1
|
Vicars Z, Choi J, Marks SM, Remsing RC, Patel AJ. Interfacial Ice Density Fluctuations Inform Surface Ice-Philicity. J Phys Chem B 2024; 128:8512-8521. [PMID: 39171456 DOI: 10.1021/acs.jpcb.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The propensity of a surface to nucleate ice or bind to ice is governed by its ice-philicity─its relative preference for ice over liquid water. However, the relationship between the features of a surface and its ice-philicity is not well understood, and for surfaces with chemical or topographical heterogeneity, such as proteins, their ice-philicity is not even well-defined. In the analogous problem of surface hydrophobicity, it has been shown that hydrophobic surfaces display enhanced low water-density (vapor-like) fluctuations in their vicinity. To interrogate whether enhanced ice-like fluctuations are similarly observed near ice-philic surfaces, here we use molecular simulations and enhanced sampling techniques. Using a family of model surfaces for which the wetting coefficient, k, has previously been characterized, we show that the free energy of observing rare interfacial ice-density fluctuations decreases monotonically with increasing k. By utilizing this connection, we investigate a set of fcc systems and find that the (110) surface is more ice-philic than the (111) or (100) surfaces. By additionally analyzing the structure of interfacial ice, we find that all surfaces prefer to bind to the basal plane of ice, and the topographical complementarity of the (110) surface to the basal plane explains its higher ice-philicity. Using enhanced interfacial ice-like fluctuations as a measure of surface ice-philicity, we then characterize the ice-philicity of chemically heterogeneous and topologically complex systems. In particular, we study the spruce budworm antifreeze protein (sbwAFP), which binds to ice using a known ice-binding site (IBS) and resists engulfment using nonbinding sites of the protein (NBSs). We find that the IBS displays enhanced interfacial ice-density fluctuations and is therefore more ice-philic than the two NBSs studied. We also find the two NBSs are similarly ice-phobic. By establishing a connection between interfacial ice-like fluctuations and surface ice-philicity, our findings thus provide a way to characterize the ice-philicity of heterogeneous surfaces.
Collapse
Affiliation(s)
- Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeongmoon Choi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sean M Marks
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Amish J Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Robinson Brown DC, Webber TR, Casey TM, Franck J, Shell MS, Han S. Computation of Overhauser dynamic nuclear polarization processes reveals fundamental correlation between water dynamics, structure, and solvent restructuring entropy. Phys Chem Chem Phys 2024; 26:14637-14650. [PMID: 38742831 DOI: 10.1039/d4cp00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydration water dynamics, structure, and thermodynamics are crucially important to understand and predict water-mediated properties at molecular interfaces. Yet experimentally and directly quantifying water behavior locally near interfaces at the sub-nanometer scale is challenging, especially at interfaces submerged in biological solutions. Overhauser dynamic nuclear polarization (ODNP) experiments measure equilibrium hydration water dynamics within 8-15 angstroms of a nitroxide spin probe on instantaneous timescales (10 picoseconds to nanoseconds), making ODNP a powerful tool for probing local water dynamics in the vicinity of the spin probe. As with other spectroscopic techniques, concurrent computational analysis is necessary to gain access to detailed molecular level information about the dynamic, structural, and thermodynamic properties of water from experimental ODNP data. We chose a model system that can systematically tune the dynamics of water, a water-glycerol mixture with compositions ranging from 0 to 0.3 mole fraction glycerol. We demonstrate the ability of molecular dynamics (MD) simulations to compute ODNP spectroscopic quantities, and show that translational, rotational, and hydrogen bonding dynamics of hydration water align strongly with spectroscopic ODNP parameters. Moreover, MD simulations show tight correlations between the dynamic properties of water that ODNP captures and the structural and thermodynamic behavior of water. Hence, experimental ODNP readouts of varying water dynamics suggest changes in local structural and thermodynamic hydration water properties.
Collapse
Affiliation(s)
- Dennis C Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Thomas R Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Thomas M Casey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - John Franck
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
3
|
Dhingra K, Sinha I, Snyder M, Roush D, Cramer SM. Exploring preferred binding domains of IgG1 mAbs to multimodal adsorbents using a combined biophysics and simulation approach. Biotechnol Prog 2024; 40:e3415. [PMID: 38043031 DOI: 10.1002/btpr.3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023]
Abstract
In this work, we employ a recently developed biophysical technique that uses diethylpyrocarbonate (DEPC) covalent labeling and mass spectrometry for the identification of mAb binding patches to two multimodal cation exchange resins at different pH. This approach compares the labeling results obtained in the bound and unbound states to identify residues that are sterically shielded and thus located in the mAb binding domains. The results at pH 6 for one mAb (mAb B) indicated that while the complementarity determining region (CDR) had minimal interactions with both resins, the FC domain was actively involved in binding. In contrast, DEPC/MS data with another mAb (mAb C) indicated that both the CDR and FC domains were actively involved in binding. These results corroborated chromatographic retention data with these two mAbs and their fragments and helped to explain the significantly stronger retention of both the intact mAb C and its Fab fragment. In contrast, labeling results with mAb C at pH 7, indicated that only the CDR played a significant role in resin binding, again corroborating chromatographic data. The binding domains identified from the DEPC/MS experiments were also examined using protein surface hydrophobicity maps obtained using a recently developed sparse sampling molecular dynamics (MD) approach in concert with electrostatic potential maps. These results demonstrate that the DEPC covalent labeling/mass spectrometry technique can provide important information about the domain contributions of multidomain proteins such as monoclonal antibodies when interacting with multimodal resins over a range of pH conditions.
