1
|
Das S, McIvor C, Greener A, Suwita C, Argent SP, O'Duill ML. 2,2-Difluoroethylation of Heteroatom Nucleophiles via a Hypervalent Iodine Strategy. Angew Chem Int Ed Engl 2024; 63:e202410954. [PMID: 38900650 DOI: 10.1002/anie.202410954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
The 2,2-difluoroethyl group is an important lipophilic hydrogen bond donor in medicinal chemistry, but its incorporation into small molecules is often challenging. Herein, we demonstrate electrophilic 2,2-difluoroethylation of thiol, amine and alcohol nucleophiles with a hypervalent iodine reagent, (2,2-difluoro-ethyl)(aryl)iodonium triflate, via a proposed ligand coupling mechanism. This transformation offers a complementary strategy to existing 2,2-difluoroethylation methods and allows access to a wide range of 2,2-difluoroethylated nucleophiles, including the drugs Captopril, Normorphine and Mefloquine.
Collapse
Affiliation(s)
- Suman Das
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Charlotte McIvor
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Andrew Greener
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Charlotte Suwita
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Miriam L O'Duill
- School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
2
|
Wang P, Lin L, Huang Y, Zhang H, Liao S. Radical Fluorosulfonamidation: A Facile Access to Sulfamoyl Fluorides. Angew Chem Int Ed Engl 2024; 63:e202405944. [PMID: 38837324 DOI: 10.1002/anie.202405944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Recently, the introduction of fluorosulfonyl (-SO2F) groups have attracted considerable research interests, as this moiety could often afford enhanced activities and new functions in the context of chemical biology and drug discovery. Herein, we report the design and synthesis of 1-fluorosulfamoyl-pyridinium (FSAP) salts, which could serve as an effective photoredox-active precursor to fluorosulfamoyl radicals and enable the direct radical C-H fluorosulfonamidation of a variety of (hetero)arenes. This method features mild conditions, visible light, broad substrate scope, good group tolerance, etc., and a metal-free protocol is also viable by using organic photocatalysts. Further, FSAP can also be applied to the radical functionalization of alkenes via 1,2-difunctionalization, radical distal migration, tandem radical-polar crossover reactions, etc. In addition, a formal C-H methylamination of (hetero)arenes by combining this radical C-H fluorosulfonamidation with subsequent hydrolysis as well as product derivatization are also demonstrated.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yao Huang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Odoh AS, Keeler C, Kim B. SuFEx-Enabled Direct Deoxy-Diversification of Alcohols. Org Lett 2024; 26:4013-4017. [PMID: 38691850 DOI: 10.1021/acs.orglett.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
We introduce a new use of sulfonyl fluoride as a bifunctional reagent that facilitates the one-step deoxy-diversification of complex alcohol libraries. Our reaction design features a Sulfur(VI) Fluoride Exchange (SuFEx) mediated activation of alcohols and fluoride-induced activation of silicon-bound nucleophiles. This method enables the direct conversion of alcoholic C-O bonds in complex molecules into diverse analogues via C-C, C-N, C-Cl, and C-Br bond formation while suppressing any elimination side-products.
Collapse
Affiliation(s)
- Amaechi Shedrack Odoh
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Courtney Keeler
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
4
|
Liu Y, Zhou T, Xuan L, Lin Y, Li F, Wang H, Lyu J, Yan Q, Zhou H, Wang W, Chen FE. Visible-Light-Driven C,N-Selective Heteroarylation of N-Fluoroalkyl Hydroxylamine Reagents with Quinoxalin-2(1 H)-ones. Org Lett 2023. [PMID: 37991496 DOI: 10.1021/acs.orglett.3c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Herein, we disclose a direct and powerful strategy for the synthesis of highly valuable α-trifluoromethylamine and N-trifluoroethylamine derivatives from a visible-light-promoted C,N-selective heteroarylation of N-trifluoroethyl hydroxylamine reagents with quinoxalin-2(1H)-ones under ambient conditions. The chemoselectivity of the process (trifluoroalkylation or N-trifluoroethylamination) can easily be dictated and modulated by a selection of N-trifluoroethyl hydroxylamine substrates. The key to success is the protecting group on the N atom of hydroxylamine reagents, which can control the process of 1,2-H shift of the in situ-generated N-trifluoroethyl radical. Remarkable features of this method include mild conditions, easy operation, high selectivity, and excellent functional group tolerability. More importantly, the trifluoroalkylated products can be readily derivatized into other interesting imidazo-fused heterocycles that would be of great potential for the exploitation of pharmaceutically relevant molecules.
Collapse
Affiliation(s)
- Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Tongyao Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liangming Xuan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yanchun Lin
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fuqi Li
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jian Lyu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Yan ZM, Qi L, Du HJ, Zhao ZQ, Liu JL, Dong YC, Li W, Wang LJ. Photocatalytic C-C Bond Cleavage and Fluorosulfonylation of Strained Cycloalkanols for Carbonyl-Containing Aliphatic Sulfonyl Fluorides. Org Lett 2023; 25:7051-7056. [PMID: 37728878 DOI: 10.1021/acs.orglett.3c02727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
In this report, we present a photocatalytic ring-opening fluorosulfonylation of strained cycloalkanols with sulfur dioxide and NFSI under mild conditions for the synthesis of carbonyl-containing aliphatic sulfonyl fluorides. The synthetic potential of the carbonyl-containing aliphatic sulfonyl fluoride products has been examined by diverse transformations, including SuFEx reactions and Baeyer-Villiger oxidation reactions. Mechanistic studies demonstrate that the reaction operates through a radical C-C bond cleavage/SO2 insertion/fluorination cascade process.
