1
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Saint-Denis TG, Wheeler TA, Chen Q, Balázs G, Settineri NS, Scheer M, Tilley TD. A Ruthenophosphanorcaradiene as a Synthon for an Ambiphilic Metallophosphinidene. J Am Chem Soc 2024; 146:4369-4374. [PMID: 38335065 PMCID: PMC10885142 DOI: 10.1021/jacs.3c14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Reaction of the ruthenium carbene complex Cp*(IPr)RuCl (1) (IPr = 1,3-bis(Dipp)imidazol-2-ylidene; Dipp = 2,6-diisopropylphenyl) with sodium phosphaethynolate (NaOCP) led to intramolecular dearomatization of one of the Dipp substituents on the Ru-bound carbene to afford a Ru-bound phosphanorcaradiene, 2. Computations by DFT reveal a transition state characterized by a concerted process whereby CO migrates to the Ru center as the P atom adds to the π system of the aryl group. The phosphanorcaradiene possesses ambiphilic properties and reacts with both nucleophilic and electrophilic substrates, resulting in rearomatization of the ligand aryl group with net P atom transfer to give several unusual metal-bound, P-containing main-group moieties. These new complexes include a metallo-1-phospha-3-azaallene (Ru─P═C═NR), a metalloiminophosphanide (Ru─P═N─R), and a metallophosphaformazan (Ru─P(═N─N═CPh2)2). Reaction of 2 with the carbene 2,3,4,5-tetramethylimidazol-2-ylidene (IMe4) produced the corresponding phosphaalkene DippP═IMe4.
Collapse
Affiliation(s)
- Tyler G Saint-Denis
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - T Alexander Wheeler
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Qingchuan Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Gábor Balázs
- Department of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Manfred Scheer
- Department of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| |
Collapse
|
3
|
Greenberg M, Tulloch KM, Reynoso ME, Knapp JL, Sayem FH, Bartkus DD, Lum RH, LaFratta CN, Tanski JM, Anderson CM. Synthesis, Structure, and Photophysical Properties of Platinum Compounds with Thiophene-Derived Cyclohexyl Diimine Ligands. ACS OMEGA 2023; 8:38587-38596. [PMID: 37867690 PMCID: PMC10586441 DOI: 10.1021/acsomega.3c05567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Platinum(II) and platinum(IV) compounds were prepared by the stereoselective and regioselective reactions of thiophene-derived cyclohexyl diimine C^N^N-ligands with [Pt2Me4(μ-SMe2)2]. Newly synthesized ligands were characterized by NMR spectroscopy and elemental analysis, and Pt(II)/Pt(IV) compounds were characterized by NMR spectroscopy, elemental analysis, high-resolution mass spectrometry, and single-crystal X-ray diffraction. UV-vis absorbance and photoluminescence measurements were performed on newly synthesized complexes, as well as structurally related Pt(II)/Pt(IV) compounds with benzene-derived cyclohexyl diimine ligands, in dichloromethane solution, as solids, and as 5% by weight PMMA-doped films. DFT and TD-DFT calculations were performed, and the results were compared with the observed spectroscopic properties of the newly synthesized complexes. X-ray total scattering measurements and real space pair distribution function analysis were performed on the synthesized complexes to examine the local- and intermediate-range atomic structures of the emissive solid states.
