
Affiliation(s)
- Weicheng Cao
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Alexander Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Xudong Qian
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Jiongzhao Li
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xiaogang Peng
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
8
|
Prabhakaran A, Dang Z, Dhall R, Camerin F, Marín-Aguilar S, Dhanabalan B, Castelli A, Brescia R, Manna L, Dijkstra M, Arciniegas MP. Real-Time In Situ Observation of CsPbBr 3 Perovskite Nanoplatelets Transforming into Nanosheets. ACS NANO 2023. [PMID: 37406164 PMCID: PMC10373526 DOI: 10.1021/acsnano.3c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The manipulation of nano-objects through heating is an effective strategy for inducing structural modifications and therefore changing the optoelectronic properties of semiconducting materials. Despite its potential, the underlying mechanism of the structural transformations remains elusive, largely due to the challenges associated with their in situ observations. To address these issues, we synthesize temperature-sensitive CsPbBr3 perovskite nanoplatelets and investigate their structural evolution at the nanoscale using in situ heating transmission electron microscopy. We observe the morphological changes that start from the self-assembly of the nanoplatelets into ribbons on a substrate. We identify several paths of merging nanoplates within ribbons that ultimately lead to the formation of nanosheets dispersed randomly on the substrate. These observations are supported by molecular dynamics simulations. We correlate the various paths for merging to the random orientation of the initial ribbons along with the ligand mobility (especially from the edges of the nanoplatelets). This leads to the preferential growth of individual nanosheets and the merging of neighboring ones. These processes enable the creation of structures with tunable emission, ranging from blue to green, all from a single material. Our real-time observations of the transformation of perovskite 2D nanocrystals reveal a route to achieve large-area nanosheets by controlling the initial orientation of the self-assembled objects with potential for large-scale applications.
Collapse
Affiliation(s)
- Aarya Prabhakaran
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Zhiya Dang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Rohan Dhall
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fabrizio Camerin
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | - Susana Marín-Aguilar
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | | | - Andrea Castelli
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Rosaria Brescia
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Liberato Manna
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | | |
Collapse
|
9
|
Eygeris Y, Wang Q, Görke M, Grünwald M, Zharov I. Temperature-Responsive Nanoporous Membranes from Self-Assembly of Poly( N-isopropylacrylamide) Hairy Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37285651 DOI: 10.1021/acsami.3c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoporous membranes play a critical role in numerous separations on laboratory and industrial scales, ranging from water treatment to biotechnology. However, few strategies exist that allow for the preparation of mechanically robust nanoporous membranes whose separation properties can be easily tuned. Here, we introduce a new family of tunable nanoporous membranes based on nanoparticles decorated with temperature-responsive polymer brushes. We prepared mechanically robust membranes from hairy nanoparticles (HNPs) carrying PNIPAM polymer brushes. We assembled the HNPs into thin films through pressure-driven deposition of nanoparticle suspensions and measured the permeability and filtration cutoff of these membranes at different temperatures. The membrane pore diameter at room temperature varied between 10 and 30 nm depending on the polymer length. The water permeability of these membranes could be controlled by temperature, with the effective pore diameter increasing by a factor of 3-6 (up to 100 nm) when the temperature was increased to 60 °C. The size selectivity of these membranes in the filtration of nanoparticles could also be attenuated by temperature. Molecular dynamics computer simulations of a coarse-grained HNP model show that temperature-sensitive pores sizes are consistent with our experimental results and reveal the polymer configurations responsible for the observed filtration membrane permeability. We expect that these membranes will be useful for separations and in the preparation of responsive microfluidic devices.
Collapse
Affiliation(s)
- Yulia Eygeris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Qiaoyi Wang
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Marion Görke
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Michael Grünwald
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ilya Zharov
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Zhang Y, Giunta G, Liang H, Dijkstra M. Shape-induced crystallization of binary DNA-functionalized nanocubes. J Chem Phys 2023; 158:2890487. [PMID: 37172219 DOI: 10.1063/5.0148139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/14/2023] Open
Abstract
Leveraging the anisotropic shape of DNA-functionalized nanoparticles holds potential for shape-directed crystallization of a wide collection of superlattice structures. Using coarse-grained molecular dynamics simulations, we study the self-assembly of a binary mixture of cubic gold nanoparticles, which are functionalized by complementary DNA strands. We observe the spontaneous self-assembly of simple cubic (SC), plastic body-centered tetragonal (pBCT), and compositionally disordered plastic body-centered tetragonal (d-pBCT) phases due to hybridization of the DNA strands. We systematically investigate the effect of length, grafting density, as well as rigidity of the DNA strands on the self-assembly behavior of cubic nanoparticles. We measure the potential of mean force between DNA-functionalized nanocubes for varying rigidity of the DNA strands and DNA lengths. Using free-energy calculations, we find that longer and flexible DNA strands can lead to a phase transformation from SC to the pBCT phase due to a gain in entropy arising from the orientational degrees of freedom of the nanocubes in the pBCT phase. Our results may serve as a guide for self-assembly experiments on DNA-functionalized cubic nanoparticles.
Collapse
Affiliation(s)
- Yunhan Zhang
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Giuliana Giunta
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Haojun Liang
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
11
|
Yee DW, Lee MS, An J, Macfarlane RJ. Reversible Diffusionless Phase Transitions in 3D Nanoparticle Superlattices. J Am Chem Soc 2023; 145:6051-6056. [PMID: 36898204 DOI: 10.1021/jacs.3c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Nanocomposite tectons (NCTs), polymer brush-grafted nanoparticles that use supramolecular interactions to drive their assembly, form ordered nanoparticle superlattices (NPSLs) with well-defined unit cell symmetries when thermally annealed. In this work, we demonstrate that appropriate assembly and processing conditions can also enable control over the microstructure of NCT lattices by balancing the enthalpic and entropic factors associated with ligand packing and supramolecular bonding during crystallization. Unary systems of NCTs are assembled via the addition of a small molecule capable of binding to multiple nanoparticle ligands; these NCTs initially form face-centered-cubic (FCC) structures in solvents that are favorable for the particles' polymer brushes. However, the FCC lattices undergo a reversible, diffusionless phase transition to body-centered-cubic (BCC) lattices when transferred to a solvent that induces polymer brush collapse. The BCC superlattices maintain the same crystal habit as the parent FCC phase but exhibit significant transformation twinning similar to that seen in martensitic alloys. This previously unseen diffusionless phase transformation in NPSLs enables unique microstructural features in the resulting assemblies, suggesting that NPSLs could serve as models for the investigation of microstructural evolution in crystalline systems and extend our understanding of NPSLs as atomic material analogues.