Collapse
Affiliation(s)
- Zhi-Min Yan
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Lin Qi
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Hui-Jie Du
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Zi-Qiang Zhao
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Jia-Li Liu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Yi-Chen Dong
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| | - Li-Jing Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, 180 Wusi Donglu, Baoding 071002, P. R. China
| |
Collapse
|
6
|
Audet F, Donnard M, Panossian A, Bernier D, Pazenok S, Leroux FR. New Chemical Transformations Involving SO 2 F 2 -Mediated Alcohol Activation. CHEM REC 2023; 23:e202300107. [PMID: 37236146 DOI: 10.1002/tcr.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Sulfuryl fluoride is a gas produced on a multi-ton scale for its use as a fumigant. In the last decades, it has gained interest in organic synthesis as a reagent with unique properties in terms of stability and reactivity when compared to other sulfur-based reagents. Sulfuryl fluoride has not only been used for sulfur-fluoride exchange (SuFEx) chemistry but also encountered applications in classic organic synthesis as an efficient activator of both alcohols and phenols, forming a triflate surrogate, namely a fluorosulfonate. A long-standing industrial collaboration in our research group drove our work on the sulfuryl fluoride-mediated transformations that will be highlighted below. We will first describe recent works on metal-catalyzed transformations from aryl fluorosulfonates while emphasizing the one-pot processes from phenol derivatives. In a second section, nucleophilic substitution reactions on polyfluoroalkyl alcohols will be discussed and the value of polyfluoroalkyl fluorosulfonates in comparison to alternative triflate and halide reagents will be brought to light.
Collapse
Affiliation(s)
- Florian Audet
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - Armen Panossian
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| | - David Bernier
- Bayer S.A.S., 14 impasse Pierre Baizet, 69263, Lyon, France
| | - Sergii Pazenok
- Bayer CropScience AG, Alfred Nobel Straße 50, 40789, Monheim, Germany
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 25 rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
7
|
Chen XL, Qin HL. Synthesis of aliphatic nitriles from cyclobutanone oxime mediated by sulfuryl fluoride (SO 2F 2). Beilstein J Org Chem 2023; 19:901-908. [PMID: 37377774 PMCID: PMC10291241 DOI: 10.3762/bjoc.19.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
A SO2F2-mediated ring-opening cross-coupling of cyclobutanone oxime derivatives with alkenes was developed for the construction of a range of δ-olefin-containing aliphatic nitriles with (E)-configuration selectivity. This new method features wide substrate scope, mild conditions, and direct N-O activation.
Collapse
Affiliation(s)
- Xian-Lin Chen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
8
|
Zeng D, Deng WP, Jiang X. Advances in the construction of diverse SuFEx linkers. Natl Sci Rev 2023; 10:nwad123. [PMID: 37441224 PMCID: PMC10335383 DOI: 10.1093/nsr/nwad123] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 07/15/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx), a new generation of click chemistry, was first presented by Sharpless, Dong and co-workers in 2014. Owing to the high stability and yet efficient reactivity of the SVI-F bond, SuFEx has found widespread applications in organic synthesis, materials science, chemical biology and drug discovery. A diverse collection of SuFEx linkers has emerged, involving gaseous SO2F2 and SOF4 hubs; SOF4-derived iminosulfur oxydifluorides; O-, N- and C-attached sulfonyl fluorides and sulfonimidoyl fluorides; and novel sulfondiimidoyl fluorides. This review summarizes the progress of these SuFEx connectors, with an emphasis on analysing the advantages and disadvantages of synthetic strategies of these connectors based on the SuFEx concept, and it is expected to be beneficial to researchers to rapidly and correctly understand this field, thus inspiring further development in SuFEx chemistry.
Collapse
Affiliation(s)
- Daming Zeng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
9
|
Li YN, Zhou MX, Wu JB, Wang Z, Zeng YF. Tandem reduction and trifluoroethylation of quinolines and quinoxalines with trifluoroacetic acid and trimethylamine borane. Org Biomol Chem 2022; 20:9613-9617. [PMID: 36420677 DOI: 10.1039/d2ob01923j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A metal-free tandem reduction and N-trifluoroethylation of quinolines and quinoxalines has been developed. It provided a convenient route to access trifluoroethylated tetrahydroquinolines and tetrahydroquinoxalines. This one-pot method avoids the purification process of the intermediate. Mechanistically, the in situ-generated boryl acetal species reacted with tetrahydroquinolines to generate iminiums followed by reduction to give the target compounds.
Collapse
Affiliation(s)
- Yi-Na Li
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Ming-Xi Zhou
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jin-Bo Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
10
|
Ghosh J, Mendoza J, Cooks RG. Accelerated and Concerted Aza-Michael Addition and SuFEx Reaction in Microdroplets in Unitary and High-Throughput Formats. Angew Chem Int Ed Engl 2022; 61:e202214090. [PMID: 36253886 PMCID: PMC10099520 DOI: 10.1002/anie.202214090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 11/12/2022]
Abstract
The sulfur fluoride exchange (SuFEx) reaction is significant in drug discovery, materials science, and chemical biology. Conventionally, it involves installation of SO2 F followed by fluoride exchange by a catalyst. We report catalyst-free Aza-Michael addition to install SO2 F and then SuFEx reaction with amines, both occurring in concert, in microdroplets under ambient conditions. The microdroplet reaction is accelerated by a factor of ∼104 relative to the corresponding bulk reaction. We suggest that the superacidic microdroplet surface assists SuFEx reaction by protonating fluorine to create a good leaving group. The reaction scope was established by performing individual reactions in microdroplets of 18 amines in four solvents and confirmed using high-throughput desorption electrospray ionization experiments. The study demonstrates the value of microdroplet-assisted accelerated reactions in combination with high-throughput experimentation for characterization of reaction scope.