Collapse
Affiliation(s)
- Matthew
W. Greenberg
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Kris M. Tulloch
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Michelle E. Reynoso
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Juliette L. Knapp
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Farman H. Sayem
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Daphne D. Bartkus
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Ryan H. Lum
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Christopher N. LaFratta
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| | - Joseph M. Tanski
- Department
of Chemistry, Vassar College, Poughkeepsie, New York 12604, United States
| | - Craig M. Anderson
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road,Annandale-on-Hudson, New York 12504, United States
| |
Collapse
|
4
|
Frenette BL, Trach J, Ferguson MJ, Rivard E. Frustrated Lewis Pair Adduct of Atomic P(-1) as a Source of Phosphinidenes (PR), Diphosphorus (P 2 ), and Indium Phosphide. Angew Chem Int Ed Engl 2023; 62:e202218587. [PMID: 36625676 DOI: 10.1002/anie.202218587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
We report phosphinidenes (PR) stabilized by an intramolecular frustrated Lewis pair (FLP) chelate. These adducts include the parent phosphinidene, PH, which is accessed via thermolysis of coordinated HPCO. The reported FLP-PH species acts as a springboard to other phosphorus-containing compounds, such as FLP-adducts of diphosphorus (P2 ) and InP3 . Our new adducts participate in thermal- or light-induced phosphinidene elimination (of both PH and PR, R=organic group), transfer P2 units to an organic substrate, and yield the useful semiconductor InP at only 110 °C from solution.
Collapse
Affiliation(s)
- Brandon L Frenette
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Jonathan Trach
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
5
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
6
|
Abstract
Phosphorus mononitride (PN) only has a fleeting existence on Earth, and molecular precursors for the release of this molecule under mild conditions in solution have remained elusive. Here we report the synthesis of an anthracene-based precursor-an anthracene moiety featuring an azidophosphine bridge across its central ring-that dissociates into dinitrogen, anthracene and P≡N in solution with a first-order half-life of roughly 30 min at room temperature. Heated under reduced pressure, this azidophosphine-anthracene precursor decomposes in an explosive fashion at around 42 °C, as demonstrated in a molecular-beam mass spectrometry study. The precursor is also shown to serve as a PN transfer reagent in the synthesis of an Fe-NP coordination complex, through ligand exchange with its Fe-N2 counterpart. The terminal N-bonded complex was found to be energetically preferred, compared to its P-bonded linkage isomer, owing to a significant covalent Fe-pnictogen bond character and an associated less unfavourable Pauli repulsion in the metal-ligand interaction.
Collapse
|
7
|
Eckhardt AK, Riu MLY, Müller P, Cummins CC. Staudinger Reactivity and Click Chemistry of Anthracene ( A)-Based Azidophosphine N 3P A. Inorg Chem 2022; 61:1270-1274. [PMID: 35020379 DOI: 10.1021/acs.inorgchem.1c03753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
11-Azido-9,10-dihydro-9,10-phosphanoanthracene (N3PA) has been demonstrated recently as a transfer reagent for molecular phosphorus mononitride (PN) because it easily dissociates at room temperature into dinitrogen (N2), PN, and anthracene (A). Here we report further reactivity studies of the N3PA molecule including strain-promoted 1,3-dipolar cycloaddition with cyclooctyne and Staudinger-type reactivity. Calculations at the DLPNO-CCSD(T)/cc-pVTZ//PBE0-D3(BJ)/cc-pVTZ level of theory indicate that the click reaction is faster than the dissociation of N3PA. The Staudinger-type reactivity enabled transfer of the NPA fragment to a base-stabilized silylene. The previously reported intermediate of vanadium trisanilide with an NPA ligand could be isolated in 61% yield and structurally characterized in a single-crystal X-ray diffraction experiment. In line with the previously reported phosphinidene reactivity of the transient vanadium phosphorus mononitride complex, thermolysis or irradiation of the complex leads to A elimination and formation of the corresponding vanadium PN dimer or trimer, respectively.
Collapse
Affiliation(s)
- André K Eckhardt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Terban MW, Billinge SJL. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chem Rev 2022; 122:1208-1272. [PMID: 34788012 PMCID: PMC8759070 DOI: 10.1021/acs.chemrev.1c00237] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/16/2022]
Abstract
This is a review of atomic pair distribution function (PDF) analysis as applied to the study of molecular materials. The PDF method is a powerful approach to study short- and intermediate-range order in materials on the nanoscale. It may be obtained from total scattering measurements using X-rays, neutrons, or electrons, and it provides structural details when defects, disorder, or structural ambiguities obscure their elucidation directly in reciprocal space. While its uses in the study of inorganic crystals, glasses, and nanomaterials have been recently highlighted, significant progress has also been made in its application to molecular materials such as carbons, pharmaceuticals, polymers, liquids, coordination compounds, composites, and more. Here, an overview of applications toward a wide variety of molecular compounds (organic and inorganic) and systems with molecular components is presented. We then present pedagogical descriptions and tips for further implementation. Successful utilization of the method requires an interdisciplinary consolidation of material preparation, high quality scattering experimentation, data processing, model formulation, and attentive scrutiny of the results. It is hoped that this article will provide a useful reference to practitioners for PDF applications in a wide realm of molecular sciences, and help new practitioners to get started with this technique.