Collapse
Affiliation(s)
- Kabir Dhingra
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Imee Sinha
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mark Snyder
- Process Chemistry Division, Bio-Rad Laboratories, Hercules, California, USA
| | - David Roush
- Process R&D, Merck &Co., Inc., Rahway, New Jersey, USA
| | - Steven M Cramer
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
4
|
Ashbaugh HS. Gaussian and Non-Gaussian Solvent Density Fluctuations within Solute Cavities in a Water-like Solvent. J Chem Theory Comput 2024; 20:1505-1518. [PMID: 37437298 PMCID: PMC10902835 DOI: 10.1021/acs.jctc.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
We report a Monte Carlo simulation study of length-scale-dependent density fluctuations in cavities in the coarse-grained mW representation of water at ambient conditions. Specifically, we use a combination of test particle insertion and umbrella sampling techniques to examine the full range of water occupation states in spherical cavities up to 6.3 Å radius in water. As has previously been observed, water density fluctuations are found to be effectively Gaussian in nature for atomic-scale cavities, but as the cavities get larger, they exhibit a non-Gaussian "fat-tail" distribution for lower occupancy states. We introduce a new statistical thermodynamic approach to analyze non-Gaussian fluctuations based on the radial distribution of waters about cavities with varying numbers of waters within its boundaries. It is shown that the onset of these non-Gaussian fluctuations is a result of the formation of a bubble within the cavity as it is emptied, which is accompanied by the adsorption of waters onto its interior surface. We revisit a theoretical framework we previously introduced to describe Gaussian fluctuations within cavities to incorporate bubble formation by including surface tension contributions. This modified theory accurately describes density fluctuations within both atomic and meso-scale cavities. Moreover, the theory predicts the transition from Gaussian to non-Gaussian fluctuations at a specific cavity occupancy, in excellent agreement with simulation observations.
Collapse
Affiliation(s)
- Henry S Ashbaugh
- Tulane University, Chemical and Biomolecular Engineering, New Orleans, Louisiana 70118, United States
| |
Collapse
|
5
|
Ji J, Carpentier B, Chakraborty A, Nangia S. An Affordable Topography-Based Protocol for Assigning a Residue's Character on a Hydropathy (PARCH) Scale. J Chem Theory Comput 2024; 20:1656-1672. [PMID: 37018141 PMCID: PMC10902853 DOI: 10.1021/acs.jctc.3c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 04/06/2023]
Abstract
The hydropathy of proteins or quantitative assessment of protein-water interactions has been a topic of interest for decades. Most hydropathy scales use a residue-based or atom-based approach to assign fixed numerical values to the 20 amino acids and categorize them as hydrophilic, hydroneutral, or hydrophobic. These scales overlook the protein's nanoscale topography, such as bumps, crevices, cavities, clefts, pockets, and channels, in calculating the hydropathy of the residues. Some recent studies have included protein topography in determining hydrophobic patches on protein surfaces, but these methods do not provide a hydropathy scale. To overcome the limitations in the existing methods, we have developed a Protocol for Assigning a Residue's Character on the Hydropathy (PARCH) scale that adopts a holistic approach to assigning the hydropathy of a residue. The parch scale evaluates the collective response of the water molecules in the protein's first hydration shell to increasing temperatures. We performed the parch analysis of a set of well-studied proteins that include the following─enzymes, immune proteins, and integral membrane proteins, as well as fungal and virus capsid proteins. Since the parch scale evaluates every residue based on its location, a residue may have very different parch values inside a crevice versus a surface bump. Thus, a residue can have a range of parch values (or hydropathies) dictated by the local geometry. The parch scale calculations are computationally inexpensive and can compare hydropathies of different proteins. The parch analysis can affordably and reliably aid in designing nanostructured surfaces, identifying hydrophilic and hydrophobic patches, and drug discovery.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Arindam Chakraborty
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Lee S, Jo K, Jeong SKC, Choi YS, Jung S. Production of freeze-dried beef powder for complementary food: Effect of temperature control in retaining protein digestibility. Food Chem 2024; 433:137419. [PMID: 37690130 DOI: 10.1016/j.foodchem.2023.137419] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
This study investigated the effect of temperature control during freeze-drying of beef on the in vitro protein digestibility. Frozen (at - 50 °C for 2 days)-then-aged (at 4 °C for 26 days) beef was freeze-dried at 25 °C (FD1) and 2 °C (FD2) to obtain freeze-dried beef powder. Tryptophan fluorescence intensity and total free sulfhydryl groups of beef myofibrillar proteins decreased (P < 0.05) and increased (P < 0.05) after freeze-drying, respectively. In the myosin fraction of FD2, α-helix increased and β-sheet decreased (P < 0.05) compared to raw beef. In contrast, the actin fraction of FD1 showed a decrease in α-helix and increase in β-sheet (P < 0.05) compared to raw beef. The contents of α-amino group and proteins digested to<3 kDa in the in vitro digesta of beef were retained in FD2 while the α-amino group of FD1 decreased (P < 0.05). Therefore, freeze-drying at 2 °C can efficiently retain in vitro protein digestibility of beef.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
7
|
Sinha I, Garde S, Cramer SM. Comparative Analysis of Protein Surface Hydrophobicity Maps Determined by Sparse Sampling INDUS and Spatial Aggregation Propensity. J Phys Chem B 2023; 127:10304-10314. [PMID: 37993107 DOI: 10.1021/acs.jpcb.3c04902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Protein surface hydrophobicity plays a central role in various biological processes such as protein folding and aggregation, as well as in the design and manufacturing of biotherapeutics. While the hydrophobicity of protein surface patches has been linked to their constituent residue hydropathies, recent research has shown that protein surface hydrophobicity is more complex and characterized by the response of water to these surfaces. In this work, we employ water density perturbations to map the surface hydrophobicity of a set of model proteins using sparse indirect umbrella sampling simulations (SSI). This technique is used to identify hydrophobic surface patches for the set of model proteins, and the results are compared to those obtained from the widely adopted spatial aggregation propensity (SAP) technique. While SAP-based calculations show agreement with SSI in some cases, there are several examples of disagreement. We identify four general classes of difference in behavior and study factors that contribute to these differences. We find that the SAP method can sometimes mask the effect of weakly nonpolar or isolated nonpolar residues that can lead to strong hydrophobic patches on the protein surface. In addition, hydrophobic patches identified by SAP can exhibit shifts in both position and strength on the SSI map. Our results demonstrate that the combination of topography and chemical context controls the hydrophobicity of a given patch above and beyond the intrinsic polarity of the residues present on the patch surface. The availability of more accurate protein hydrophobicity maps in concert with new classes of hydrophobic molecular descriptors may create significant opportunities for in silico prediction of protein behavior for a range of applications, such as protein design, biomanufacturability, and downstream bioprocessing.