Collapse
Affiliation(s)
- Jyotirmoy Ghosh
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Joshua Mendoza
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Zhang H, Yang N, Li J, Wang P, Li S, Xie L, Liao S. Radical Fluorosulfonyl Arylation of Alkenes: Accessing FSO 2-Functionalized Chromanes via Formal Endo and Exo Cyclization. Org Lett 2022; 24:8170-8175. [DOI: 10.1021/acs.orglett.2c03224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jing Li
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shaojie Li
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Lili Xie
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
| |
Collapse
|
12
|
Zhang G, Luo Z, Wang H, Deng L, Ding C. SO
2
F
2
Promoted Deoxygenhalogenation from Alcohols: A Practical Method for Preparing Halides. ChemistrySelect 2022. [DOI: 10.1002/slct.202202853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guofu Zhang
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Zijin Luo
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Huimin Wang
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Linfang Deng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310014 P. R. China
| | - Chengrong Ding
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
13
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022; 61:e202207684. [DOI: 10.1002/anie.202207684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Mingqi Zhao
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Shuangshuang Ji
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
14
|
Wang P, Li SJ, Liao S, Zhang H, Yang N. Photo-organocatalytic Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Acetates. Synlett 2022. [DOI: 10.1055/s-0041-1738692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractA metal-free synthesis of useful β-keto sulfonyl fluorides has been established via radical fluorosulfonylation of ketone-derived vinyl acetates under photoredox organocatalysis by using 1-fluorosulfonyl benzoimidazolium (FABI) as the fluorosulfonyl radical source and oxygen-doped anthanthrene (ODA) as the photocatalyst. A series of aryl and alkyl β-keto sulfonyl fluorides as well as cyclic analogues can be readily obtained in moderate to high yields from widely available ketone starting materials.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| | - Shao-Jie Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
- Beijing National Laboratory for Molecular Sciences (BNLMS)
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| |
Collapse
|
15
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Wang
- Fuzhou University College of Chemistry CHINA
| | | | - Mingqi Zhao
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Shuangshuang Ji
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Lu Lin
- Fuzhou University College of Chemistry CHINA
| | - Na Yang
- Fuzhou University College of Chemistry CHINA
| | | | - Jinshuai Song
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Saihu Liao
- Fuzhou University College of Chemistry 2 Xueyuan RoadUniversity Town 350108 Fuzhou CHINA
| |
Collapse
|
16
|
Deng Z, Qiu LY, Pan W, Qian B, Chen J, Zhang H, Chen QY, Cao W, Tang XJ. TFA-Promoted Intermolecular Friedel-Crafts Alkylation of Arenes with 2,2,2-Trifluoroethylaryl Sulfoxides. Chem Asian J 2022; 17:e202200190. [PMID: 35644874 DOI: 10.1002/asia.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/14/2022] [Indexed: 11/08/2022]
Abstract
The classical Pummerer rearrangement of 2,2,2-trifluoroethylaryl sulfoxide with trifluoracetic anhydride (TFAA) affords the S , O -acetal efficiently. In the presence of trifluoracetic acid (TFA) as the co-solvent, the S , O -acetal can regenerate reactive thionium intermediate of Pummerer rearrangement. When employing arenes as nucleophiles, this strategy produces corresponding 1-thiyl-2,2,2-trifluoroethyl arenes with excellent yields under metal-free conditions.
Collapse
Affiliation(s)
- Zhen Deng
- Shanghai University, Department of Chemistry, CHINA
| | - Liu-Yan Qiu
- Shanghai University, Department of Chemistry, CHINA
| | - Wenjie Pan
- Shanghai University, Department of Chemistry, CHINA
| | - Baiyu Qian
- Shanghai University, Department of Chemistry, CHINA
| | - Jie Chen
- Shanghai University, Department of Chemistry, CHINA
| | - Hui Zhang
- Shanghai University, Department of Chemistry, CHINA
| | - Qing-Yun Chen
- Shanghai Institute of Organic Chemistry, Key Laboratory of Organofluorine Chemistry, CHINA
| | - Weiguo Cao
- Shanghai University, Department of Chemistry, CHINA
| | - Xiao-Jun Tang
- Shanghai University, Department of chemistry, 99th Shang-Da Road, 200444, Shanghai, CHINA
| |
Collapse
|
17
|
Bolduc TG, Lee C, Chappell WP, Sammis GM. Thionyl Fluoride-Mediated One-Pot Substitutions and Reductions of Carboxylic Acids. J Org Chem 2022; 87:7308-7318. [PMID: 35549478 DOI: 10.1021/acs.joc.2c00496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thionyl fluoride (SOF2) is an underutilized reagent that is yet to be extensively studied for its synthetic applications. We previously reported that it is a powerful reagent for both the rapid syntheses of acyl fluorides and for one-pot peptide couplings, but the full scope of these nucleophilic acyl substitutions had not been explored. Herein, we report one-pot thionyl fluoride-mediated syntheses of peptides and amides (35 examples, 45-99% yields) that were not explored in our previous study. The scope of thionyl fluoride-mediated nucleophilic acyl substitutions was also expanded to encompass esters (24 examples, 64-99% yields) and thioesters (11 examples, 24-96% yields). In addition, we demonstrate that the scope of thionyl fluoride-mediated one-pot reactions can be extended beyond nucleophilic acyl substitutions to mild reductions of carboxylic acids using NaBH4 (13 examples, 33-80% yields).