Collapse
Affiliation(s)
- Daryl W Yee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Margaret S Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joyce An
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Li D, Chen Q, Chun J, Fichthorn K, De Yoreo J, Zheng H. Nanoparticle Assembly and Oriented Attachment: Correlating Controlling Factors to the Resulting Structures. Chem Rev 2023; 123:3127-3159. [PMID: 36802554 DOI: 10.1021/acs.chemrev.2c00700] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Nanoparticle assembly and attachment are common pathways of crystal growth by which particles organize into larger scale materials with hierarchical structure and long-range order. In particular, oriented attachment (OA), which is a special type of particle assembly, has attracted great attention in recent years because of the wide range of material structures that result from this process, such as one-dimensional (1D) nanowires, two-dimensional (2D) sheets, three-dimensional (3D) branched structures, twinned crystals, defects, etc. Utilizing in situ transmission electron microscopy techniques, researchers observed orientation-specific forces that act over short distances (∼1 nm) from the particle surfaces and drive the OA process. Integrating recently developed 3D fast force mapping via atomic force microscopy with theories and simulations, researchers have resolved the near-surface solution structure, the molecular details of charge states at particle/fluid interfaces, inhomogeneity of surface charges, and dielectric/magnetic properties of particles that influence short- and long-range forces, such as electrostatic, van der Waals, hydration, and dipole-dipole forces. In this review, we discuss the fundamental principles for understanding particle assembly and attachment processes, and the controlling factors and resulting structures. We review recent progress in the field via examples of both experiments and modeling, and discuss current developments and the future outlook.
Collapse
Affiliation(s)
- Dongsheng Li
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Levich Institute and Department of Chemical Engineering, CUNY City College of New York; New York, New York 10031, United States
| | - Kristen Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University; University Park, Pennsylvania 16802, United States
| | - James De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle Washington 98195, United States
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Hao Q, Lv H, Ma H, Tang X, Chen M. Development of Self-Assembly Methods on Quantum Dots. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1317. [PMID: 36770326 PMCID: PMC9919123 DOI: 10.3390/ma16031317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Quantum dot materials, with their unique photophysical properties, are promising zero-dimensional materials for encryption, display, solar cells, and biomedical applications. However, due to the large surface to volume ratio, they face the challenge of chemical instability and low carrier transport efficiency, which have greatly limited their reliability and utility. In light of the current development bottleneck of quantum dot materials, the chemical stability and physical properties can be effectively improved by the self-assembly method. This review will discuss the research progress of the self-assembly methods of quantum dots and analyze the advantages and disadvantages of those self-assembly methods. Furthermore, the scientific challenges and improvement in the self-assembly method of quantum dots are prospected.
Collapse
Affiliation(s)
- Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Hongyu Lv
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Haifei Ma
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Tang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
14
|
Discovery of two-dimensional binary nanoparticle superlattices using global Monte Carlo optimization. Nat Commun 2022; 13:7976. [PMID: 36581611 PMCID: PMC9800587 DOI: 10.1038/s41467-022-35690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Binary nanoparticle (NP) superlattices exhibit distinct collective plasmonic, magnetic, optical, and electronic properties. Here, we computationally demonstrate how fluid-fluid interfaces could be used to self-assemble binary systems of NPs into 2D superlattices when the NP species exhibit different miscibility with the fluids forming the interface. We develop a basin-hopping Monte Carlo (BHMC) algorithm tailored for interface-trapped structures to rapidly determine the ground-state configuration of NPs, allowing us to explore the repertoire of binary NP architectures formed at the interface. By varying the NP size ratio, interparticle interaction strength, and difference in NP miscibility with the two fluids, we demonstrate the assembly of an array of exquisite 2D periodic architectures, including AB-, AB2-, and AB3-type monolayer superlattices as well as AB-, AB2-, A3B5-, and A4B6-type bilayer superlattices. Our results suggest that the interfacial assembly approach could be a versatile platform for fabricating 2D colloidal superlattices with tunable structure and properties.
Collapse
|
15
|
Petersen N, Girard M, Riedinger A, Valsson O. The Crucial Role of Solvation Forces in the Steric Stabilization of Nanoplatelets. NANO LETTERS 2022; 22:9847-9853. [PMID: 36493312 PMCID: PMC9801426 DOI: 10.1021/acs.nanolett.2c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The steric stability of inorganic colloidal particles in an apolar solvent is usually described in terms of the balance between three contributions: the van der Waals attraction, the free energy of mixing, and the ligand compression. However, in the case of nanoparticles, the discrete nature of the ligand shell and the solvent has to be taken into account. Cadmium selenide nanoplatelets are a special case. They combine a weak van der Waals attraction and a large facet to particle size ratio. We use coarse grained molecular dynamics simulations of nanoplatelets in octane to demonstrate that solvation forces are strong enough to induce the formation of nanoplatelet stacks and by that have a crucial impact on the steric stability. In particular, we demonstrate that for sufficiently large nanoplatelets, solvation forces are proportional to the interacting facet area, and their strength is intrinsically tied to the softness of the ligand shell.
Collapse
Affiliation(s)
- Nanning Petersen
- Max
Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - Martin Girard
- Max
Planck Institute for Polymer Research, Mainz D-55128, Germany
| | | | - Omar Valsson
- Max
Planck Institute for Polymer Research, Mainz D-55128, Germany
- Department
of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
16
|
Gentili D, Ori G. Reversible assembly of nanoparticles: theory, strategies and computational simulations. NANOSCALE 2022; 14:14385-14432. [PMID: 36169572 DOI: 10.1039/d2nr02640f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The significant advances in synthesis and functionalization have enabled the preparation of high-quality nanoparticles that have found a plethora of successful applications. The unique physicochemical properties of nanoparticles can be manipulated through the control of size, shape, composition, and surface chemistry, but their technological application possibilities can be further expanded by exploiting the properties that emerge from their assembly. The ability to control the assembly of nanoparticles not only is required for many real technological applications, but allows the combination of the intrinsic properties of nanoparticles and opens the way to the exploitation of their complex interplay, giving access to collective properties. Significant advances and knowledge gained over the past few decades on nanoparticle assembly have made it possible to implement a growing number of strategies for reversible assembly of nanoparticles. In addition to being of interest for basic studies, such advances further broaden the range of applications and the possibility of developing innovative devices using nanoparticles. This review focuses on the reversible assembly of nanoparticles and includes the theoretical aspects related to the concept of reversibility, an up-to-date assessment of the experimental approaches applied to this field and the advanced computational schemes that offer key insights into the assembly mechanisms. We aim to provide readers with a comprehensive guide to address the challenges in assembling reversible nanoparticles and promote their applications.
Collapse
Affiliation(s)
- Denis Gentili
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Guido Ori
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Rue du Loess 23, F-67034 Strasbourg, France.
| |
Collapse
|
17
|
Zhu H, Fan Z, Song S, Eggert D, Liu Y, Shi W, Yuan Y, Kim KS, Grünwald M, Chen O. Dual Atomic Coherence in the Self-Assembly of Patchy Heterostructural Nanocrystals. ACS NANO 2022; 16:15053-15062. [PMID: 36048768 DOI: 10.1021/acsnano.2c06167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advances in the synthesis and self-assembly of nanocrystals have enabled researchers to create a plethora of different nanoparticle superlattices. But while many superlattices with complex types of translational order have been realized, rotational order of nanoparticle building blocks within the lattice is more difficult to achieve. Self-assembled superstructures with atomically coherent nanocrystal lattices, which are desirable due to their exceptional electronic and optical properties, have been fabricated only for a few selected systems. Here, we combine experiments with molecular dynamics (MD) simulations to study the self-assembly of heterostructural nanocrystals (HNCs), consisting of a near-spherical quantum dot (QD) host decorated with a small number of epitaxially grown gold nanocrystal (Au NC) "patches". Self-assembly of these HNCs results in face-centered-cubic (fcc) superlattices with well-defined orientational relationships between the atomic lattices of both QD hosts and Au patches. MD simulations indicate that the observed dual atomic coherence is linked to the number, size, and relative positions of gold patches. This study provides a strategy for the design and fabrication of NC superlattices with large structural complexity and delicate orientational order.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Zhaochuan Fan
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Siyuan Song
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dennis Eggert
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg 20251, Germany
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Wenwu Shi
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yucheng Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kyung-Suk Kim
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Michael Grünwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
18
|
Plunkett A, Kampferbeck M, Bor B, Sazama U, Krekeler T, Bekaert L, Noei H, Giuntini D, Fröba M, Stierle A, Weller H, Vossmeyer T, Schneider GA, Domènech B. Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivity. ACS NANO 2022; 16:11692-11707. [PMID: 35760395 PMCID: PMC9413410 DOI: 10.1021/acsnano.2c01332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.