Collapse
Affiliation(s)
- Maxwell W. Terban
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Simon J. L. Billinge
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
9
|
Savkov BY, Sukhikh TS, Konchenko SN, Pushkarevsky NA. Reduction of phosphine sulfides and selenides by samarium(ii) formamidinate as an approach to binuclear mono- and dichalcogenide complexes
†. Aust J Chem 2022. [DOI: 10.1071/ch21271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zhu B, Jiang J, Lu B, Li X, Jiang X, Rauhut G, Zeng X. Phosphenic isocyanate (O2PNCO): Gas-phase generation, characterization, and photodecomposition reactions. Chem Commun (Camb) 2022; 58:10703-10706. [DOI: 10.1039/d2cc03178g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphenic isocyanate (O2PNCO), a novel phosphorus-containing small molecule has been generated by thermolysis of a dioxaphospholane-based precursor. The characterization of O2PNCO with IR and UV-vis spectroscopy in solid N2 and...
Collapse
|
11
|
Kremláček V, Kertész E, Benkő Z, Erben M, Jirásko R, Růžička A, Jambor R, Dostál L. Non-conventional Behavior of a 2,1-Benzazaphosphole: Heterodiene or Hidden Phosphinidene? Chemistry 2021; 27:13149-13160. [PMID: 34096106 PMCID: PMC8518707 DOI: 10.1002/chem.202101686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/27/2022]
Abstract
The titled 2,1-benzazaphosphole (1) (i. e. ArP, where Ar=2-(DippN=CH)C6 H4 , Dipp=2,6-iPr2 C6 H3 ) showed a spectacular reactivity behaving both as a reactive heterodiene in hetero-Diels-Alder (DA) reactions or as a hidden phosphinidene in the coordination toward selected transition metals (TMs). Thus, 1 reacts with electron-deficient alkynes RC≡CR (R=CO2 Me, C5 F4 N) giving 1-phospha-1,4-dihydro-iminonaphthalenes 2 and 3, that undergo hydrogen migration producing 1-phosphanaphthalenes 4 and 5. Compound 1 is also able to activate the C=C double bond in selected N-alkyl/aryl-maleimides RN(C(O)CH)2 (R=Me, tBu, Ph) resulting in the addition products 7-9 with bridged bicyclic [2.2.1] structures. The binding of the maleimides to 1 is semi-reversible upon heating. By contrast, when 1 was treated with selected TM complexes, it serves as a 4e donor bridging two TMs thus producing complexes [μ-ArP(AuCl)2 ] (10), [(μ-ArP)4 Ag4 ][X]4 (X=BF4 (11), OTf (12)) and [μ-ArP(Co2 (CO)6 )] (13). The structure and electron distribution of the starting material 1 as well as of other compounds were also studied from the theoretical point of view.