Collapse
Affiliation(s)
- Trevor G Bolduc
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Cayo Lee
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - William P Chappell
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
18
|
Li BY, Voets L, Van Lommel R, Hoppenbrouwers F, Alonso M, Verhelst SHL, De Borggraeve WM, Demaerel J. SuFEx-enabled, chemoselective synthesis of triflates, triflamides and triflimidates. Chem Sci 2022; 13:2270-2279. [PMID: 35310484 PMCID: PMC8864708 DOI: 10.1039/d1sc06267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Sulfur(vi) Fluoride Exchange (SuFEx) chemistry has emerged as a next-generation click reaction, designed to assemble functional molecules quickly and modularly. Here, we report the ex situ generation of trifluoromethanesulfonyl fluoride (CF3SO2F) gas in a two chamber system, and its use as a new SuFEx handle to efficiently synthesize triflates and triflamides. This broadly tolerated protocol lends itself to peptide modification or to telescoping into coupling reactions. Moreover, redesigning the SVI-F connector with a S[double bond, length as m-dash]O → S[double bond, length as m-dash]NR replacement furnished the analogous triflimidoyl fluorides as SuFEx electrophiles, which were engaged in the synthesis of rarely reported triflimidate esters. Notably, experiments showed H2O to be the key towards achieving chemoselective trifluoromethanesulfonation of phenols vs. amine groups, a phenomenon best explained-using ab initio metadynamics simulations-by a hydrogen bonded termolecular transition state for the CF3SO2F triflylation of amines.
Collapse
Affiliation(s)
- Bing-Yu Li
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Lauren Voets
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Ruben Van Lommel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Fien Hoppenbrouwers
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven O&N I bis, Herestraat 49, box 901 3000 Leuven Belgium
- Leibniz Institute for Analytical Sciences ISAS e.V., Otto-Hahn-Str. 6b 44227 Dortmund Germany
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Joachim Demaerel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven O&N I bis, Herestraat 49, box 901 3000 Leuven Belgium
| |
Collapse
|
19
|
Zhang G, Wang H, Wu W, Fan Q, Ding C. SO
2
F
2
‐Promoted Dehydroxylative Fluorination of Alcohols. ChemistrySelect 2022. [DOI: 10.1002/slct.202104114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guofu Zhang
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Huimin Wang
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Wenliang Wu
- Zhejiang Jitai New Materials Co. Ltd. Shao Xing Shi, Shangyu 312369 P. R. China
| | - Qiankun Fan
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chengrong Ding
- Department College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
20
|
Wang J, Liu S, Huang Y, Xu XH, Qing FL. Photoredox catalyzed C-H trifluoroethylamination of heteroarenes. Chem Commun (Camb) 2022; 58:1346-1349. [PMID: 34986214 DOI: 10.1039/d1cc06688a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first C-H trifluoroethylamination of heteroarenes with previously unknown N-trifluoroethyl hydroxylamine reagents was achieved under photoredox catalyzed conditions. In the presence of an iridium(III) photoredox catalyst, a variety of heteroarenes, such as indoles, benzofurans, and benzothiophenes, were smoothly converted to the trifluoroethylaminated products in moderate to high yields and with excellent regioselectivity.
Collapse
Affiliation(s)
- Juan Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Shuai Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Yangen Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Xiu-Hua Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Feng-Ling Qing
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
21
|
Smedley CJ, Homer JA, Gialelis TL, Barrow AS, Koelln RA, Moses JE. Accelerated SuFEx Click Chemistry For Modular Synthesis. Angew Chem Int Ed Engl 2022; 61:e202112375. [PMID: 34755436 PMCID: PMC8867595 DOI: 10.1002/anie.202112375] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/20/2021] [Indexed: 01/23/2023]
Abstract
SuFEx click chemistry is a powerful method designed for the selective, rapid, and modular synthesis of functional molecules. Classical SuFEx reactions form stable S-O linkages upon exchange of S-F bonds with aryl silyl-ether substrates, and while near-perfect in their outcome, are sometimes disadvantaged by relatively high catalyst loadings and prolonged reaction times. We herein report the development of accelerated SuFEx click chemistry (ASCC), an improved SuFEx method for the efficient and catalytic coupling of aryl and alkyl alcohols with a range of SuFExable hubs. We demonstrate Barton's hindered guanidine base (2-tert-butyl-1,1,3,3-tetramethylguanidine; BTMG) as a superb SuFEx catalyst that, when used in synergy with silicon additive hexamethyldisilazane (HMDS), yields stable S-O bond linkages in a single step; often within minutes. The powerful combination of BTMG and HMDS reagents allows for catalyst loadings as low as 1.0 mol % and, in congruence with click-principles, provides a scalable method that is safe, efficient, and practical for modular synthesis. ASSC expands the number of accessible SuFEx products and will find significant application in organic synthesis, medicinal chemistry, chemical biology, and materials science.