Collapse
Affiliation(s)
- Imee Sinha
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States of America
| | - Shekhar Garde
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States of America
| | - Steven M Cramer
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States of America
| |
Collapse
|
8
|
Chen S, Wang ZG. Using Implicit-Solvent Potentials to Extract Water Contributions to Enthalpy-Entropy Compensation in Biomolecular Associations. J Phys Chem B 2023; 127:6825-6832. [PMID: 37491824 PMCID: PMC10405215 DOI: 10.1021/acs.jpcb.3c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Biomolecular assembly typically exhibits enthalpy-entropy compensation (EEC) behavior whose molecular origin remains a long-standing puzzle. While water restructuring is believed to play an important role in EEC, its contribution to the entropy and enthalpy changes, and how these changes relate to EEC, remains poorly understood. Here, we show that water reorganization entropy/enthalpy can be obtained by exploiting the temperature dependence in effective, implicit-solvent potentials. We find that the different temperature dependencies in the hydrophobic interaction, rooted in water reorganization, result in substantial variations in the entropy/enthalpy change, which are responsible for EEC. For lower-critical-solution-temperature association, water reorganization entropy dominates the free-energy change at the expense of enthalpy; for upper-critical-solution-temperature association, water reorganization enthalpy drives the process at the cost of entropy. Other effects, such as electrostatic interaction and conformation change of the macromolecules, contribute much less to the variations in entropy/enthalpy.
Collapse
|
9
|
Hishida M, Kaneko A, Yamamura Y, Saito K. Contrasting Changes in Strongly and Weakly Bound Hydration Water of a Protein upon Denaturation. J Phys Chem B 2023; 127:6296-6305. [PMID: 37417885 PMCID: PMC10364084 DOI: 10.1021/acs.jpcb.3c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Water is considered integral for the stabilization and function of proteins, which has recently attracted significant attention. However, the microscopic aspects of water ranging up to the second hydration shell, including strongly and weakly bound water at the sub-nanometer scale, are not yet well understood. Here, we combined terahertz spectroscopy, thermal measurements, and infrared spectroscopy to clarify how the strongly and weakly bound hydration water changes upon protein denaturation. With denaturation, that is, the exposure of hydrophobic groups in water and entanglement of hydrophilic groups, the number of strongly bound hydration water decreased, while the number of weakly bound hydration water increased. Even though the constraint of water due to hydrophobic hydration is weak, it extends to the second hydration shell as it is caused by the strengthening of hydrogen bonds between water molecules, which is likely the key microscopic mechanism for the destabilization of the native state due to hydration.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Ayumi Kaneko
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
10
|
Alizadeh Sahraei A, Azizi D, Mokarizadeh AH, Boffito DC, Larachi F. Emerging Trends of Computational Chemistry and Molecular Modeling in Froth Flotation: A Review. ACS ENGINEERING AU 2023; 3:128-164. [PMID: 37362006 PMCID: PMC10288516 DOI: 10.1021/acsengineeringau.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Froth flotation is the most versatile process in mineral beneficiation, extensively used to concentrate a wide range of minerals. This process comprises mixtures of more or less liberated minerals, water, air, and various chemical reagents, involving a series of intermingled multiphase physical and chemical phenomena in the aqueous environment. Today's main challenge facing the froth flotation process is to gain atomic-level insights into the properties of its inherent phenomena governing the process performance. While it is often challenging to determine these phenomena via trial-and-error experimentations, molecular modeling approaches not only elicit a deeper understanding of froth flotation but can also assist experimental studies in saving time and budget. Thanks to the rapid development of computer science and advances in high-performance computing (HPC) infrastructures, theoretical/computational chemistry has now matured enough to successfully and gainfully apply to tackle the challenges of complex systems. In mineral processing, however, advanced applications of computational chemistry are increasingly gaining ground and demonstrating merit in addressing these challenges. Accordingly, this contribution aims to encourage mineral scientists, especially those interested in rational reagent design, to become familiarized with the necessary concepts of molecular modeling and to apply similar strategies when studying and tailoring properties at the molecular level. This review also strives to deliver the state-of-the-art integration and application of molecular modeling in froth flotation studies to assist either active researchers in this field to disclose new directions for future research or newcomers to the field to initiate innovative works.
Collapse
Affiliation(s)
- Abolfazl Alizadeh Sahraei
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Dariush Azizi
- Department
of Chemical Engineering, École Polytechnique
de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal H3T 1J4, Canada
| | - Abdol Hadi Mokarizadeh
- School
of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Daria Camilla Boffito
- Department
of Chemical Engineering, École Polytechnique
de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal H3T 1J4, Canada
| | - Faïçal Larachi
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
11
|
Nordquist EB, Jia Z, Chen J. Inner pore hydration free energy controls the activation of big potassium channels. Biophys J 2023; 122:1158-1167. [PMID: 36774534 PMCID: PMC10111268 DOI: 10.1016/j.bpj.2023.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Hydrophobic gating is an emerging mechanism in regulation of protein ion channels where the pore remains physically open but becomes dewetted to block ion permeation. Atomistic molecular dynamics simulations have played a crucial role in understanding hydrophobic gating by providing the molecular details to complement mutagenesis and structural studies. However, existing studies rely on direct simulations and do not quantitatively describe how the sequence and structural changes may control the delicate liquid-vapor equilibrium of confined water in the pore of the channel protein. To address this limitation, we explore two enhanced sampling methods, namely metadynamics and umbrella sampling, to derive free-energy profiles of pore hydration in both the closed and open states of big potassium (BK) channels, which are important in cardiovascular and neural systems. It was found that metadynamics required substantially longer sampling times and struggled to generate stably converged free-energy profiles due to the slow dynamics of cooperative pore water diffusion even in the barrierless limit. Using umbrella sampling, well-converged free-energy profiles can be readily generated for the wild-type BK channels as well as three mutants with pore-lining mutations experimentally known to dramatically perturb the channel gating voltage. The results show that the free energy of pore hydration faithfully reports the gating voltage of the channel, providing further support for hydrophobic gating in BK channels. Free-energy analysis of pore hydration should provide a powerful approach for quantitative studies of how protein sequence, structure, solution conditions, and/or drug binding may modulate hydrophobic gating in ion channels.