Collapse
Affiliation(s)
- Alexander Plunkett
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Michael Kampferbeck
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Büsra Bor
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Uta Sazama
- Institute
of Inorganic and Applied Chemistry, University
of Hamburg, 20146 Hamburg, Germany
| | - Tobias Krekeler
- Electron
Microscopy Unit, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Lieven Bekaert
- Research
Group of Electrochemical and Surface Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Heshmat Noei
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Diletta Giuntini
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
- Department
of Mechanical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michael Fröba
- Institute
of Inorganic and Applied Chemistry, University
of Hamburg, 20146 Hamburg, Germany
| | - Andreas Stierle
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Fachbreich
Physik, University of Hamburg, 20355 Hamburg, Germany
| | - Horst Weller
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Fraunhofer-CAN, 20146 Hamburg, Germany
| | - Tobias Vossmeyer
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Gerold A. Schneider
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| | - Berta Domènech
- Institute
of Advanced Ceramics, Hamburg University
of Technology, 21073 Hamburg, Germany
| |
Collapse
|
19
|
Campos Villalobos G, Giunta G, Marín-Aguilar S, Dijkstra M. Machine-learning effective many-body potentials for anisotropic particles using orientation-dependent symmetry functions. J Chem Phys 2022; 157:024902. [DOI: 10.1063/5.0091319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spherically-symmetric atom-centered descriptors of atomic environments have been widely used for constructing potential or free energy surfaces of atomistic and colloidal systems and to characterize local structures using machine learning techniques. However, when particle shapes are non-spherical, as in the case of rods and ellipsoids, standard spherically-symmetric structure functions alone produce imprecise descriptions of local environments. In order to account for the effects of orientation, we introduce two- and three-body orientation-dependent particle-centered descriptors for systems composed of rod-like particles. To demonstrate the suitability of the proposed functions, we use an efficient feature selection scheme and simple linear regression to construct coarse-grained many-body interaction potentials for computationally-efficient simulations of model systems consisting of colloidal particles with anisotropic shape: mixtures of colloidal rods and nonadsorbing polymer, hard rods enclosed by an elastic microgel shell, and ligand-stabilized nanorods. We validate the machine-learning (ML) effective many-body potentials based on orientation-dependent symmetry functions by using them in direct coexistence simulations to map out the phase behavior of colloidal rods and non-adsorbing polymer. We find good agreement with results obtained from simulations of the true binary mixture, demonstrating that the effective interactions are well-described by the orientation-dependent ML potentials.
Collapse
Affiliation(s)
| | - Giuliana Giunta
- Utrecht University Debye Institute for Nanomaterial(s) Science, Netherlands
| | | | - Marjolein Dijkstra
- Debye Institute for Nanomaterials Science, Utrecht University Debye Institute for Nanomaterial Science, Netherlands
| |
Collapse
|
20
|
Ni B, Gonzalez-Rubio G, Cölfen H. Self-Assembly of Colloidal Nanocrystals into 3D Binary Mesocrystals. Acc Chem Res 2022; 55:1599-1608. [PMID: 35679581 DOI: 10.1021/acs.accounts.2c00074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ConspectusBiominerals are unique materials found in many living organisms that often display outstanding functionalities attributed to their mesocrystalline structure. Mesocrystals are nanocrystal superstructures with mutual crystallographic alignment of the building units. One could thus imagine these optimized evolutionary systems as archetypes to fabricate advanced materials. The main advantage of such systems relies on their ability to combine the features of the nanocrystals with those of single crystalline microscopic structures, yielding assemblies with directional, enhanced, and potentially emergent properties. Moreover, fueled by the promises of multifunctional materials with unprecedented and tunable properties, the rational design of mesocrystals assembled from two distinct colloidal nanocrystal ensembles has become a recent focus of research. However, the combination of dissimilar nanocrystals into ordered binary superstructures is still a major scientific challenge due to the nature of the coassembly process.We focus this Account on the growth of tridimensional (3D) binary mesocrystals and the understanding of the self-assembly of two colloidal nanocrystal ensembles with the ultimate goal to serve as a basis for more rational mesocrystal syntheses in the future. The formation of mesocrystals demands nanocrystals with defined surface faceting, the primary factor influencing their oriented self-assembly. Notably, such a process cannot be successfully afforded without functionalized nanocrystals with high and, in many cases, tunable colloidal stability. Besides, the nature and solvation degree of the surface ligand shell influences the effective shape of the nanocrystals and the kinetics of self-assembly. If the assembly is triggered by reducing the colloidal stability with nonsolvents, 3D single-component mesocrystals are often grown. Here, the different magnitude of the van der Waals attraction forces between nanocrystals with differing compositions, dimensions, and morphologies generally favors the segregation and growth of single component mesocrystals. This phenomenon was illustrated during the successful preparation of 3D binary mesocrystals composed of iron oxide and platinum nanocubes. Although the building blocks possessed comparable sizes and were stabilized by similar ligands, the amount of the second component could only be arbitrarily tuned up to some extent, even when the assembly conditions were rationally optimized to achieve 3D binary mesocrystals. Only a small amount of it was effectively incorporated into the matrix of the initial mesocrystal. The 3D binary mesocrystal growth process demands a delicate control over the size, shape, and surface chemistry of the nanocrystals, the solvent nature, and the self-assembly process. Hence, the improvement of our ability to control the synthesis of 3D binary mesocrystalline materials is critical to exploit their potential toward technological applications in catalysis, energy storage, or structural materials.
Collapse
Affiliation(s)
- Bing Ni
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78465 Konstanz, Germany
| | - Guillermo Gonzalez-Rubio
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78465 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78465 Konstanz, Germany
| |
Collapse
|
21
|
Bo A, Liu Y, Kuttich B, Kraus T, Widmer-Cooper A, de Jonge N. Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Nonpolar Nanoparticles into Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109093. [PMID: 35266222 DOI: 10.1002/adma.202109093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Self-assembly of nanoscale structures at liquid-solid interfaces occurs in a broad range of industrial processes and is found in various phenomena in nature. Conventional theory assumes spherical particles and homogeneous surfaces, but that model is oversimplified, and nanoscale in situ observations are needed for a more complete understanding. Liquid-phase scanning transmission electron microscopy (LP-STEM) is used to examine the interactions that direct the self-assembly of superlattices formed by gold nanoparticles (AuNPs) in nonpolar liquids. Varying the molecular coating of the substrate modulates short-range attraction and leads to switching between a range of different geometric structures, including hexagonal close-packed (hcp), simple hexagonal (sh), dodecahedral quasi-crystal (dqc), and body-centered cubic (bcc) lattices, as well as random distributions. Langevin dynamics simulations explain the experimental results in terms of the interplay between nanoparticle faceting, ligand shell structure, and substrate-NP interactions.