Collapse
Affiliation(s)
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | - Andrew S. Barrow
- L. I. M. S., Science Dr, Bundoora, Melbourne, VIC 3086, Australia
| | - Rebecca A. Koelln
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA,
| |
Collapse
|
22
|
Smedley CJ, Homer JA, Gialelis TL, Barrow AS, Koelln RA, Moses JE. Accelerated SuFEx Click Chemistry For Modular Synthesis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Joshua A. Homer
- Cancer Center Cold Spring Harbor Laboratory 1 Bungtown Road Cold Spring Harbor NY 11724 USA
| | | | | | - Rebecca A. Koelln
- Cancer Center Cold Spring Harbor Laboratory 1 Bungtown Road Cold Spring Harbor NY 11724 USA
| | - John E. Moses
- Cancer Center Cold Spring Harbor Laboratory 1 Bungtown Road Cold Spring Harbor NY 11724 USA
| |
Collapse
|
23
|
Song X, He Y, Wang B, Peng S, Pan X, Wei M, Liu Q, Qin HL, Tang H. Synthesis of aryl sulfonyl fluorides from aryl sulfonyl chlorides using sulfuryl fluoride (SO2F2) as fluoride provider. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Zhou Y, Li Z, Hu M, Yan Z, Lin S. Oxidation of Sulfides with SO 2F 2/H 2O 2/Base. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Lee C, Thomson BJ, Sammis GM. Rapid and column-free syntheses of acyl fluorides and peptides using ex situ generated thionyl fluoride. Chem Sci 2021; 13:188-194. [PMID: 35059166 PMCID: PMC8694322 DOI: 10.1039/d1sc05316g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2021] [Indexed: 01/28/2023] Open
Abstract
Thionyl fluoride (SOF2) was first isolated in 1896, but there have been less than 10 subsequent reports of its use as a reagent for organic synthesis. This is partly due to a lack of facile, lab-scale methods for its generation. Herein we report a novel protocol for the ex situ generation of SOF2 and subsequent demonstration of its ability to access both aliphatic and aromatic acyl fluorides in 55-98% isolated yields under mild conditions and short reaction times. We further demonstrate its aptitude in amino acid couplings, with a one-pot, column-free strategy that affords the corresponding dipeptides in 65-97% isolated yields with minimal to no epimerization. The broad scope allows for a wide range of protecting groups and both natural and unnatural amino acids. Finally, we demonstrated that this new method can be used in sequential liquid phase peptide synthesis (LPPS) to afford tri-, tetra-, penta-, and decapeptides in 14-88% yields without the need for column chromatography. We also demonstrated that this new method is amenable to solid phase peptide synthesis (SPPS), affording di- and pentapeptides in 80-98% yields.
Collapse
Affiliation(s)
- Cayo Lee
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Brodie J Thomson
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
26
|
|
27
|
Santos L, Donnard M, Panossian A, Vors JP, Jeschke P, Bernier D, Pazenok S, Leroux FR. SO 2F 2-Mediated N-Alkylation of Imino-Thiazolidinones. J Org Chem 2021; 87:2012-2021. [PMID: 34355900 DOI: 10.1021/acs.joc.1c01247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-alkylation of ambident and weakly nucleophilic imino-thiazolidinones has been developed via substitution with alkyl fluorosulfonates. These reactive electrophiles are obtained through the transformation of nontoxic, economic, and commercially available alcohol derivatives on exposure to SO2F2 gas. The use of electron-withdrawing groups and DMAc as solvent affords a (Z)- and N-endocyclic selectivity for the easy introduction of a variety of alkyl and polyfluoroalkyl chains.
Collapse
Affiliation(s)
- Laura Santos
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Morgan Donnard
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Armen Panossian
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Jean-Pierre Vors
- Bayer S.A.S., 14 Impasse Pierre Baizet, BP99163, 69263 Lyon, Cedex 09, France
| | - Peter Jeschke
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
| | - David Bernier
- Bayer S.A.S., 14 Impasse Pierre Baizet, BP99163, 69263 Lyon, Cedex 09, France
| | - Sergii Pazenok
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
| | - Frédéric R Leroux
- University of Strasbourg, University of Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
28
|
Zhang Y, Chen W, Tan T, Gu Y, Zhang S, Li J, Wang Y, Hou W, Yang G, Ma P, Xu H. Palladium-catalyzed one-pot phosphorylation of phenols mediated by sulfuryl fluoride. Chem Commun (Camb) 2021; 57:4588-4591. [PMID: 33956028 DOI: 10.1039/d1cc00769f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report a general palladium-catalyzed one-pot procedure for the synthesis of phosphonates, phosphinates and phosphine oxides from phenols mediated by sulfuryl fluoride. It features mild conditions, broad substrate scope, high functionality tolerance and water insensitivity. The utility of this procedure has been well demonstrated by gram-scale synthesis, sequential synthesis of click chemistry building blocks, late-stage decoration of drugs and natural products and on-DNA synthesis of phosphine oxide for a DNA-encoded library (DEL).
Collapse
Affiliation(s)
- Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China. and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Hou
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
29
|
Epifanov M, Mo JY, Dubois R, Yu H, Sammis GM. One-Pot Deoxygenation and Substitution of Alcohols Mediated by Sulfuryl Fluoride. J Org Chem 2021; 86:3768-3777. [PMID: 33567820 DOI: 10.1021/acs.joc.0c02557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sulfuryl fluoride is a valuable reagent for the one-pot activation and derivatization of aliphatic alcohols, but the highly reactive alkyl fluorosulfate intermediates limit both the types of reactions that can be accessed as well as the scope. Herein, we report the SO2F2-mediated alcohol substitution and deoxygenation method that relies on the conversion of fluorosulfates to alkyl halide intermediates. This strategy allows the expansion of SO2F2-mediated one-pot processes to include radical reactions, where the alkyl halides can also be exploited in the one-pot deoxygenation of primary alcohols under mild conditions (52-95% yield). This strategy can also enhance the scope of substitutions to nucleophiles that are previously incompatible with one-pot SO2F2-mediated alcohol activation and enables substitution of primary and secondary alcohols in 54-95% yield. Chiral secondary alcohols undergo a highly stereospecific (90-98% ee) double nucleophilic displacement with an overall retention of configuration.
