1
|
Lu J, Zhang Y, Yan C, Liu J, Qi D, Zhou Y, Wang Q, Yang J, Jiang J, Wu B, Yang M, Zhang W, Zhang X, Shi X, Zhang Y, Liu K, Liang Y, Wang C, Yang H, Gao Y, Sun Y, Ke R, Huang JH, Wu M, Wang H, Li C, Zhou S, Guo B, Wu E, Zhang G. TClC effectively suppresses the growth and metastasis of NSCLC via polypharmacology. Bioact Mater 2025; 45:567-583. [PMID: 39759535 PMCID: PMC11700266 DOI: 10.1016/j.bioactmat.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 01/07/2025] Open
Abstract
Despite significant advances in targeted therapies and immunotherapies, non-small cell lung cancer (NSCLC) continues to present a global health challenge, with a modest five-year survival rate of 28 %, largely due to the emergence of treatment-resistant and metastatic tumors. In response, we synthesized a novel bioactive compound, ethyl 6-chlorocoumarin-3-carboxylyl L-theanine (TClC), which significantly inhibited NSCLC growth, epithelial mesenchymal transition (EMT), migration, and invasion in vitro and tumor growth and metastasis in vivo without inducing toxicity. TClC disrupts autocrine loops that promote tumor progression, particularly in stem-like CD133-positive NSCLC (CD133+ LC) cells, which are pivotal in tumor metastasis. Through targeted molecular assays, we identified direct binding targets of TClC, including Akt, NF-κB, β-catenin, EZH2, and PD-L1. This interaction not only suppresses the expression of oncogenic factors and cancer stem cell markers but also downregulates the expression of a multidrug resistance transporter, underscoring the compound's polypharmacological potential. These results position TClC as a promising candidate for NSCLC treatment, signaling a new era in the development of cancer therapies that directly target multiple critical cancer pathways.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| | - Ying Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
- Shandong Yingdong Yinghao Biotechnology Inc., Yantai, Shandong, 264670, China
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Chunyan Yan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Jingwen Liu
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA
| | - Dan Qi
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, 76502, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, 76502, USA
| | - Yue Zhou
- Department of Statistics, North Dakota State University, Fargo, ND, 58102, USA
| | - Qinwen Wang
- The Center of Non-Traumatic Treatment and Diagnosis of Tumor, Binzhou Medical College affiliated The PLA 107 Hospital, Yantai, Shandong, 264002, China
- Outpatient Department, No. 26 Rest Center for Retired Cadres, Haidian district, Beijing, 100036, China
| | - Juechen Yang
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jing Jiang
- RemeGen, Ltd, Yantai, 264000, Shandong, China
- Department of Pharmacology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Benhao Wu
- Shandong Yingdong Yinghao Biotechnology Inc., Yantai, Shandong, 264670, China
| | - Meiling Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
- Shandong Yingdong Yinghao Biotechnology Inc., Yantai, Shandong, 264670, China
| | - Weiwei Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
- Shandong Yingdong Yinghao Biotechnology Inc., Yantai, Shandong, 264670, China
| | - Xin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
- Shandong Yingdong Yinghao Biotechnology Inc., Yantai, Shandong, 264670, China
| | - Xiaoyu Shi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
- Shandong Yingdong Yinghao Biotechnology Inc., Yantai, Shandong, 264670, China
| | - Yan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
- Shandong Yingdong Yinghao Biotechnology Inc., Yantai, Shandong, 264670, China
| | - Kun Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| | - Yongcai Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| | - Chaoyang Wang
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Hanyu Yang
- Shiyao Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., LTD., State Key Laboratory of New Pharmaceutical Preparations and Excipients, Shijiazhuang, 050035, China
| | - Yuqing Gao
- Shiyao Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., LTD., State Key Laboratory of New Pharmaceutical Preparations and Excipients, Shijiazhuang, 050035, China
| | - Yuping Sun
- Phase I Clinical Trial Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Ronghu Ke
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, 76502, USA
| | - Jason H. Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, 76502, USA
- College of Medicine, Texas A&M University, College Station, TX, 77843, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, 76502, USA
| | - Min Wu
- Drug Discovery Center, Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 646000, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| | - Chunlei Li
- Shiyao Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., LTD., State Key Laboratory of New Pharmaceutical Preparations and Excipients, Shijiazhuang, 050035, China
| | - Shuang Zhou
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA
| | - Bin Guo
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA
| | - Erxi Wu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, 76502, USA