Collapse
Affiliation(s)
- Vít Kremláček
- Department of General and Inorganic ChemistryFCHTUniversity of PardubiceStudentská 573532 10PardubiceCzech Republic
| | - Erik Kertész
- Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsSzent Gellért tér 4H-1111BudapestHungary
| | - Zoltán Benkő
- Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsSzent Gellért tér 4H-1111BudapestHungary
| | - Milan Erben
- Department of General and Inorganic ChemistryFCHTUniversity of PardubiceStudentská 573532 10PardubiceCzech Republic
| | - Robert Jirásko
- Department of Analytical ChemistryFCHTUniversity of PardubiceStudentská 573532 10PardubiceCzech Republic
| | - Aleš Růžička
- Department of General and Inorganic ChemistryFCHTUniversity of PardubiceStudentská 573532 10PardubiceCzech Republic
| | - Roman Jambor
- Department of General and Inorganic ChemistryFCHTUniversity of PardubiceStudentská 573532 10PardubiceCzech Republic
| | - Libor Dostál
- Department of General and Inorganic ChemistryFCHTUniversity of PardubiceStudentská 573532 10PardubiceCzech Republic
| |
Collapse
|
12
|
Transue WJ, Dai Y, Riu MLY, Wu G, Cummins CC. 31P NMR Chemical Shift Tensors: Windows into Ruthenium Phosphinidene Complex Electronic Structures. Inorg Chem 2021; 60:9254-9258. [PMID: 34152768 DOI: 10.1021/acs.inorgchem.1c01099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of octamethylcalix[4]pyrrole/ruthenium phosphinidene complexes (Na2[1=PR]) can be accessed by phosphinidene transfer from the corresponding RPA (A = C14H10, anthracene) compounds (R = tBu, iPr, OEt, NH2, NMe2, NEt2, NiPr2, NA, dimethylpiperidino). Isolation of the tert-butyl and dimethylamino derivatives allowed comparative studies of their 31P nuclear shielding tensors by magic-angle-spinning solid-state nuclear magnetic resonance spectroscopy. Density functional theory and natural chemical shielding analyses reveal the relationship between the 31P chemical shift tensor and the local ruthenium/phosphorus electronic structure. The general trend observed in the 31P isotropic chemical shifts for the ruthenium phosphinidene complexes was controlled by the degree of deshielding in the δ11 principal tensor component, which can be linked to the σRuP/πRuP* energy gap. A "δ22-δ33 crossover" effect for R = tBu was also observed, which was caused by different degrees of deshielding associated with polarizations of the σPR and σPR* natural bond orbitals.
Collapse
Affiliation(s)
- Wesley J Transue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yizhe Dai
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Riu MLY, Transue WJ, Rall JM, Cummins CC. An Azophosphine Synthetic Equivalent of Mesitylphosphaazide and Its 1,3-Dipolar Cycloaddition Reactions. J Am Chem Soc 2021; 143:7635-7640. [PMID: 33999612 DOI: 10.1021/jacs.1c03333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dibenzo-7-phosphanorbornadiene-substituted diazene MesN2PA (1, where Mes = mesityl, A = anthracene, or C14H10), a synthetic equivalent of mesitylphosphaazide (MesN2P) and anthracene, was synthesized by treatment of [Ph3BPA][Na(OEt2)2] with [MesN2]OTf (OTf = CF3SO3-) in thawing tetrahydrofuran (14% isolated yield). Treatment of 1 with unsaturated molecules cyclooctyne, [Na(dioxane)2.5][OCP] (phosphaethynolate), and Ad-C≡P (Ad = adamantyl) results in the corresponding [3 + 2] phosphaazide-(phospha)alkyne cycloadducts, with concomitant loss of anthracene in 65%, 49%, and 38% isolated yield, respectively. Structural data for the phosphaethynolate cycloadduct ([3][Na(12-crown-4)2]) were obtained in a single-crystal X-ray diffraction study. A diazatriphosphole was generated by combining 1 with P2A2, a thermally activated anthracene-based molecular precursor to diphosphorus (P2). Thermolysis (33-65 °C) of 1 in benzene-d6 leads to anthracene extrusion. This process has a unimolecular kinetic profile and proceeds with activation parameters of ΔH⧧ = 21.6 ± 0.3 kcal/mol and ΔS⧧= -4.9 ± 0.8 cal/(mol K).