Collapse
Affiliation(s)
- Maxim Epifanov
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jia Yi Mo
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Rudy Dubois
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hao Yu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
30
|
Arun V, Roy L, De Sarkar S. Alcohols as Fluoroalkyl Synthons: Ni-catalyzed Dehydrogenative Approach to Access Polyfluoroalkyl Bis-indoles. Chemistry 2020; 26:16649-16654. [PMID: 32914904 DOI: 10.1002/chem.202003912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 01/04/2023]
Abstract
An acceptorless dehydrogenative strategy for the synthesis of polyfluoroalkylated bis-indoles is described by employing an earth-abundant nickel-based catalytic system under air. The notable feature of the present transformation is the use of bench stable and easily affordable polyfluorinated alcohols without any pre-functionalization for the introduction of precious polyfluoroalkyl groups. The developed straightforward protocol accomplished biologically relevant fluoroalkyl bis-indoles in a sustainable fashion. Extensive DFT study predicts the unique role of indole molecules which stabilizes the transition states during the dehydrogenation process of polyfluorinated alcohols, presumably through non-covalent π⋅⋅⋅π and H-bonding interactions.
Collapse
Affiliation(s)
- V Arun
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
31
|
Room temperature clickable coupling electron deficient amines with sterically hindered carboxylic acids for the construction of amides. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Gurjar J, Fokin VV. Sulfuryl Fluoride Mediated Synthesis of Amides and Amidines from Ketoximes via Beckmann Rearrangement. Chemistry 2020; 26:10402-10405. [PMID: 31997464 DOI: 10.1002/chem.201905358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Indexed: 12/26/2022]
Abstract
A metal-free and redox-neutral method for Beckmann rearrangement employing inexpensive and readily available SO2 F2 gas is described. The reported transformation proceeds at ambient temperature and is compatible with a wide range of sterically and electronically diverse aromatic, heteroaromatic, aliphatic and lignin-like oximes providing amides in good to excellent yields. The reaction proceeds through the formation of an imidoyl fluoride intermediate that can also be used for the synthesis of amidines.
Collapse
Affiliation(s)
- Jitendra Gurjar
- University of Southern California, The Bridge@USC and Loker Hydrocarbon Research Institute, 1002 Childs Way, Los Angeles, CA, 90089-3502, USA
| | - Valery V Fokin
- University of Southern California, The Bridge@USC and Loker Hydrocarbon Research Institute, 1002 Childs Way, Los Angeles, CA, 90089-3502, USA
| |
Collapse
|
33
|
Foth PJ, Malig TC, Yu H, Bolduc TG, Hein JE, Sammis GM. Halide-Accelerated Acyl Fluoride Formation Using Sulfuryl Fluoride. Org Lett 2020; 22:6682-6686. [PMID: 32806146 DOI: 10.1021/acs.orglett.0c02566] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we report a new one-pot sequential method for SO2F2-mediated nucleophilic acyl substitution reactions starting from carboxylic acids. A mechanistic study revealed that SO2F2-mediated acid activation proceeds via the anhydride, which is then converted to the corresponding acyl fluoride. Tetrabutylammonium chloride or bromide accelerate the formation of acyl fluoride. Optimized halide-accelerated conditions were used to synthesize acyl fluorides in 30-80% yields, and esters, amides, and thioesters in 72-96% yields without reoptimization for each nucleophile.
Collapse
Affiliation(s)
- Paul J Foth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Thomas C Malig
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hao Yu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Trevor G Bolduc
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
34
|
Zhang G, Cui Y, Zhao Y, Cui Y, Bao S, Ding C. A Practical Approach to Ureas and Thiocarbamates: SO
2
F
2
‐Promoted Lossen Rearrangement of Hydroxamic Acid. ChemistrySelect 2020. [DOI: 10.1002/slct.202002270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guofu Zhang
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yin Cui
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yiyong Zhao
- Zhejiang Emission Trading Center Hangzhou 310012 P. R. China
| | - Yunqiang Cui
- Zhejiang Yuntao Biotechnology Co., Ltd Shaoxing 312369 P. R. China
| | - Shenxiao Bao
- Hangzhou Sandun Middle School Hangzhou 310030 P. R. China
| | - Chengrong Ding
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
35
|
Zhao Y, Wei J, Ge S, Zhang G, Ding C. SO 2F 2-Mediated one-pot cascade process for transformation of aldehydes (RCHO) to cyanamides (RNHCN). RSC Adv 2020; 10:17288-17292. [PMID: 35521444 PMCID: PMC9053412 DOI: 10.1039/d0ra02631j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
A simple, mild and practical cascade process for the direct conversion of aldehydes to cyanamides was developed featuring a wide substrate scope and great functional group tolerability. This method allows for transformations of readily available, inexpensive, and abundant aldehydes to highly valuable cyanamides in a pot, atom, and step-economical manner with a green nitrogen source. This protocol will serve as a robust tool for the installation of the cyanamide moiety in various complicated molecules.