Collapse
Affiliation(s)
- Arixin Bo
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Yawei Liu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, 2006, Australia
| | - Björn Kuttich
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Sydney, Sydney, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, 2006, Australia
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
- Department of Physics, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
22
|
Gupta U, Escobedo FA. Ligand Interactions and Nanoparticle Shapes Guide the Pathways toward Interfacial Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1738-1747. [PMID: 35084868 DOI: 10.1021/acs.langmuir.1c02804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-equilibrium molecular dynamics simulations are used to probe the driving forces behind the formation of highly ordered, epitaxially connected superlattices of polyhedral-shaped nanoparticles (NPs) at fluid-fluid interfaces. By explicitly modeling coarse-grained ligands that cap the NP surface, it is shown that differences in NP shapes and time-dependent facet-specific ligand densities give rise to drastically different transformation mechanisms. Our results indicate that the extent of screening of the inter-particle interactions by the surrounding solvation environment has a significant impact on reversibility and ultimately the coherence of the final two-dimensional superlattice obtained. For the particle shapes examined, a hexagonal pre-assembly and a square superlattice final assembly (upon preferential ligand desorption from {100} facets) were prevalent; however, cuboctahedral NPs formed intermediate epitaxially bonded branched clusters, which eventually grew and rearranged into a square lattice; in contrast, truncated octahedral NPs exhibited an abrupt rhombic-to-square transition driven by the clustering of their numerous {111}-ligands that favored the stacking of linear NP rods. To track the incipient order in the system, we also outline a set of novel order parameters that measure the local orientation alignment between nearest-neighbor pairs. The simulation protocols advanced in this work could pave the way forward for exploration of the vast phase space associated with the interfacial self-assembly of NPs.
Collapse
Affiliation(s)
- U Gupta
- R. F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - F A Escobedo
- R. F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
23
|
van der Sluijs MM, Sanders D, Jansen KJ, Soligno G, Vanmaekelbergh D, Peters JL. On the Formation of Honeycomb Superlattices from PbSe Quantum Dots: The Role of Solvent-Mediated Repulsion and Facet-to-Facet Attraction in NC Self-Assembly and Alignment. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:986-996. [PMID: 35087608 PMCID: PMC8785189 DOI: 10.1021/acs.jpcc.1c07430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Semiconductor superstructures made from assembled and epitaxially connected colloidal nanocrystals (NCs) hold promise for crystalline solids with atomic and nanoscale periodicity, whereby the band structure can be tuned by the geometry. The formation of especially the honeycomb superstructure on a liquid substrate is far from understood and suffers from weak replicability. Here, we introduce 1,4-butanediol as an unreactive substrate component, which is mixed with reactive ethylene glycol to tune for optimal reactivity. It shows us that the honeycomb superlattice has a NC precursor state before oriented attachment occurs, in the form of a self-assembled hexagonal bilayer. We propose that the difference between the formation of the square or honeycomb superstructure occurs during the self-assembly phase. To form a honeycomb superstructure, it is crucial to stabilize the hexagonal bilayer in the presence of solvent-mediated repulsion. In contrast, a square superstructure benefits from the contraction of a hexagonal monolayer due to the absence of a solvent. A second experiment shows the very last stage of the process, where the increasing alignment of NCs is quantified using selected-area electron diffraction (SAED). The combination of transmission electron microscopy (TEM), SAED, and tomography used in these experiments shows that the (100)/(100) facet-to-facet attraction is the main driving force for NC alignment and attachment. These findings are validated by coarse-grained molecular dynamic simulations, where we show that an optimal NC repulsion is crucial to create the honeycomb superstructure.
Collapse
Affiliation(s)
- Maaike M van der Sluijs
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Dinja Sanders
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Kevin J Jansen
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Giuseppe Soligno
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Daniel Vanmaekelbergh
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Joep L Peters
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
24
|
Korath Shivan S, Maier A, Scheele M. Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chem Commun (Camb) 2022; 58:6998-7017. [DOI: 10.1039/d2cc00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We provide a comprehensive account of the optical, electrical and mechanical properties that result from the self-assembly of colloidal nanocrystals or atomically precise nanoclusters into crystalline arrays with long-range order....
Collapse
|
25
|
Liu C, Liu F, Jin C, Zhang S, Zhang L, Han M. Formation Mechanism of Well-Ordered Densely Packed Nanoparticle Superlattices Deposited from Gas Phase on Template-Free Surfaces. NANOSCALE RESEARCH LETTERS 2021; 16:172. [PMID: 34850309 PMCID: PMC8633269 DOI: 10.1186/s11671-021-03635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Superlattices of nanoparticles are generally produced based on solution chemistry processes. In this paper, we demonstrate that self-assembled monolayer structures of nanoparticles with superlattice periodicities can also be produced on template-free surfaces in the gas-phase cluster beam deposition process. It is found that the packing of Fe nanoparticles corresponds to an average of two-dimensional densely packed lattice with a hexagonal summary. By controlling the nanoparticle coverage, the two-dimensional densely packed monolayer morphology can spread to the whole substrate surface being deposited. A formation mechanism of the ordered monolayers is proposed. The densely packed morphologies are formed by the balance between the diffusion rate of the nanoparticles and their filling speed on the substrate surface determined by the deposition rate, and the ordering of the nanoparticle arrays is driven by the inter-particle attractive interactions. The model is strongly supported by a series of carefully designed cluster deposition experiments.