Collapse
Affiliation(s)
- Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wesley J Transue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jan M Rall
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Du J, Hunger D, Seed JA, Cryer JD, King DM, Wooles AJ, van Slageren J, Liddle ST. Dipnictogen f-Element Chemistry: A Diphosphorus Uranium Complex. J Am Chem Soc 2021; 143:5343-5348. [PMID: 33792307 DOI: 10.1021/jacs.1c02482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The first isolation and structural characterization of an f-element dinitrogen complex was reported in 1988, but an f-element complex with the first heavier group 15 homologue diphosphorus has to date remained unknown. Here, we report the synthesis of a side-on bound diphosphorus complex of uranium(IV) using a 7λ3-(dimethylamino)phosphadibenzonorbornadiene-mediated P atom transfer approach. Experimental and computational characterization reveals that the diphosphorus ligand is activated to its dianionic (P2)2- form and that in-plane U-P π-bonding dominates the bonding of the U(μ-η2:η2-P2)U unit, which is supplemented by a weak U-P interaction of δ symmetry. A preliminary reactivity study demonstrates conversion of this diphosphorus complex to unprecedented uranium cyclo-P3 complexes, suggesting in situ generation of transient, reactive phosphido species.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - David Hunger
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Jonathan D Cryer
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - David M King
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Joris van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
15
|
Mardyukov A, Keul F, Schreiner PR. Isolation and Characterization of the Free Phenylphosphinidene Chalcogenides C
6
H
5
P=O and C
6
H
5
P=S, the Phosphorous Analogues of Nitrosobenzene and Thionitrosobenzene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Artur Mardyukov
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Felix Keul
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
16
|
Mardyukov A, Keul F, Schreiner PR. Isolation and Characterization of the Free Phenylphosphinidene Chalcogenides C 6 H 5 P=O and C 6 H 5 P=S, the Phosphorous Analogues of Nitrosobenzene and Thionitrosobenzene. Angew Chem Int Ed Engl 2020; 59:12445-12449. [PMID: 32311208 PMCID: PMC7384188 DOI: 10.1002/anie.202004172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Indexed: 01/07/2023]
Abstract
The structures and reactivities of organic phosphinidene chalcogenides have been mainly inferred from trapping or complexation experiments. Phosphinidene chalcogenide derivatives appear to be an elusive family of molecules that have been suggested as reactive intermediates in multiple organophosphorus reactions. The quest to isolate "free" phosphinidene chalcogenides remains a challenge in the field. Here, we present the synthesis, IR, and UV/Vis spectroscopic identification of hitherto elusive phenylphosphinidene oxide and phenylphosphinidene sulfide from the corresponding phosphonic diazide precursors. We isolated these higher congeners of nitroso- and thionitrosobenzene in argon matrices at 10 K. The spectral assignments are supported by B3LYP/6-311++G(3df,3pd) and MP2/cc-pVTZ computations.
Collapse
Affiliation(s)
- Artur Mardyukov
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Felix Keul
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Peter R. Schreiner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| |
Collapse
|
17
|
Riu MLY, Jones RL, Transue WJ, Müller P, Cummins CC. Isolation of an elusive phosphatetrahedrane. SCIENCE ADVANCES 2020; 6:eaaz3168. [PMID: 32232162 PMCID: PMC7096166 DOI: 10.1126/sciadv.aaz3168] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/06/2020] [Indexed: 05/04/2023]
Abstract
This exploratory synthesis investigation was undertaken to determine the viability of replacing a single carbon vertex with another p-block element in a highly strained tetrahedrane molecule. Phosphorus was selected for this purpose because the stable molecular form of elemental phosphorus is tetrahedral. Our synthetic strategy was to generate an unsaturated phosphorus center bonded to a substituted cyclopropenyl group, a situation that could lead to closure to provide the desired phosphatetrahedrane framework. This was accomplished by dehydrofluorination of the in situ generated fluorophosphine H(F)P(C t Bu)3. Tri-tert-butyl phosphatetrahedrane, P(C t Bu)3, was then isolated in 19% yield as a low-melting, volatile, colorless solid and characterized spectroscopically and by a single-crystal x-ray diffraction study, confirming the tetrahedral nature of the molecule's PC3 core. The molecule exhibits unexpected thermal stability.