Collapse
Affiliation(s)
- Yiyong Zhao
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Junjie Wei
- Zhejiang Emission Trading Center Hangzhou 310014 People's Republic of China
| | - Shuting Ge
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
36
|
Mo JY, Epifanov M, Hodgson JW, Dubois R, Sammis GM. One‐Pot Substitution of Aliphatic Alcohols Mediated by Sulfuryl Fluoride. Chemistry 2020; 26:4958-4962. [DOI: 10.1002/chem.202000721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Jia Yi Mo
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| | - Maxim Epifanov
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| | - Jack W. Hodgson
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| | - Rudy Dubois
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| | - Glenn M. Sammis
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| |
Collapse
|
37
|
Wang SM, Zhao C, Zhang X, Qin HL. Clickable coupling of carboxylic acids and amines at room temperature mediated by SO 2F 2: a significant breakthrough for the construction of amides and peptide linkages. Org Biomol Chem 2020; 17:4087-4101. [PMID: 30957817 DOI: 10.1039/c9ob00699k] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The construction of amide bonds and peptide linkages is one of the most fundamental transformations in all life processes and organic synthesis. The synthesis of structurally ubiquitous amide motifs is essential in the assembly of numerous important molecules such as peptides, proteins, alkaloids, pharmaceutical agents, polymers, ligands and agrochemicals. A method of SO2F2-mediated direct clickable coupling of carboxylic acids with amines was developed for the synthesis of a broad scope of amides in a simple, mild, highly efficient, robust and practical manner (>110 examples, >90% yields in most cases). The direct click reactions of acids and amines on a gram scale are also demonstrated using an extremely easy work-up and purification process of washing with 1 M aqueous HCl to provide the desired amides in greater than 99% purity and excellent yields.
Collapse
Affiliation(s)
- Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China.
| | | | | | | |
Collapse
|
38
|
Demaerel J, Veryser C, De Borggraeve WM. Ex situ gas generation for lab scale organic synthesis. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00497a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review discusses recent examples of ex situ generated gaseous reagents, and their use in organic synthesis.
Collapse
Affiliation(s)
- Joachim Demaerel
- Molecular Design and Synthesis
- Department of Chemistry
- 3001 Leuven
- Belgium
| | - Cedrick Veryser
- Molecular Design and Synthesis
- Department of Chemistry
- 3001 Leuven
- Belgium
| | | |
Collapse
|
39
|
Foth PJ, Gu F, Bolduc TG, Kanani SS, Sammis GM. New sulfuryl fluoride-derived alkylating reagents for the 1,1-dihydrofluoroalkylation of thiols. Chem Sci 2019; 10:10331-10335. [PMID: 32110320 PMCID: PMC6984387 DOI: 10.1039/c9sc03570b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/19/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a new method for the one-pot synthesis of 1,1-dihydrofluoroalkyl sulfides by bubbling sulfuryl fluoride (SO2F2) through a solution of the corresponding alcohol and thiol. The reaction proceeds through a new class of bis(1,1-dihydrofluoroalkyl) sulfate reagents, to afford the desired 1,1-dihydrofluoroalkyl sulfides in 55-90% isolated yields. The bis(1,1-dihydrofluoroalkyl) sulfates are highly chemoselective for thiol alkylation, and are unreactive with competing, unprotected nucleophiles, including amines, alcohols, and carboxylic acids.
Collapse
Affiliation(s)
- Paul J Foth
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada .
| | - Frances Gu
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada .
| | - Trevor G Bolduc
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada .
| | - Sahil S Kanani
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada .
| | - Glenn M Sammis
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada .
| |
Collapse
|
40
|
Cristòfol À, Böhmer C, Kleij AW. Formal Synthesis of Indolizidine and Quinolizidine Alkaloids from Vinyl Cyclic Carbonates. Chemistry 2019; 25:15055-15058. [PMID: 31574183 DOI: 10.1002/chem.201904223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Cyclic carbonates have long been considered relatively inert molecules acting as protecting groups in complex multistep synthetic routes. This study shows that a concise, yet modular synthesis of indolizidine and quinolizidine alkaloids can be developed from vinyl-substituted cyclic carbonate (VCC) intermediates. Through a highly stereoselective palladium-catalyzed allylic alkylation reaction, these alkaloid motifs can be assembled in four synthetic and only two column purification steps. The combined results help to further advance functionalized cyclic carbonates as useful and reactive intermediates in natural product synthesis.
Collapse
Affiliation(s)
- Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Christian Böhmer
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
41
|
Bugera M, Trofymchuk S, Tarasenko K, Zaporozhets O, Pustovit Y, Mykhailiuk PK. Deoxofluorination of Aliphatic Carboxylic Acids: A Route to Trifluoromethyl-Substituted Derivatives. J Org Chem 2019; 84:16105-16115. [PMID: 31714081 DOI: 10.1021/acs.joc.9b02596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A practical method for the synthesis of functionalized aliphatic trifluoromethyl-substituted derivatives from aliphatic acids is developed. The transformation proceeds with sulfur tetrafluoride in the presence of water as a key additive. Compared to previous methods, the reaction gives products with full retention of stereo- and absolute configuration of chiral centers.
Collapse
Affiliation(s)
- Maksym Bugera
- Enamine Limited , Chervonotkatska 78 , 02094 Kyiv , Ukraine.,V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine , Murmanska 1 , 02094 Kyiv , Ukraine
| | - Serhii Trofymchuk
- Enamine Limited , Chervonotkatska 78 , 02094 Kyiv , Ukraine.,Institute of Organic Chemistry NAS of Ukraine , Murmanskaya 5 , 02094 Kyiv , Ukraine
| | - Karen Tarasenko
- Enamine Limited , Chervonotkatska 78 , 02094 Kyiv , Ukraine.,V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine , Murmanska 1 , 02094 Kyiv , Ukraine
| | - Olga Zaporozhets
- Chemistry Department , Taras Shevchenko National University of Kyiv , Volodymyrska 64 , 01601 Kyiv , Ukraine
| | - Yurii Pustovit
- Enamine Limited , Chervonotkatska 78 , 02094 Kyiv , Ukraine.,Institute of Organic Chemistry NAS of Ukraine , Murmanskaya 5 , 02094 Kyiv , Ukraine
| | - Pavel K Mykhailiuk
- Enamine Limited , Chervonotkatska 78 , 02094 Kyiv , Ukraine.,Chemistry Department , Taras Shevchenko National University of Kyiv , Volodymyrska 64 , 01601 Kyiv , Ukraine
| |
Collapse
|
42
|
Koperniku A, Foth PJ, Sammis GM, Schafer LL. Zirconium Hydroaminoalkylation. An Alternative Disconnection for the Catalytic Synthesis of α-Arylated Primary Amines. J Am Chem Soc 2019; 141:18944-18948. [PMID: 31718171 DOI: 10.1021/jacs.9b10465] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Primary amine products have been prepared using zirconium-catalyzed hydroaminoalkylation of alkenes with N-silylated benzylamine substrates. Catalysis using commercially available Zr(NMe2)4 affords an alternative disconnection to access α-arylated primary amines upon aqueous workup. Substrate-dependent regio- and diastereoselectivity of the reaction is observed. Bulky substituents on the terminal alkene exclusively generate the linear regioisomer. This atom-economic catalytic strategy for the synthesis of building blocks that can undergo further synthetic elaboration is highlighted in the preparation of trifluoroethylated α-arylated amines.