Collapse
Affiliation(s)
- Erik B Nordquist
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|
12
|
Ji J, Hossain MS, Krueger EN, Zhang Z, Nangia S, Carpentier B, Martel M, Nangia S, Mozhdehi D. Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins. Biomacromolecules 2023; 24:1244-1257. [PMID: 36757021 PMCID: PMC10017028 DOI: 10.1021/acs.biomac.2c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily N. Krueger
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mae Martel
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
13
|
Shin S, Willard AP. Quantifying the Molecular Polarization Response of Liquid Water Interfaces at Heterogeneously Charged Surfaces. J Chem Theory Comput 2023; 19:1843-1852. [PMID: 36866865 DOI: 10.1021/acs.jctc.2c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The hydration shells of proteins mediate interactions, such as small molecule binding, that are vital to their biological function or in some cases their dysfunction. However, even when the structure of a protein is known, the properties of its hydration environment cannot be easily predicted due to the complex interplay between protein surface heterogeneity and the collective structure of water's hydrogen bonding network. This manuscript presents a theoretical study of the influence of surface charge heterogeneity on the polarization response of the liquid water interface. We focus our attention on classical point charge models of water, where the polarization response is limited to molecular reorientation. We introduce a new computational method for analyzing simulation data that is capable of quantifying water's collective polarization response and determining the effective surface charge distribution of hydrated surfaces over atomistic length scales. To illustrate the utility of this method, we present the results of molecular dynamics simulations of liquid water in contact with a heterogeneous model surface and the CheY protein.
Collapse
Affiliation(s)
- Sucheol Shin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Zhao Z, Pan M, Qiao C, Xiang L, Liu X, Yang W, Chen XZ, Zeng H. Bionic Engineered Protein Coating Boosting Anti-Biofouling in Complex Biological Fluids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208824. [PMID: 36367362 DOI: 10.1002/adma.202208824] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Implantable medical devices have been widely applied in diagnostics, therapeutics, organ restoration, and other biomedical areas, but often suffer from dysfunction and infections due to irreversible biofouling. Inspired by the self-defensive "vine-thorn" structure of climbing thorny plants, a zwitterion-conjugated protein is engineered via grafting sulfobetaine methacrylate (SBMA) segments on native bovine serum albumin (BSA) protein molecules for surface coating and antifouling applications in complex biological fluids. Unlike traditional synthetic polymers of which the coating operation requires arduous surface pretreatments, the engineered protein BSA@PSBMA (PolySBMA conjugated BSA) can achieve facile and surface-independent coating on various substrates through a simple dipping/spraying method. Interfacial molecular force measurements and adsorption tests demonstrate that the substrate-foulant attraction is significantly suppressed due to strong interfacial hydration and steric repulsion of the bionic structure of BSA@PSBMA, enabling coating surfaces to exhibit superior resistance to biofouling for a broad spectrum of species including proteins, metabolites, cells, and biofluids under various biological conditions. This work provides an innovative paradigm of using native proteins to generate engineered proteins with extraordinary antifouling capability and desired surface properties for bioengineering applications.
Collapse
Affiliation(s)
- Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xiong Liu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing-Zhen Chen
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
15
|
Tripathy M, Bharadwaj S, van der Vegt NFA. Solvation shell thermodynamics of extended hydrophobic solutes in mixed solvents. J Chem Phys 2022; 156:164901. [DOI: 10.1063/5.0090646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability of various cosolutes and cosolvents to enhance or quench solvent density fluctuations at solute–water interfaces has crucial implications on the conformational equilibrium of macromolecules such as polymers and proteins. Herein, we use an extended hydrophobic solute as a model system to study the effect of urea and methanol on the density fluctuations in the solute’s solvation shell and the resulting thermodynamics. On strengthening the solute–water/cosolute repulsive interaction, we observe distinct trends in the mutual affinities between various species in, and the thermodynamic properties of, the solvation shell. These trends strongly follow the respective trends in the preferential adsorption of urea and methanol: solute–water/cosolute repulsion strengthens, urea accumulation decreases, and methanol accumulation increases. Preferential accumulation of urea is found to quench the density fluctuations around the extended solute, leading to a decrease in the compressibility of the solvation shell. In contrast, methanol accumulation enhances the density fluctuations, leading to an increase in the compressibility. The mode of action of urea and methanol seems to be strongly coupled to their hydration behavior. The observations from this simple model is discussed in relation to urea driven swelling and methanol induced collapse of some well-known thermo-responsive polymers.