Collapse
Affiliation(s)
- Chang Liu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Materials Science and Engineering and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Fei Liu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Materials Science and Engineering and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Chen Jin
- National Laboratory of Solid State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Materials Science and Engineering and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Sishi Zhang
- Department of Materials Science and Engineering and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Lianhua Zhang
- National Laboratory of Solid State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Min Han
- National Laboratory of Solid State Microstructures and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- Department of Materials Science and Engineering and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
26
|
Liu Y, Klement M, Wang Y, Zhong Y, Zhu B, Chen J, Engel M, Ye X. Macromolecular Ligand Engineering for Programmable Nanoprism Assembly. J Am Chem Soc 2021; 143:16163-16172. [PMID: 34549954 DOI: 10.1021/jacs.1c07281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ligands play a central role for the energetics and kinetics of nanocrystal assembly. Yet, the precise and simultaneous manipulation of ligands to dictate assembly outcome has proven difficult. Here, we present macromolecular ligand-engineering strategies to control, characterize, and model four molecular parameters of grafted polymer chains: chain length, chain dispersity, grafting density, and chain distribution. Direct ligand-exchange between nanoprisms and polymers functionalizes facets selectively and produces patchy nanocrystals. We develop a generalizable two-step ligand-exchange approach for the independent control of the two emergent brush parameters, brush thickness and brush softness. The resultant polymer-grafted prismatic nanocrystals with programmable ligand brushes self-assemble into thin-film superstructures of different wallpaper symmetries and faceted supracrystals. Our experiments are complemented by coarse-grained computer simulations of nanoprisms with directional, facet-specific interactions. This work paves the way for the precision synthesis of polymer-nanocrystal hybrid materials and enables the further refinement of theoretical models for particle brush materials.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Marco Klement
- Institute for Multiscale Simulation, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Yi Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yaxu Zhong
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Baixu Zhu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jun Chen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
27
|
Missoni L, Tagliazucchi M. Body centered tetragonal nanoparticle superlattices: why and when they form? NANOSCALE 2021; 13:14371-14381. [PMID: 34473819 DOI: 10.1039/d0nr08312g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Body centered tetragonal (BCT) phases are structural intermediates between body centered cubic (BCC) and face centered cubic (FCC) structures. However, BCC ↔ FCC transitions may or may not involve a stable BCT intermediate. Interestingly, nanoparticle superlattices usually crystallize in BCT structures, but this phase is much less frequent for colloidal crystals of micrometer-sized particles. Two origins have been proposed for the formation of BCT NPSLs: (i) the influence of the substrate on which the nanoparticle superlattice is deposited, and (ii) non-spherical nanoparticle shapes, combined with the fact that different crystal facets have different ligand organizations. Notably, none of these two mechanisms alone is able to explain the set of available experimental observations. In this work, these two hypotheses were independently tested using a recently developed molecular theory for nanoparticle superlattices that explicitly captures the degrees of freedom associated with the ligands on the nanoparticle surface and the crystallization solvent. We show that the presence of a substrate can stabilize the BCT structure for spherical nanoparticles, but only for very specific combinations of parameters. On the other hand, a truncated-octahedron nanoparticle shape strongly stabilizes BCT structures in a wide region of the phase diagram. In the latter case, we show that the stabilization of BCT results from the geometry of the system and it does not require different crystal facets to have different ligand properties, as previously proposed. These results shed light on the mechanisms of BCT stabilization in nanoparticle superlattices and provide guidelines to control its formation.
Collapse
Affiliation(s)
- Leandro Missoni
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires. Instituto de Química de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires. Instituto de Química de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| |
Collapse
|
28
|
Whitelam S, Tamblyn I. Neuroevolutionary Learning of Particles and Protocols for Self-Assembly. PHYSICAL REVIEW LETTERS 2021; 127:018003. [PMID: 34270312 DOI: 10.1103/physrevlett.127.018003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Within simulations of molecules deposited on a surface we show that neuroevolutionary learning can design particles and time-dependent protocols to promote self-assembly, without input from physical concepts such as thermal equilibrium or mechanical stability and without prior knowledge of candidate or competing structures. The learning algorithm is capable of both directed and exploratory design: it can assemble a material with a user-defined property, or search for novelty in the space of specified order parameters. In the latter mode it explores the space of what can be made, rather than the space of structures that are low in energy but not necessarily kinetically accessible.
Collapse
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, Califronia 94720, USA
| | - Isaac Tamblyn
- National Research Council of Canada Ottawa, Ontario K1N 5A2, Canada Vector Institute for Artificial Intelligence Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
29
|
Liu J, Huang J, Niu W, Tan C, Zhang H. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chem Rev 2021; 121:5830-5888. [PMID: 33797882 DOI: 10.1021/acs.chemrev.0c01047] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crystal phase, an intrinsic characteristic of crystalline materials, is one of the key parameters to determine their physicochemical properties. Recently, great progress has been made in the synthesis of nanomaterials with unconventional phases that are different from their thermodynamically stable bulk counterparts via various synthetic methods. A nanocrystalline material can also be viewed as an assembly of atoms with long-range order. When larger entities, such as nanoclusters, nanoparticles, and microparticles, are used as building blocks, supercrystalline materials with rich phases are obtained, some of which even have no analogues in the atomic and molecular crystals. The unconventional phases of nanocrystalline and supercrystalline materials endow them with distinctive properties as compared to their conventional counterparts. This Review highlights the state-of-the-art progress of nanocrystalline and supercrystalline materials with unconventional phases constructed from multiscale building blocks, including atoms, nanoclusters, spherical and anisotropic nanoparticles, and microparticles. Emerging strategies for engineering their crystal phases are introduced, with highlights on the governing parameters that are essential for the formation of unconventional phases. Phase-dependent properties and applications of nanocrystalline and supercrystalline materials are summarized. Finally, major challenges and opportunities in future research directions are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy Sciences, Changchun, Jilin 130022, P.R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Gupta U, Escobedo FA. An Implicit-Solvent Model for the Interfacial Configuration of Colloidal Nanoparticles and Application to the Self-Assembly of Truncated Cubes. J Chem Theory Comput 2020; 16:5866-5875. [PMID: 32786915 DOI: 10.1021/acs.jctc.0c00283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study outlines the development of an implicit-solvent model that reproduces the behavior of colloidal nanoparticles at a fluid-fluid interface. The center point of this formulation is the generalized quaternion-based orientational constraint (QOCO) method. The model captures three major energetic characteristics that define the nanoparticle configuration-position (orthogonal to the interfacial plane), orientation, and inter-nanoparticle interaction. The framework encodes physically relevant parameters that provide an intuitive means to simulate a broad spectrum of interfacial conditions. Results show that for a wide range of shapes, our model is able to replicate the behavior of an isolated nanoparticle at an explicit fluid-fluid interface, both qualitatively and often nearly quantitatively. Furthermore, the family of truncated cubes is used as a test bed to analyze the effect of changes in the degree of truncation on the potential-of-mean-force landscape. Finally, our results for the self-assembly of an array of cuboctahedra provide corroboration to the experimentally observed honeycomb and square lattices.
Collapse
Affiliation(s)
- U Gupta
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - F A Escobedo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Abstract
Surfaces-and interfaces-are ubiquitous at the nanoscale. Their relevance to nanoscience and nanotechnology is therefore inherent. Colloidal inorganic nanocrystals (NCs), which can show more than a half of their atoms at the surface, are paradigmatic of the role of surfaces in determining materials' form and functions. Therefore, colloidal NCs may be regarded as soluble surfaces, allowing convenient study of ensemble structure and properties in the solution phase.Colloidal NCs commonly bear chemical species at their surface. Such species (generally referred to as ligands) are introduced already in the synthetic procedures and are added postsynthesis in surface chemistry modification (ligand exchange) reactions. Ligands (i) affect the reactivity and diffusion of the synthetic precursors, (ii) mediate NC interactions with the surroundings, and (iii) contribute to the overall electronic structure. In principle, a vast amount of ligands, as large as our imagination, could be used to coordinate the surface of colloidal NCs. In practice and despite the plethora of studies on NC surface chemistry, a relatively limited number of ligands have been explored. In addition, the importance of designing a set of ligands with tailored features (a ligand library), which may permit comprehensive discussion and explanation of the role of surfaces in the NC structure and properties, is often overlooked. Ligand libraries may also foster heuristic access to novel, unexpected observations.Here, the rational design of ligand libraries is discussed, suggesting that it may be a general method to advance knowledge on colloidal NCs and nanomaterials at large.First, a general ligand framework is introduced. The main subunits are identified: ligands are constituted by a binding group and a pendant moiety, bearing functional substituent groups. On this basis, ligand binding at the NC surface is discussed borrowing concepts from coordination chemistry. Dynamic equilibria at the NC surface are highlighted, revealing the compromise between forming and breaking bonds at interfaces and its intricate interplay with the surroundings. Tailoring of the ligand subunits may impart functions to the whole ligand, eventually transposable to the ligated NC.On these bases, it is shown how ligand design may be exploited to (i) exert control on the size and shape of the NCs, (ii) determine NCs' dispersibility in a solvent and affect their self-assembly, and (iii) tune the NCs' optical and electronic properties. These observations point to a description of colloidal NCs as un-decomposable species: ligands may be conceived as an integral part of the overall chemical and electronic structure of the colloidal NC and should not be considered as mere appendages that weakly perturb the inorganic core features.Finally, a perspective on the ligand library design is given. Function-oriented design of the ligand subunits is foreseen as an effective strategy to explore the chemical diversity space. High-throughput screening processes by using computation may represent a valuable tool for such an exploration. The whole ligand features, which depend on the subunits, can be implemented in the final NCs, providing feedback for refined design, toward a priori materials design. Ligand libraries can be fundamental to enabling colloidal NCs as reliable luminophores and (photo)catalysts.