- College of Medicine, Texas A&M University, College Station, TX, 77843, USA
- College of Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, 77843, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, 76502, USA
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Guoying Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China
| |
Collapse
|
2
|
Wang S, Zhang Y, Yu R, Chai Y, Liu R, Yu J, Qu Z, Zhang W, Zhuang C. Labeled and Label-Free Target Identifications of Natural Products. J Med Chem 2024; 67:17980-17996. [PMID: 39360958 DOI: 10.1021/acs.jmedchem.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Target identification, employing chemical proteomics, constitutes a continuous challenging endeavor in the drug development of natural products (NPs). Understanding their targets is crucial for deciphering their mechanisms and developing potential probes or drugs. Identifications fall into two main categories: labeled and label-free techniques. Labeled methods use the molecules tagged with markers such as biotin or fluorescent labels to easily detect interactions with target proteins. Thorough structure-activity relationships are essential before labeling to avoid changes in the biological activity or binding specificity. In contrast, label-free technologies identify target proteins without modifying natural products, relying on changes in the stability, thermal properties, or precipitation in the presence or absence of these products. Each approach has its advantages and disadvantages, offering a comprehensive understanding of the mechanisms and therapeutic potential of the NPs. Here, we summarize target identification techniques for natural molecules, highlight case studies of notable NPs, and explore future applications and directions.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yu Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruizhi Yu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yue Chai
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ruyun Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Polychronopoulos PA, Bedoya-Reina OC, Johnsen JI. The Neuroblastoma Microenvironment, Heterogeneity and Immunotherapeutic Approaches. Cancers (Basel) 2024; 16:1863. [PMID: 38791942 PMCID: PMC11119056 DOI: 10.3390/cancers16101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroblastoma is a peripheral nervous system tumor that almost exclusively occurs in young children. Although intensified treatment modalities have led to increased patient survival, the prognosis for patients with high-risk disease is still around 50%, signifying neuroblastoma as a leading cause of cancer-related deaths in children. Neuroblastoma is an embryonal tumor and is shaped by its origin from cells within the neural crest. Hence, neuroblastoma usually presents with a low mutational burden and is, in the majority of cases, driven by epigenetically deregulated transcription networks. The recent development of Omic techniques has given us detailed knowledge of neuroblastoma evolution, heterogeneity, and plasticity, as well as intra- and intercellular molecular communication networks within the neuroblastoma microenvironment. Here, we discuss the potential of these recent discoveries with emphasis on new treatment modalities, including immunotherapies which hold promise for better future treatment regimens.
Collapse
Affiliation(s)
- Panagiotis Alkinoos Polychronopoulos
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| | - Oscar C. Bedoya-Reina
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| |
Collapse
|
4
|
Borcher Møller SL, Rasmussen MH, Li J, Svenningsen EB, Wørmer GJ, Tørring T, Poulsen TB. The Biological Activities of Polyether Ionophore Antibiotic Routiennocin is Independent of Absolute Stereochemistry. Chembiochem 2024; 25:e202400013. [PMID: 38329925 DOI: 10.1002/cbic.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Carboxylic polyether ionophores (CPIs) are among the most prevalent agricultural antibiotics (notably in the US) and these compounds have been in use for decades. The potential to reposition CPIs beyond veterinary use, e. g. through chemical modifications to enhance their selectivity window, is an exciting challenge and opportunity, considering their general resilience towards resistance development. Given the very large societal impact of these somewhat controversial compounds, it is surprising that many aspects of their mechanisms and activities in cells remain unclear. Here, we report comparative biological activities of the CPI routiennocin and two stereoisomers, including its enantiomer. We used an efficient convergent synthesis strategy to access the compounds and conducted a broad survey of antibacterial activities against planktonic cells and biofilms as well as the compounds' effects on mammalian cells, the latter assessed both via standard cell viability assays and broad morphological profiling. Interestingly, similar bioactivity of the enantiomeric pair was observed across all assays, strongly suggesting that chiral interactions do not play a decisive role in the mode of action. Overall, our findings are consistent with a mechanistic model involving highly dynamic behaviour of CPIs in biological membranes.