Collapse
Affiliation(s)
- Madhusmita Tripathy
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Swaminath Bharadwaj
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
16
|
Qaisrani MN, Belousov R, Rehman JU, Goliaei EM, Girotto I, Franklin-Mergarejo R, Güell O, Hassanali A, Roldán É. Phospholipids dock SARS-CoV-2 spike protein via hydrophobic interactions: a minimal in-silico study of lecithin nasal spray therapy. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:132. [PMID: 34718875 PMCID: PMC8556817 DOI: 10.1140/epje/s10189-021-00137-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Understanding the physical and chemical properties of viral infections at molecular scales is a major challenge for the scientific community more so with the outbreak of global pandemics. There is currently a lot of effort being placed in identifying molecules that could act as putative drugs or blockers of viral molecules. In this work, we computationally explore the importance in antiviral activity of a less studied class of molecules, namely surfactants. We employ all-atoms molecular dynamics simulations to study the interaction between the receptor-binding domain of the SARS-CoV-2 spike protein and the phospholipid lecithin (POPC), in water. Our microsecond simulations show a preferential binding of lecithin to the receptor-binding motif of SARS-CoV-2 with binding free energies significantly larger than [Formula: see text]. Furthermore, hydrophobic interactions involving lecithin non-polar tails dominate these binding events, which are also accompanied by dewetting of the receptor binding motif. Through an analysis of fluctuations in the radius of gyration of the receptor-binding domain, its contact maps with lecithin molecules, and distributions of water molecules near the binding region, we elucidate molecular interactions that may play an important role in interactions involving surfactant-type molecules and viruses. We discuss our minimal computational model in the context of lecithin-based liposomal nasal sprays as putative mitigating therapies for COVID-19.
Collapse
Affiliation(s)
- Muhammad Nawaz Qaisrani
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany
| | - Roman Belousov
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Present Address: EMBL - European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jawad Ur Rehman
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Elham Moharramzadeh Goliaei
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ivan Girotto
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ricardo Franklin-Mergarejo
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Oriol Güell
- Comercial Douma S.L., Carrer de València 5, 08015 Barcelona, Spain
| | - Ali Hassanali
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Édgar Roldán
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
17
|
Bharadwaj S, B SJ, van der Vegt NFA. Direct Calculation of Entropic Components in Cohesive Interaction Free Energies. J Phys Chem B 2021; 125:11026-11035. [PMID: 34570491 DOI: 10.1021/acs.jpcb.1c05748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cohesive interaction free energies entail an entropic component related to fluctuations of the energy associated with the attractive portion of the solute-solvent potential. The corresponding "fluctuation entropy" is fundamental in the solvation thermodynamics of macromolecular solutes and is linked to interfacial solvent density fluctuations and hydrophobic effects. Since the direct calculation of fluctuation entropy in molecular simulations is hampered by the poor sampling of high-energy tails in the solute-solvent energy distribution, indirect, and often approximate, routes for the calculation of fluctuation entropy are usually required, involving the modeling of geometrically frozen repulsive solute cavities in thermodynamic integration approaches. Herein, we propose a method to directly compute the fluctuation entropy by employing indirect umbrella sampling (INDUS). To validate the method, we consider model systems consisting of subnanometer oil droplets in water for which the fluctuation entropy can be computed exactly using indirect methods. The fluctuation entropy calculated with the newly proposed direct method agrees with the indirect reference calculations. We also observe that the solvation free energy and the contribution of the fluctuation entropy to it are of comparable magnitudes, particularly for larger oil droplets (∼1 nm). The proposed method can readily be employed for flexible macromolecular solutes and systems with extended hydrophobic surfaces or in the vicinity of a dewetting transition.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Shadrack Jabes B
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
18
|
Zhang W, Liu M, Dupont RL, Huang K, Yu L, Liu S, Wang X, Wang C. Conservation and Identity Selection of Cationic Residues Flanking the Hydrophobic Regions in Intermediate Filament Superfamily. Front Chem 2021; 9:752630. [PMID: 34540811 PMCID: PMC8443778 DOI: 10.3389/fchem.2021.752630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
The interplay between the hydrophobic interactions generated by the nonpolar region and the proximal functional groups within nanometers of the nonpolar region offers a promising strategy to manipulate the intermolecular hydrophobic attractions in an artificial molecule system, but the outcomes of such modulations in the building of a native protein architecture remain unclear. Here we focus on the intermediate filament (IF) coiled-coil superfamily to assess the conservation of positively charged residue identity via a biostatistical approach. By screening the disease-correlated mutations throughout the IF superfamily, 10 distinct hotspots where a cation-to-cation substitution is associated with a pathogenic syndrome have been identified. The analysis of the local chemical context surrounding the hotspots revealed that the cationic diversity depends on their separation distance to the hydrophobic domain. The nearby cationic residues flanking the hydrophobic domain of a helix (separation <1 nm) are relatively conserved in evolution. In contrast, the cationic residues that are not adjacent to the hydrophobic domain (separation >1 nm) tolerate higher levels of variation and replaceability. We attribute this bias in the conservation degree of the cationic residue identity to reflect the interplay between the proximal cations and the hydrophobic interactions.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Robert L Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Kai Huang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Shuli Liu
- Department of Clinical Laboratory, Peking University Civil Aviation School of Clinical Medicine, Beijing, China
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States.,Sustainability Institute, The Ohio State University, Columbus, OH, United States
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Rogers JR, Espinoza Garcia G, Geissler PL. Membrane hydrophobicity determines the activation free energy of passive lipid transport. Biophys J 2021; 120:3718-3731. [PMID: 34302793 PMCID: PMC8456290 DOI: 10.1016/j.bpj.2021.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
The collective behavior of lipids with diverse chemical and physical features determines a membrane's thermodynamic properties. Yet, the influence of lipid physicochemical properties on lipid dynamics, in particular interbilayer transport, remains underexplored. Here, we systematically investigate how the activation free energy of passive lipid transport depends on lipid chemistry and membrane phase. Through all-atom molecular dynamics simulations of 11 chemically distinct glycerophospholipids, we determine how lipid acyl chain length, unsaturation, and headgroup influence the free energy barriers for two elementary steps of lipid transport: lipid desorption, which is rate limiting, and lipid insertion into a membrane. Consistent with previous experimental measurements, we find that lipids with longer, saturated acyl chains have increased activation free energies compared to lipids with shorter, unsaturated chains. Lipids with different headgroups exhibit a range of activation free energies; however, no clear trend based solely on chemical structure can be identified, mirroring difficulties in the interpretation of previous experimental results. Compared to liquid-crystalline phase membranes, gel phase membranes exhibit substantially increased free energy barriers. Overall, we find that the activation free energy depends on a lipid's local hydrophobic environment in a membrane and that the free energy barrier for lipid insertion depends on a membrane's interfacial hydrophobicity. Both of these properties can be altered through changes in lipid acyl chain length, lipid headgroup, and membrane phase. Thus, the rate of lipid transport can be tuned through subtle changes in local membrane composition and order, suggesting an unappreciated role for nanoscale membrane domains in regulating cellular lipid dynamics.