Collapse
Affiliation(s)
- Carlo Giansante
- CNR NANOTEC, Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
32
|
Macias E, Waltmann T, Travesset A. Assembly of nanocrystal clusters by solvent evaporation: icosahedral order and the breakdown of the Maxwell regime. SOFT MATTER 2020; 16:7350-7358. [PMID: 32785366 DOI: 10.1039/d0sm00838a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We carry out molecular dynamics simulations of N gold alkylthiolated nanocrystals (0 ≤ N ≤ 29) contained in liquid droplets of octane, nonane and decane coexisting with its vapor. The equilibrium structures that result when all the solvent dries up consist of highly symmetric nanocrystal clusters with different degrees of icosahedral order that are thoroughly characterized. We show that the relaxation times follow two regimes, a first for small nanocrystal packing fraction, dominated by the diffusion of vapor molecules (Maxwell regime, relaxation times independent of N) and another, for larger packing fractions, where the solvent diffuses through the cluster (with relaxation times growing like N2/3). We discuss the connection to the assembly of superlattices, prediction of lattice constants and evaporation models.
Collapse
Affiliation(s)
- Elizabeth Macias
- Department of Physics & Astronomy and Ames Laboratory - USDOE, Iowa State University, Ames, IA 50011, USA.
| | - Tommy Waltmann
- Department of Physics & Astronomy and Ames Laboratory - USDOE, Iowa State University, Ames, IA 50011, USA.
| | - Alex Travesset
- Department of Physics & Astronomy and Ames Laboratory - USDOE, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
33
|
daSilva JC, Smeaton MA, Dunbar TA, Xu Y, Balazs DM, Kourkoutis LF, Hanrath T. Mechanistic Insights into Superlattice Transformation at a Single Nanocrystal Level Using Nanobeam Electron Diffraction. NANO LETTERS 2020; 20:5267-5274. [PMID: 32484679 DOI: 10.1021/acs.nanolett.0c01579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the mechanism and ultimately directing nanocrystal (NC) superlattice assembly and attachment have important implications on future advances in this emerging field. Here, we use 4D-STEM to investigate a monolayer of PbS NCs at various stages of the transformation from a hexatic assembly to a nonconnected square-like superlattice over large fields of view. Maps of nanobeam electron diffraction patterns acquired with an electron microscope pixel array detector (EMPAD) offer unprecedented detail into the 3D crystallographic alignment of the polyhedral NCs. Our analysis reveals that superlattice transformation is dominated by translation of prealigned NCs strongly coupled along the <11n>AL direction and occurs stochastically and gradually throughout single grains. We validate the generality of the proposed mechanism by examining the structure of analogous PbSe NC assemblies using conventional transmission electron microscopy and selected area electron diffraction. The experimental results presented here provide new mechanistic insights into NC self-assembly and oriented attachment.
Collapse
|
34
|
Balazs DM, Dunbar TA, Smilgies DM, Hanrath T. Coupled Dynamics of Colloidal Nanoparticle Spreading and Self-Assembly at a Fluid-Fluid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6106-6115. [PMID: 32390432 DOI: 10.1021/acs.langmuir.0c00524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We investigated the physicochemical and transport phenomena governing the self-assembly of colloidal nanoparticles at the interface of two immiscible fluids. By combining in situ grazing-incidence small-angle X-ray scattering (GISAXS) with a temporal resolution of 200 ms and electron microscopy measurements, we gained new insights into the coupled effects of solvent spreading, nanoparticle assembly, and recession of the vapor-liquid interface on the morphology of the self-assembled thin films. We focus on oleate-passivated PbSe nanoparticles dispersed across an ethylene glycol subphase as a model system and demonstrate how solvent parameters such as surface tension, nanoparticle solubility, aromaticity, and polarity influence the mesoscale morphology of the nanoparticle superlattice. We discovered that a nanoparticle precursor monolayer film spreads in front of the bulk solution and influences the fluid spreading across the subphase. Improved understanding of the impact of kinetic phenomena (i.e., solvent spreading and evaporation) on the superlattice morphology is important to describe the formation mechanism and ultimately enable the assembly of high-quality superlattices with long-range order.
Collapse
Affiliation(s)
- Daniel M Balazs
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Tyler A Dunbar
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Detlef-M Smilgies
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Tobias Hanrath
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Missoni LL, Tagliazucchi M. The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent. ACS NANO 2020; 14:5649-5658. [PMID: 32286787 DOI: 10.1021/acsnano.0c00076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Superlattices of nanoparticles coated by alkyl-chain ligands are usually prepared from a stable solution by evaporation, therefore the pathway of superlattice self-assembly critically depends on the amount of solvent present within it. This work addresses the role of the solvent on the structure and the relative stability of the different supercrystalline phases of single-component superlattices (simple cubic, body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed). The study is performed with a molecular theory for nanoparticle superlattices introduced in this work, which predicts the structure and thermodynamics of the supercrystals explicitly treating the presence and molecular details of the solvent and the ligands. The theory predicts a FCC-BCC transition with decreasing solvent content due to the competition between the translational entropy of the solvent and the entropy and internal energy of the ligands. This result provides an explanation for recent experimental observations by in situ X-ray scattering, which reported a FCC-BCC transition during solvent evaporation. The theory also predicts the effects of the length and surface coverage of the ligands and the radius of the core on the phase behavior in agreement with experimental evidence and previous molecular dynamics simulations. These results validate the use of the dimensionless softness parameter λ (ratio of ligand length to core radius) to predict the phase behavior of wet superlattices. Our results stress the importance of explicitly considering the presence of the solvent in order to reach a complete picture of the mechanisms that mediate the self-assembly of nanoparticle superlattices.