Collapse
Affiliation(s)
| | - Michelle H Rasmussen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Jun Li
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Esben B Svenningsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Gustav J Wørmer
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Thomas Tørring
- Department of Biological and Chemical Engineering, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| |
Collapse
|
5
|
Tabana Y, Babu D, Fahlman R, Siraki AG, Barakat K. Target identification of small molecules: an overview of the current applications in drug discovery. BMC Biotechnol 2023; 23:44. [PMID: 37817108 PMCID: PMC10566111 DOI: 10.1186/s12896-023-00815-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Target identification is an essential part of the drug discovery and development process, and its efficacy plays a crucial role in the success of any given therapy. Although protein target identification research can be challenging, two main approaches can help researchers make significant discoveries: affinity-based pull-down and label-free methods. Affinity-based pull-down methods use small molecules conjugated with tags to selectively isolate target proteins, while label-free methods utilize small molecules in their natural state to identify targets. Target identification strategy selection is essential to the success of any drug discovery process and must be carefully considered when determining how to best pursue a specific project. This paper provides an overview of the current target identification approaches in drug discovery related to experimental biological assays, focusing primarily on affinity-based pull-down and label-free approaches, and discusses their main limitations and advantages.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Dinesh Babu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Lv S, Liu Y, Xie C, Xue C, Du S, Yao J. Emerging role of interactions between tumor angiogenesis and cancer stem cells. J Control Release 2023; 360:468-481. [PMID: 37391031 DOI: 10.1016/j.jconrel.2023.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Tumor angiogenesis and cancer stem cells (CSCs) are two major hallmarks of solid tumors. They have long received attention for their critical roles in tumor progression, metastasis and recurrence. Meanwhile, plenty of evidence indicates the close association between CSCs and tumor vasculature. CSCs are proven to promote tumor angiogenesis, and the highly vascularized tumor microenvironment further maintains CSCs growth in return, thereby forming a hard-breaking vicious circle to promote tumor development. Hence, though monotherapy targeting tumor vasculature or CSCs has been extensively studied over the past decades, the poor prognosis has been limiting the clinical application. This review summarizes the crosstalk between tumor vasculature and CSCs with emphasis on small-molecule compounds and the associated biological signaling pathways. We also highlight the importance of linking tumor vessels to CSCs to disrupt the CSCs-angiogenesis vicious circle. More precise treatment regimens targeting tumor vasculature and CSCs are expected to benefit future tumor treatment development.
Collapse
Affiliation(s)
- Shuai Lv
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yufei Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Changheng Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Chenyang Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
7
|
Liu Y, Hu B, Pei X, Li J, Qi D, Xu Y, Ou H, Wu Y, Xue L, Huang JH, Wu E, Hu X. A Non-G-Quadruplex DNA Aptamer Targeting NCL for Diagnosis and Therapy in Bladder Cancer. Adv Healthc Mater 2023; 12:e2300791. [PMID: 37262080 PMCID: PMC11469069 DOI: 10.1002/adhm.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 06/03/2023]
Abstract
Bladder cancer (BC) is a highly aggressive malignant tumor affecting the urinary system, characterized by metastasis and a poor prognosis that often leads to limited therapeutic success. This study aims to develop a novel DNA aptamer for the diagnosis and treatment of BC using a tissue-based systematic evolution of ligands by an exponential enrichment (SELEX) process. By using SELEX, this work successfully generates a new aptamer named TB-5, which demonstrates a remarkable and specific affinity for nucleolin (NCL) in BC tissues and displays marked biocompatibility both in vitro and in vivo. Additionally, this work shows that NCL is a reliable tissue-specific biomarker in BC. Moreover, according to circular dichroism spectroscopy, TB-5 forms a non-G-quadruplex structure, distinguishing it from the current NCL-targeting aptamer AS1411, and exhibits a distinct binding region on NCL compared to AS1411. Notably, this study further reveals that TB-5 activates NCL function by promoting autophagy and suppressing the migration and invasion of BC cells, which occurs by disrupting mRNA transcription processes. These findings highlight the critical role of NCL in the pathological examination of BC and warrant more comprehensive investigations on anti-NCL aptamers in BC imaging and treatment.