Collapse
Affiliation(s)
- Ana Koperniku
- Faculty of Pharmaceutical Sciences , The University of British Columbia , 2405 Wesbrook Mall Vancouver BC V6T 1Z3 , Canada
| | - Paul J Foth
- Department of Chemistry , The University of British Columbia , 2036 Main Mall , Vancouver , BC BC V6T 1Z1 , Canada
| | - Glenn M Sammis
- Department of Chemistry , The University of British Columbia , 2036 Main Mall , Vancouver , BC BC V6T 1Z1 , Canada
| | - Laurel L Schafer
- Department of Chemistry , The University of British Columbia , 2036 Main Mall , Vancouver , BC BC V6T 1Z1 , Canada
| |
Collapse
|
43
|
Fang WY, Zha GF, Qin HL. Making Carbonyls of Amides Nucleophilic and Hydroxyls of Alcohols Electrophilic Mediated by SO2F2 for Synthesis of Esters from Amides. Org Lett 2019; 21:8657-8661. [DOI: 10.1021/acs.orglett.9b03274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| |
Collapse
|
44
|
Ai C, Zhu F, Wang Y, Yan Z, Lin S. SO 2F 2-Mediated Epoxidation of Olefins with Hydrogen Peroxide. J Org Chem 2019; 84:11928-11934. [PMID: 31436983 DOI: 10.1021/acs.joc.9b01784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An inexpensive, mild, and highly efficient epoxidation protocol has been developed involving bubbling SO2F2 gas into a solution of olefin, 30% aqueous hydrogen peroxide, and 4 N aqueous potassium carbonate in 1,4-dioxane at room temperature for 1 h with the formation of the corresponding epoxides in good to excellent yields. The novel SO2F2/H2O2/K2CO3 epoxidizing system is suitable to a variety of olefinic substrates including electron-rich and electron-deficient ones.
Collapse
Affiliation(s)
- Chengmei Ai
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Fuyuan Zhu
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Yanmei Wang
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Zhaohua Yan
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Sen Lin
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| |
Collapse
|
45
|
Zhang G, Zhao Y, Ding C. A cascade process for directly converting nitriles (RCN) to cyanamides (RNHCN) via SO 2F 2-activated Tiemann rearrangement. Org Biomol Chem 2019; 17:7684-7688. [PMID: 31393502 DOI: 10.1039/c9ob01547g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A simple, mild and practical process for the direct conversion of nitriles to cyanamides was newly discovered and exhibited a wide substrate scope as well as great functional group-tolerability (36 examples). In this efficient strategy, the in situ generated amidoximes obtained from the reaction of nitriles with hydroxylamine subsequently underwent Tiemann rearrangement, producing the corresponding cyanamides with great isolated yields under SO2F2. Additionally, the control experiments reportedly shed light on the tentative mechanism involved in the formation and elimination of the key intermediate: a sulfonyl ester.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yiyong Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
46
|
Liu J, Wang SM, Alharbi NS, Qin HL. Installation of -SO 2F groups onto primary amides. Beilstein J Org Chem 2019; 15:1907-1912. [PMID: 31467612 PMCID: PMC6693406 DOI: 10.3762/bjoc.15.186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
A protocol of SO2F2-mediated installation of sulfonyl fluoride onto primary amides has been developed providing a new portal to sulfur(VI) fluoride exchange (SuFEx) click chemistry. The generated molecules contain pharmaceutically important amide and -SO2F moieties for application in the discovery of new therapeutics.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Njud S Alharbi
- Biotechnology Research group, Deportment of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
47
|
A SO2F2 mediated mild, practical, and gram-scale dehydroxylative transforming primary alcohols to quaternary ammonium salts. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Zhang G, Zhao Y, Xuan L, Ding C. SO2
F2
-Activated Efficient Beckmann Rearrangement of Ketoximes for Accessing Amides and Lactams. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Yiyong Zhao
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Lidi Xuan
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Chengrong Ding
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| |
Collapse
|
49
|
Takata T, Hirano K, Miura M. Synthesis of α-Trifluoromethylamines by Cu-Catalyzed Regio- and Enantioselective Hydroamination of 1-Trifluoromethylalkenes. Org Lett 2019; 21:4284-4288. [DOI: 10.1021/acs.orglett.9b01471] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tatsuaki Takata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Jiang Y, Sun B, Fang WY, Qin HL. A Transition-Metal-Free One-Pot Cascade Process for Transformation of Primary Alcohols (RCH2
OH) to Nitriles (RCN) Mediated by SO2
F2. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900478] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ying Jiang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan P. R. China
| | - Bing Sun
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan P. R. China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan P. R. China
| |
Collapse
|