Collapse
Affiliation(s)
- Leandro L Missoni
- Instituto de Quı́mica Fı́sica de los Materiales, Medio Ambiente y Energı́a and Departamento de Quı́mica Inorgánica Analı́tica y Quı́mica Fı́sica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Mario Tagliazucchi
- Instituto de Quı́mica Fı́sica de los Materiales, Medio Ambiente y Energı́a and Departamento de Quı́mica Inorgánica Analı́tica y Quı́mica Fı́sica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
36
|
Winslow SW, Swan JW, Tisdale WA. The Importance of Unbound Ligand in Nanocrystal Superlattice Formation. J Am Chem Soc 2020; 142:9675-9685. [DOI: 10.1021/jacs.0c01809] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel W. Winslow
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - James W. Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
37
|
Whitelam S, Tamblyn I. Learning to grow: Control of material self-assembly using evolutionary reinforcement learning. Phys Rev E 2020; 101:052604. [PMID: 32575260 DOI: 10.1103/physreve.101.052604] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
We show that neural networks trained by evolutionary reinforcement learning can enact efficient molecular self-assembly protocols. Presented with molecular simulation trajectories, networks learn to change temperature and chemical potential in order to promote the assembly of desired structures or choose between competing polymorphs. In the first case, networks reproduce in a qualitative sense the results of previously known protocols, but faster and with higher fidelity; in the second case they identify strategies previously unknown, from which we can extract physical insight. Networks that take as input the elapsed time of the simulation or microscopic information from the system are both effective, the latter more so. The evolutionary scheme we have used is simple to implement and can be applied to a broad range of examples of experimental self-assembly, whether or not one can monitor the experiment as it proceeds. Our results have been achieved with no human input beyond the specification of which order parameter to promote, pointing the way to the design of synthesis protocols by artificial intelligence.
Collapse
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Isaac Tamblyn
- National Research Council of Canada, Ottawa, Ontario, Canada and Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Abelson A, Qian C, Salk T, Luan Z, Fu K, Zheng JG, Wardini JL, Law M. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. NATURE MATERIALS 2020; 19:49-55. [PMID: 31611669 DOI: 10.1038/s41563-019-0485-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/15/2019] [Indexed: 05/25/2023]
Abstract
Epitaxially fused colloidal quantum dot (QD) superlattices (epi-SLs) may enable a new class of semiconductors that combine the size-tunable photophysics of QDs with bulk-like electronic performance, but progress is hindered by a poor understanding of epi-SL formation and surface chemistry. Here we use X-ray scattering and correlative electron imaging and diffraction of individual SL grains to determine the formation mechanism of three-dimensional PbSe QD epi-SL films. We show that the epi-SL forms from a rhombohedrally distorted body centred cubic parent SL via a phase transition in which the QDs translate with minimal rotation (~10°) and epitaxially fuse across their {100} facets in three dimensions. This collective epitaxial transformation is atomically topotactic across the 103-105 QDs in each SL grain. Infilling the epi-SLs with alumina by atomic layer deposition greatly changes their electrical properties without affecting the superlattice structure. Our work establishes the formation mechanism of three-dimensional QD epi-SLs and illustrates the critical importance of surface chemistry to charge transport in these materials.
Collapse
Affiliation(s)
- Alex Abelson
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
| | - Caroline Qian
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Trenton Salk
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| | - Zhongyue Luan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
| | - Kan Fu
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
| | - Jian-Guo Zheng
- Irvine Materials Research Institute, University of California, Irvine, Irvine, CA, USA
| | - Jenna L Wardini
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA
| | - Matt Law
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
39
|
Soligno G, Vanmaekelbergh D. Phase diagrams of honeycomb and square nanocrystal superlattices from the nanocrystal’s surface chemistry at the dispersion-air interface. J Chem Phys 2019; 151:234702. [DOI: 10.1063/1.5128122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Giuseppe Soligno
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Daniel Vanmaekelbergh
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| |
Collapse
|
40
|
Mukharamova N, Lapkin D, Zaluzhnyy IA, André A, Lazarev S, Kim YY, Sprung M, Kurta RP, Schreiber F, Vartanyants IA, Scheele M. Revealing Grain Boundaries and Defect Formation in Nanocrystal Superlattices by Nanodiffraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904954. [PMID: 31729151 DOI: 10.1002/smll.201904954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/18/2019] [Indexed: 05/13/2023]
Abstract
X-ray nanodiffraction is applied to study the formation and correlation of domain boundaries in mesocrystalline superlattices of PbS nanocrystals with face-centered cubic structure. Each domain of the superlattice can be described with one of two mesocrystalline polymorphs with different orientational orders. Close to a grain boundary, the lattice constant decreases and the superlattice undergoes an out-of-plane rotation, while the orientation of the nanocrystals with respect to the superlattice remains unchanged. These findings are explained with the release of stress on the expense of specific nanocrystal-substrate interactions. The fact that correlations between adjacent nanocrystals are found to survive the structural changes at most grain boundaries implies that the key to nanocrystal superlattices with macroscopic domain sizes are strengthened interactions with the substrate.
Collapse
Affiliation(s)
- Nastasia Mukharamova
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Ivan A Zaluzhnyy
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Alexander André
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Sergey Lazarev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
- Tomsk Open Laboratory for Material Inspection (TOLMI), National Research Tomsk Polytechnic University (TPU), pr. Lenina 30, 634050, Tomsk, Russia
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Ruslan P Kurta
- European XFEL GmbH, Holzkoppel 4, D-22869, Schenefeld, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607, Hamburg, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| |
Collapse
|
41
|
Huang X, Wang Z. Supercrystallography-Based Decoding of Structure and Driving Force of Nanocrystal Assembly. MATERIALS 2019; 12:ma12223771. [PMID: 31744175 PMCID: PMC6887775 DOI: 10.3390/ma12223771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 11/24/2022]
Abstract
Nanocrystal (NC) assembly appears as one promising method towards the controllable design and fabrication of advanced materials with desired property and functionality. The achievement of a “materials-by-design” requires not only a primary structural decoding of NC assembled supercrystal at a wide range of length scales, but also an improved understanding of the interactions and changeable roles of various driving forces over the course of nucleation and growth of NC superlattice. The recent invention of a synchrotron-based X-ray supercrystallographic approach makes it feasible to uncover the structural details of NC-assembled supercrystal at unprecedented levels from atomic through nano to mesoscale. Such structural documentations can be used to trace how various driving forces interact in a competitive way and thus change relatively in strength to govern the formation of individual superlattices under certain circumstances. This short review makes use of four single supercrystals typically made up of spherical, truncate, cubic and octahedral NCs, respectively, and provides a comparable description and a reasonable analysis of the use of a synchrotron-based supercrystallographic approach to reveal various degrees of translational and orientational ordering of NCs within various superlattices. In the connection of observed structural aspects with controlled environments of NC assembly, we further address how various driving forces interact each other to develop relatively changeable roles upon variation of the NC shape to respond to the nucleation and growth of various superlattices. With the guidance of such gained insights, we provide additional examples to illustrate how realistic environments are designed into delicate control of NC assembly to achieve particular interactions between NCs towards harvesting superlattice with NC translational symmetry and atomically crystallographic orientation as desired.