Collapse
Affiliation(s)
- Julia R Rogers
- Department of Chemistry, University of California Berkeley, Berkeley, California.
| | | | - Phillip L Geissler
- Department of Chemistry, University of California Berkeley, Berkeley, California; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
20
|
Computational studies of anaplastic lymphoma kinase mutations reveal common mechanisms of oncogenic activation. Proc Natl Acad Sci U S A 2021; 118:2019132118. [PMID: 33674381 PMCID: PMC7958353 DOI: 10.1073/pnas.2019132118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High-risk tumors are genomically heterogeneous, harboring gene amplifications and mutations. The activation status of mutated proteins in cancer can profoundly impact disease progression, patient response, and drug sensitivity. Yet, outside of a few hotspot mutations, functional studies of clinically observed mutations are not commonly pursued. We report a combined experimental profiling and computational analysis of the effects of clinically observed and “test” mutations in the kinase domain of anaplastic lymphoma kinase (ALK), a known oncogenic driver in pediatric neuroblastoma. We find that the activation status of the mutated protein is a good indicator of the transforming ability in NIH 3T3 cells. We also report biophysical as well as data-driven models with predictive power to profile these mutant kinases in silico. Kinases play important roles in diverse cellular processes, including signaling, differentiation, proliferation, and metabolism. They are frequently mutated in cancer and are the targets of a large number of specific inhibitors. Surveys of cancer genome atlases reveal that kinase domains, which consist of 300 amino acids, can harbor numerous (150 to 200) single-point mutations across different patients in the same disease. This preponderance of mutations—some activating, some silent—in a known target protein make clinical decisions for enrolling patients in drug trials challenging since the relevance of the target and its drug sensitivity often depend on the mutational status in a given patient. We show through computational studies using molecular dynamics (MD) as well as enhanced sampling simulations that the experimentally determined activation status of a mutated kinase can be predicted effectively by identifying a hydrogen bonding fingerprint in the activation loop and the αC-helix regions, despite the fact that mutations in cancer patients occur throughout the kinase domain. In our study, we find that the predictive power of MD is superior to a purely data-driven machine learning model involving biochemical features that we implemented, even though MD utilized far fewer features (in fact, just one) in an unsupervised setting. Moreover, the MD results provide key insights into convergent mechanisms of activation, primarily involving differential stabilization of a hydrogen bond network that engages residues of the activation loop and αC-helix in the active-like conformation (in >70% of the mutations studied, regardless of the location of the mutation).
Collapse
|
21
|
Identifying hydrophobic protein patches to inform protein interaction interfaces. Proc Natl Acad Sci U S A 2021; 118:2018234118. [PMID: 33526682 DOI: 10.1073/pnas.2018234118] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interactions between proteins lie at the heart of numerous biological processes and are essential for the proper functioning of the cell. Although the importance of hydrophobic residues in driving protein interactions is universally accepted, a characterization of protein hydrophobicity, which informs its interactions, has remained elusive. The challenge lies in capturing the collective response of the protein hydration waters to the nanoscale chemical and topographical protein patterns, which determine protein hydrophobicity. To address this challenge, here, we employ specialized molecular simulations wherein water molecules are systematically displaced from the protein hydration shell; by identifying protein regions that relinquish their waters more readily than others, we are then able to uncover the most hydrophobic protein patches. Surprisingly, such patches contain a large fraction of polar/charged atoms and have chemical compositions that are similar to the more hydrophilic protein patches. Importantly, we also find a striking correspondence between the most hydrophobic protein patches and regions that mediate protein interactions. Our work thus establishes a computational framework for characterizing the emergent hydrophobicity of amphiphilic solutes, such as proteins, which display nanoscale heterogeneity, and for uncovering their interaction interfaces.
Collapse
|
22
|
Bilodeau CL, Lau EY, Roush DJ, Snyder MA, Cramer SM. Behavior of Water Near Multimodal Chromatography Ligands and Its Consequences for Modulating Protein-Ligand Interactions. J Phys Chem B 2021; 125:6112-6120. [PMID: 34097423 DOI: 10.1021/acs.jpcb.1c01549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multimodal chromatography is a powerful approach for purifying proteins that uses ligands containing multiple modes of interaction. Recent studies have shown that selectivity in multimodal chromatographic separations is a function of the ligand structure and geometry. Here, we performed molecular dynamics simulations to explore how the ligand structure and geometry affect ligand-water interactions and how these differences in solution affect the nature of protein-ligand interactions. Our investigation focused on three chromatography ligands: Capto MMC, Nuvia cPrime, and Prototype 4, a structural variant of Nuvia cPrime. First, the solvation characteristics of each ligand were quantified via three metrics: average water density, fluctuations, and residence time. We then explored how solvation was perturbed when the ligand was bound to the protein surface and found that the probability of the phenyl ring dewetting followed the order: Capto MMC > Prototype 4 > Nuvia cPrime. To explore how these differences in dewetting affect protein-ligand interactions, we calculated the probability of each ligand binding to different types of residues on the protein surface and found that the probability of binding to a hydrophobic residue followed the same order as the dewetting behavior. This study illustrates the role that wetting and dewetting play in modulating protein-ligand interactions.