Collapse
|
18
|
Wilson DWN, Franco MP, Myers WK, McGrady JE, Goicoechea JM. Base induced isomerisation of a phosphaethynolato-borane: mechanistic insights into boryl migration and decarbonylation to afford a triplet phosphinidene. Chem Sci 2019; 11:862-869. [PMID: 34123064 PMCID: PMC8145529 DOI: 10.1039/c9sc05969e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We report on the (tert-butyl)isocyanide-catalysed isomersation of a phosphaethynolato-borane, [B]OCP ([B] = N,N′-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl), to its linkage isomer, a phosphaketenyl-borane, [B]PCO. Mechanistic insight into this unusual isomerisation was gained through a series of stoichiometric reactions of [B]OCP with isocyanides and theoretical calculations at the Density Functional Theory (DFT) level. [B]PCO decarbonylates under photolytic conditions to afford a novel boryl-substituted diphosphene, [B]P
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
P[B]. This reaction proceeds via a transient triplet phosphinidene which we have been able to observe spectroscopically by Electron Paramagnetic Resonance (EPR) spectroscopy. We report on the (tert-butyl)isocyanide-catalysed isomersation of a phosphaethynolato-borane, [B]OCP, to its linkage isomer, a phosphaketenyl-borane, [B]PCO.![]()
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Mauricio P Franco
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - William K Myers
- Department of Chemistry, University of Oxford, Centre for Advanced ESR, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - John E McGrady
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
19
|
Zhao X, Chu X, Rauhut G, Chen C, Song C, Lu B, Zeng X. Phosphorus Analogues of Methyl Nitrite and Nitromethane: CH
3
OPO and CH
3
PO
2. Angew Chem Int Ed Engl 2019; 58:12164-12169. [DOI: 10.1002/anie.201906874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaofang Zhao
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xianxu Chu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Guntram Rauhut
- Institute for Theoretical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Changyun Chen
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Chao Song
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Bo Lu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiaoqing Zeng
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
- Department of ChemistryFudan University Shanghai 200433 China
| |
Collapse
|
20
|
Gorelik TE, Neder R, Terban MW, Lee Z, Mu X, Jung C, Jacob T, Kaiser U. Towards quantitative treatment of electron pair distribution function. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2019; 75:532-549. [DOI: 10.1107/s205252061900670x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/10/2019] [Indexed: 11/10/2022]
Abstract
The pair distribution function (PDF) is a versatile tool to describe the structure of disordered and amorphous materials. Electron PDF (ePDF) uses the advantage of strong scattering of electrons, thus allowing small volumes to be probed and providing unique information on structure variations at the nano-scale. The spectrum of ePDF applications is rather broad: from ceramic to metallic glasses and mineralogical to organic samples. The quantitative interpretation of ePDF relies on knowledge of how structural and instrumental effects contribute to the experimental data. Here, a broad overview is given on the development of ePDF as a structure analysis method and its applications to diverse materials. Then the physical meaning of the PDF is explained and its use is demonstrated with several examples. Special features of electron scattering regarding the PDF calculations are discussed. A quantitative approach to ePDF data treatment is demonstrated using different refinement software programs for a nanocrystalline anatase sample. Finally, a list of available software packages for ePDF calculation is provided.
Collapse
|
21
|
Zhao X, Chu X, Rauhut G, Chen C, Song C, Lu B, Zeng X. Phosphorus Analogues of Methyl Nitrite and Nitromethane: CH
3
OPO and CH
3
PO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaofang Zhao
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xianxu Chu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Guntram Rauhut
- Institute for Theoretical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Changyun Chen
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Chao Song
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Bo Lu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiaoqing Zeng
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
- Department of ChemistryFudan University Shanghai 200433 China
| |
Collapse
|
22
|
Zhang C, Hou G, Zi G, Ding W, Walter MD. An Alkali-Metal Halide-Bridged Actinide Phosphinidiide Complex. Inorg Chem 2019; 58:1571-1590. [DOI: 10.1021/acs.inorgchem.8b03091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Congcong Zhang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|