Collapse
|
42
|
Domènech B, Plunkett A, Kampferbeck M, Blankenburg M, Bor B, Giuntini D, Krekeler T, Wagstaffe M, Noei H, Stierle A, Ritter M, Müller M, Vossmeyer T, Weller H, Schneider GA. Modulating the Mechanical Properties of Supercrystalline Nanocomposite Materials via Solvent-Ligand Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13893-13903. [PMID: 31580678 DOI: 10.1021/acs.langmuir.9b01938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Supercrystalline nanocomposite materials with micromechanical properties approaching those of nacre or similar structural biomaterials can be produced by self-assembly of organically modified nanoparticles and further strengthened by cross-linking. The strengthening of these nanocomposites is controlled via thermal treatment, which promotes the formation of covalent bonds between interdigitated ligands on the nanoparticle surface. In this work, it is shown how the extent of the mechanical properties enhancement can be controlled by the solvent used during the self-assembly step. We find that the resulting mechanical properties correlate with the Hansen solubility parameters of the solvents and ligands used for the supercrystal assembly: the hardness and elastic modulus decrease as the Hansen solubility parameter of the solvent approaches the Hansen solubility parameter of the ligands that stabilize the nanoparticles. Moreover, it is shown that self-assembled supercrystals that are subsequently uniaxially pressed can deform up to 6 %. The extent of this deformation is also closely related to the solvent used during the self-assembly step. These results indicate that the conformation and arrangement of the organic ligands on the nanoparticle surface not only control the self-assembly itself but also influence the mechanical properties of the resulting supercrystalline material. The Hansen solubility parameters may therefore serve as a tool to predict what solvents and ligands should be used to obtain supercrystalline materials with good mechanical properties.
Collapse
Affiliation(s)
| | | | - Michael Kampferbeck
- Institute of Physical Chemistry , University of Hamburg , 20146 Hamburg , Germany
| | - Malte Blankenburg
- Institute of Materials Research , Helmholtz-Zentrum Geesthacht , 21502 Geesthacht , Germany
| | | | | | | | | | - Heshmat Noei
- Deutsches Elektronen-Synchrotron (DESY) , 22607 Hamburg , Germany
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron (DESY) , 22607 Hamburg , Germany
- Fachbereich Physik , Universität Hamburg , 20355 Hamburg , Germany
| | | | - Martin Müller
- Institute of Materials Research , Helmholtz-Zentrum Geesthacht , 21502 Geesthacht , Germany
| | - Tobias Vossmeyer
- Institute of Physical Chemistry , University of Hamburg , 20146 Hamburg , Germany
| | - Horst Weller
- Institute of Physical Chemistry , University of Hamburg , 20146 Hamburg , Germany
| | | |
Collapse
|
43
|
Angular X-Ray Cross-Correlation Analysis (AXCCA): Basic Concepts and Recent Applications to Soft Matter and Nanomaterials. MATERIALS 2019; 12:ma12213464. [PMID: 31652689 PMCID: PMC6862311 DOI: 10.3390/ma12213464] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/25/2023]
Abstract
Angular X-ray cross-correlation analysis (AXCCA) is a technique which allows quantitative measurement of the angular anisotropy of X-ray diffraction patterns and provides insights into the orientational order in the system under investigation. This method is based on the evaluation of the angular cross-correlation function of the scattered intensity distribution on a two-dimensional (2D) detector and further averaging over many diffraction patterns for enhancement of the anisotropic signal. Over the last decade, AXCCA was successfully used to study the anisotropy in various soft matter systems, such as solutions of anisotropic particles, liquid crystals, colloidal crystals, superlattices composed by nanoparticles, etc. This review provides an introduction to the technique and gives a survey of the recent experimental work in which AXCCA in combination with micro- or nanofocused X-ray microscopy was used to study the orientational order in various soft matter systems.
Collapse
|
44
|
Xia J, Horst N, Guo H, Travesset A. Superlattices of Nanocrystals with Polystyrene Ligands: From the Colloidal to Polymer Limit. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jianshe Xia
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Hongxia Guo
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
45
|
Lee B, Littrell K, Sha Y, Shevchenko EV. Revealing the Effects of the Non-solvent on the Ligand Shell of Nanoparticles and Their Crystallization. J Am Chem Soc 2019; 141:16651-16662. [DOI: 10.1021/jacs.9b06010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Kenneth Littrell
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yuchen Sha
- Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Elena V. Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
46
|
Mazzotti S, Giberti F, Galli G. Modeling Superlattices of Dipolar and Polarizable Semiconducting Nanoparticles. NANO LETTERS 2019; 19:3912-3917. [PMID: 31145624 DOI: 10.1021/acs.nanolett.9b01142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present an analytical model to describe the stability of arbitrary semiconducting nanoparticle (NP) superlattices as a function of the dipole and polarizability of their constituents. We first validate our model by comparison with density functional theory calculations of simple cubic superlattices of small CdSe NPs, and we show the existence of a regime, relevant to experiments, where NP interactions are predominantly dipole-like. We then apply our model to binary superlattices and find striking differences between the stable geometries of lattices composed of polarizable and nonpolarizable NPs. Finally, we discuss the interplay of dipolar and ligand-ligand interactions in determining the stability of NP superlattices.
Collapse
Affiliation(s)
- Sergio Mazzotti
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering , ETH Zurich , 8092 Zurich , Switzerland
| | - Federico Giberti
- Laboratory of Computational Science and Modelling , Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Giulia Galli
- Institute for Molecular Engineering , The University of Chicago , Chicago , Illinois 60637 , United States
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
- Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
47
|
Zhu H, Fan Z, Yu L, Wilson MA, Nagaoka Y, Eggert D, Cao C, Liu Y, Wei Z, Wang X, He J, Zhao J, Li R, Wang Z, Grünwald M, Chen O. Controlling Nanoparticle Orientations in the Self-Assembly of Patchy Quantum Dot-Gold Heterostructural Nanocrystals. J Am Chem Soc 2019; 141:6013-6021. [PMID: 30889948 DOI: 10.1021/jacs.9b01033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Self-assembly of nanocrystals is a promising route for creating macroscale materials that derive function from the properties of their nanoscale building blocks. While much progress has been made assembling nanocrystals into different superlattices, controlling the relative orientations of nanocrystals in those lattices remains a challenge. Here, we combine experiments with computer simulations to study the self-assembly of patchy heterostructural nanocrystals (HNCs), consisting of near-spherical quantum dots decorated with regular arrangements of small gold satellites, into close-packed superlattices with pronounced orientational alignment of HNCs. Our simulations indicate that the orientational alignment is caused by van der Waals interactions between gold patches and is sensitive to the interparticle distance in the superlattice. We demonstrate experimentally that the degree and type of orientational alignment can be controlled by changing ligand populations on HNCs. This study provides guidance for the design and fabrication of nanocrystal superlattices with enhanced structural control.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Zhaochuan Fan
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Long Yu
- Department of Material Science and Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Mitchell A Wilson
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Yasutaka Nagaoka
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Dennis Eggert
- Max Planck Institute for the Structure and Dynamics of Matter , Hamburg 22761 , Germany.,Heinrich Petter Institute-Leibniz Institute for Experimental Virology , Hamburg 20251 , Germany
| | - Can Cao
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Yuzi Liu
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Zichao Wei
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Xudong Wang
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Jie He
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Jing Zhao
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ruipeng Li
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Zhongwu Wang
- Cornell High Energy Synchrotron Source , Cornell University , Ithaca , New York 14853 , United States
| | - Michael Grünwald
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Ou Chen
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|