Collapse
Affiliation(s)
- Camille L Bilodeau
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Edmond Y Lau
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - David J Roush
- Biologics Process R&D, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Mark A Snyder
- Process Chromatography Division, Bio-Rad Laboratories, 6000 James Watson Drive, Hercules, California 94547, United States
| | - Steven M Cramer
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
23
|
Dhabal D, Jiang Z, Pallath A, Patel AJ. Characterizing the Interplay between Polymer Solvation and Conformation. J Phys Chem B 2021; 125:5434-5442. [PMID: 33978411 DOI: 10.1021/acs.jpcb.1c02191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational transitions of flexible molecules, especially those driven by hydrophobic effects, tend to be hindered by desolvation barriers. For such transitions, it is thus important to characterize and understand the interplay between solvation and conformation. Using specialized molecular simulations, here we perform such a characterization for a hydrophobic polymer solvated in water. We find that an external potential, which unfavorably perturbs the polymer hydration waters, can trigger a coil-to-globule or collapse transition, and that the relative stabilities of the collapsed and extended states can be quantified by the strength of the requisite potential. Our results also provide mechanistic insights into the collapse transition, highlighting that the bottleneck to polymer collapse is the formation of a sufficiently large cluster, and the collective dewetting of such a cluster. We also study the collapse of the hydrophobic polymer in octane, a nonpolar solvent, and interestingly, we find that the mechanistic details of the transition are qualitatively similar to that in water.
Collapse
Affiliation(s)
- Debdas Dhabal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhitong Jiang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Akash Pallath
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amish J Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Effects of low-molecular-weight polyols on the hydration status of the light-harvesting complex 2 from Rhodobacter sphaeroides 2.4.1. Photochem Photobiol Sci 2021; 20:627-637. [PMID: 33913116 DOI: 10.1007/s43630-021-00046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Low-molecular-weight (MW) polyols are organic osmolytes influencing water activity. We have investigated the effects of polyol molecules (glycerol and sorbitol) on the optical and triplet excitation dynamics of light-harvesting complex 2 (LH2) from Rhodobacter (Rba.) sphaeroides in buffer-detergent solutions. The resonance Raman spectroscopy demonstrated that, on increasing glycerol and sorbitol volume fractions ranging from 0 to 80% (v/v) (accompanied by the decreasing water activities), the planar and all-trans conformation of carotenoids (Crts) remained unchanged, and the bacteriochlorophyll a (BChl) Qy absorption intensity decreased. The B850 fluorescence amplitude elevated in the 20-80% v/v sorbitol and 20-40% v/v glycerol solution, but decreased in 80% v/v glycerol solution. The change of 3[Crt*-BChl] interaction bands caused by 3Crt*-BChl interaction had no obvious correlation with water activities against polyol volume fractions, which are rationalized by the water activity sensitive of C- and N-termini of protein which binding with BChls. The results suggest that Rba. sphaeroides LH2 is more sensitive to low-molecular-weight polyols compared with that of the thermophiles purple bacterium Thermochromatium (Tch.) tepidum we had investigated before.
Collapse
|
25
|
Päslack C, Schäfer LV, Heyden M. Protein flexibility reduces solvent-mediated friction barriers of ligand binding to a hydrophobic surface patch. Phys Chem Chem Phys 2021; 23:5665-5672. [PMID: 33656505 DOI: 10.1039/d1cp00181g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Solvent fluctuations have been explored in detail for idealized and rigid hydrophobic model systems, but so far it has remained unclear how internal protein motions and their coupling to the surrounding solvent affect the dynamics of ligand binding to biomolecular surfaces. Here, molecular dynamics simulations were used to elucidate the solvent-mediated binding of a model ligand to the hydrophobic surface patch of ubiquitin. The ligand's friction profiles reveal pronounced long-time correlations and enhanced friction in the vicinity of the protein, similar to idealized hydrophobic surfaces. Interestingly, these effects are shaped by internal protein motions. Protein flexibility modulates water density fluctuations near the hydrophobic surface patch and smooths out the friction profile of ligand binding.
Collapse
Affiliation(s)
- Christopher Päslack
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Lars V Schäfer
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
26
|
Navigating the waters of membrane design. Proc Natl Acad Sci U S A 2021; 118:2024346118. [PMID: 33384327 DOI: 10.1073/pnas.2024346118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Can liquid density-fluctuations near solid surface drive the motion of nanoscale droplets? Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Shin D, Seo H, Jhe W. Exploring the Hydration Water Character on Atomically Dislocated Surfaces by Surface Enhanced Raman Spectroscopy. ACS CENTRAL SCIENCE 2020; 6:2079-2087. [PMID: 33274284 PMCID: PMC7706083 DOI: 10.1021/acscentsci.0c01009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 06/12/2023]
Abstract
Hydration is ubiquitous in any kind of water-substance interaction such as in various interfacial and biological processes. Despite substantial progress made to date, however, still less explored is the hydration behavior on complex heterogeneous surfaces, such as the water surrounding the protein, which requires a platform that enables systematic investigation at the atomic scale. Here, we realized a heterogeneous self-assembled monolayer system that allows both controllable mixing with hydrophobic or hydrophilic groups and precise distance control of the functional carboxyl groups from the surface by methylene spacer groups. Using surface-enhanced Raman spectroscopy (SERS), we first demonstrated the hydrophobic (or hydrophilic) mixing ratio-dependent pK a variation of the carboxyl group. Interestingly, we observed a counterintuitive, non-monotonic behavior that a fractionally mixed hydrophobic group can induce significant enhancement of dielectric strength of the interfacial water. In particular, such a fractional mixing substantially decreases the amide coupling efficiency at the surface, as manifested by the corresponding pK a decrease. The SERS-based platform we demonstrated can be widely applied for atomically precise control and molecular-level characterization of hydration water on various heterogeneous surfaces of biological and industrial importance.
Collapse
Affiliation(s)
- Dongha Shin
- Center
for 0D Nanofluidics, Institute of Applied Physics, Department of Physics
and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Division
of Fine Chemistry and Engineering, College of Natural Science, Pai Chai University, Daejeon 35345, Republic of Korea
| | - Hoyoung Seo
- Center
for 0D Nanofluidics, Institute of Applied Physics, Department of Physics
and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonho Jhe
- Center
for 0D Nanofluidics, Institute of Applied Physics, Department of Physics
and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Tripathy M, Bharadwaj S, B. SJ, van der Vegt NFA. Characterizing Polymer Hydration Shell Compressibilities with the Small-System Method. NANOMATERIALS 2020; 10:nano10081460. [PMID: 32722500 PMCID: PMC7466400 DOI: 10.3390/nano10081460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/03/2022]
Abstract
The small-system method (SSM) exploits the unique feature of finite-sized open systems, whose thermodynamic quantities scale with the inverse system size. This scaling enables the calculation of properties in the thermodynamic limit of macroscopic systems based on computer simulations of finite-sized systems. We herein extend the SSM to characterize the hydration shell compressibility of a generic hydrophobic polymer in water. By systematically increasing the strength of polymer-water repulsion, we find that the excess inverse thermodynamic correction factor (Δ1/Γs∞) and compressibility (Δχs) of the first hydration shell change sign from negative to positive. This occurs with a concurrent decrease in water hydrogen bonding and local tetrahedral order of the hydration shell water. The crossover lengthscale corresponds to an effective polymer bead diameter of 0.7 nm and is consistent with previous works on hydration of small and large hydrophobic solutes. The crossover lengthscale in polymer hydration shell compressibility, herein identified with the SSM approach, relates to hydrophobic interactions and macromolecular conformational equilibria in aqueous solution. The SSM approach may further be applied to study thermodynamic properties of polymer solvation shells in mixed solvents.
Collapse
|
30
|
Ziemianowicz DS, MacCallum JL, Schriemer DC. Correlation between Labeling Yield and Surface Accessibility in Covalent Labeling Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:207-216. [PMID: 32031402 DOI: 10.1021/jasms.9b00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The functional properties of a protein are strongly influenced by its topography, or the solvent-facing contour map of its surface. Together with crosslinking, covalent labeling mass spectrometry (CL-MS) has the potential to contribute topographical data through the measurement of surface accessibility. However, recent efforts to correlate measures of surface accessibility with labeling yield have been met with mixed success. Most applications of CL-MS involve differential analysis of protein interactions (i.e., footprinting experiments) where such inconsistencies have limited effect. Extending CL-MS into structural analysis requires an improved evaluation of the relationship between labeling and surface exposure. In this study, we applied recently developed diazirine reagents to obtain deep coverage of the large motor domain of Eg5 (a mitotic kinesin), and together with computational methods we correlated labeling yields with accessibility data in a number of ways. We observe that correlations can indeed be seen at a local structural level, but these correlations do not extend across the structure. The lack of correlation arises from the influence of protein dynamics and chemical composition on reagent partitioning and, thus, also on labeling yield. We conclude that our use of CL-MS data should be considered in light of "chemical accessibility" rather than "solvent accessibility" and suggest that CL-MS data would be a useful tool in the fundamental study of protein-solute interactions.
Collapse
Affiliation(s)
- Daniel S Ziemianowicz
- Department of Biochemistry and Molecular Biology , University of Calgary , Calgary , Alberta , Canada T2N 4N1
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - Justin L MacCallum
- Department of Chemistry , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology , University of Calgary , Calgary , Alberta , Canada T2N 4N1
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute , University of Calgary , Calgary , Alberta , Canada T2N 4N1
- Department of Chemistry , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| |
Collapse
|
31
|
Asthagiri D, Tomar DS. System Size Dependence of Hydration-Shell Occupancy and Its Implications for Assessing the Hydrophobic and Hydrophilic Contributions to Hydration. J Phys Chem B 2020; 124:798-806. [DOI: 10.1021/acs.jpcb.9b11200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dilipkumar Asthagiri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | | |
Collapse
|
32
|
Biok NA, Passow AD, Wang C, Bingman CA, Abbott NL, Gellman SH. Retention of Coiled-Coil Dimer Formation in the Absence of Ion Pairing at Positions Flanking the Hydrophobic Core. Biochemistry 2019; 58:4821-4826. [DOI: 10.1021/acs.biochem.9b00668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Naomi A. Biok
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alexander D. Passow
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Chenxuan Wang
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, New York 14853, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
33
|
Arturo T. Towards dewetting monoclonal antibodies for therapeutical purposes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:153-159. [PMID: 31525385 DOI: 10.1016/j.pbiomolbio.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/22/2019] [Accepted: 09/07/2019] [Indexed: 12/30/2022]
Abstract
Dewetting transition - a concept borrowed from fluid mechanics - is a physiological process that takes place inside the hydrophobic pores of ion channels. This transient phenomenon causes a metastable state that forbids water molecules to cross microscopic receptor cavities. This leads to a decreased conductance, a closure of the pore and, subsequently, severe impairment of cellular performance. We suggest that artificially-provoked dewetting transition in ion channel hydrophobic pores might stand for a molecular candidate to erase detrimental organisms, such as viruses, bacteria, and cancer cells. We describe a novel type of high-affinity monoclonal antibody, that: a) targets specific trans-membrane receptor structures of harmful or redundant cells; b) is equipped with lipophilic and/or hydrophobic fragments that prevent physiological water flow inside ion channels. Therefore, we achieve an artificial dewetting transition inside receptor cavities, that causes discontinuity within transmembrane ionic flows, channel blockage, and subsequent damage of morbid cells. As an example, we describe dewetting monoclonal antibodies that target the M2 channel of the Influenza A virus: they might prevent water from entering pores thus leading to virion impairment.
Collapse
Affiliation(s)
- Tozzi Arturo
- Center for Nonlinear Science, Department of Physics, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.
| |
Collapse
|