Collapse
Affiliation(s)
- Yunyi Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Bei Hu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Xiaming Pei
- Department of UrologyHunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine. ChangshaHunan410013China
| | - Juan Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
| | - Yuxi Xu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Hailong Ou
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Yatao Wu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Lei Xue
- Department of PathologyHunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine. ChangshaHunan410013China
| | - Jason H. Huang
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
- Department of Medical EducationTexas A&M University School of MedicineCollege StationTX77843USA
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
- Department of Medical EducationTexas A&M University School of MedicineCollege StationTX77843USA
- Department of Pharmaceutical SciencesTexas A&M University School of PharmacyCollege StationTX77843USA
- LIVESTRONG Cancer Institutes and Department of OncologyDell Medical SchoolThe University of Texas at AustinAustinTX78712USA
| | - Xiaoxiao Hu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
- Research Institute of Hunan University in ChongqingChongqing401120China
- Shenzhen Research InstituteHunan UniversityShenzhenGuangdong518000China
- Hunan Yonghe‐sun Biotechnology Co. Ltd.ChangshaHunan410082China
| |
Collapse
|
8
|
Cheng F, Jiang Y, Kong B, Lin H, Shuai X, Hu P, Gao P, Zhan L, Huang C, Li C. Multi-Catcher Polymers Regulate the Nucleolin Cluster on the Cell Surface for Cancer Therapy. Adv Healthc Mater 2023; 12:e2300102. [PMID: 36988195 DOI: 10.1002/adhm.202300102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Cell signal transduction mediated by cell surface ligand-receptor is crucial for regulating cell behavior. The oligomerization or hetero-aggregation of the membrane receptor driven by the ligand realizes the rearrangement of apoptotic signals, providing a new ideal tool for tumor therapy. However, the construction of a stable model of cytomembrane receptor aggregation and the development of a universal anti-tumor therapy model on the cellular surface remain challenging. This work describes the construction of a "multi-catcher" flexible structure GC-chol-apt-cDNA with a suitable integration of the oligonucleotide aptamer (apt) and cholesterol (chol) on a polymer skeleton glycol chitosan (GC), for the regulation of the nucleolin cluster through strong polyvalent binding and hydrophobic membrane anchoring on the cell surface. This oligonucleotide aptamer shows nearly 100-fold higher affinity than that of the monovalent aptamer and achieves stable anchoring to the plasma membrane for up to 6 h. Moreover, it exerts a high tumor inhibition both in vitro and in vivo by activating endogenous mitochondrial apoptosis pathway through the cluster of nucleolins on the cell membrane. This multi-catcher nano-platform combines the spatial location regulation of cytomembrane receptors with the intracellular apoptotic signaling cascade and represents a promising strategy for antitumor therapy.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yongjian Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Bo Kong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Huarong Lin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Xinjia Shuai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Pingping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Pengfei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Lei Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
9
|
Sitnikov D, Revkova V, Ilina I, Shatalova R, Komarov P, Struleva E, Konoplyannikov M, Kalsin V, Baklaushev V. Sensitivity of Neuroblastoma and Induced Neural Progenitor Cells to High-Intensity THz Radiation. Int J Mol Sci 2023; 24:6558. [PMID: 37047534 PMCID: PMC10095325 DOI: 10.3390/ijms24076558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
THz radiation induces a variety of processes in cells and has attracted the attention of researchers in recent decades. Here, data on the effects of high-intensity terahertz (THz) radiation on human directly reprogrammed neural progenitor cells (drNPCs) and on neuroblastoma cells (SK-N-BE (2)) were obtained for the first time. The results demonstrated that the exposure of non-tumor and tumor cells to broadband (0.1-3 THz) THz pulses with the intensity of 21 GW/cm2 and the electric field strength of 2.8 MV/cm for 30 min induced neither a noticeable genotoxic effect nor a statistically significant change in the proliferative activity and cell differentiation. It was also shown that the combined effect of THz radiation and salinomycin, a promising antitumor agent, on neuroblastoma cells did not enhance the genotoxic effect of this antibiotic. However, further studies involving chemotherapy drugs and other exposure parameters are warranted to introduce this new concept into anti-tumor clinical practice and to enhance the efficacy of the existing approaches.
Collapse
Affiliation(s)
- Dmitry Sitnikov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Veronika Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russia, 119435 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Inna Ilina
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Rimma Shatalova
- Center for Genetics and Life Sciences, Division of Genetics and Genetic Technologies, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Pavel Komarov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Evgenia Struleva
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Mikhail Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russia, 119435 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Vladimir Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russia, 119435 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russia, 119435 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency, 117513 Moscow, Russia
| |
Collapse
|
10
|
Liang KY, Chun-Yu Ho D, Yang HP, Hsieh PL, Fang CY, Tsai LL, Chao SC, Liu CM, Yu CC. LINC01296 promotes cancer stemness traits in oral carcinomas by sponging miR-143. J Dent Sci 2023; 18:814-821. [PMID: 37021272 PMCID: PMC10068493 DOI: 10.1016/j.jds.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Indexed: 01/25/2023] Open
Abstract
Background/purpose Emerging evidence has shown that various failures in cancer therapy, such as drug resistance, metastasis, and cancer relapse are attributed to cancer stem cells (CSCs). Also, growing attention has been paid to the regulation of non-coding RNAs in cancer stemness. Here, we aimed to investigate the contribution of LINC01296 in the modulation of oral CSCs. Materials and methods The phenotypic assays including migration, invasion, and colony-forming abilities were carried out in CSCs of two types of oral cancer cells (SAS and GNM) following the knockdown of LINC01296. In addition, the percentage of cells expressing stemness marker, ALDH1, and drug resistance marker, ABCG2, was examined as well as the self-renewal capacity after silencing of LINC01296. Moreover, a luciferase reporter was used to validate the direct interaction between LINC01296 and miR-143. Results Our results showed that LINC01296 was significantly overexpressed in oral cancer tissues and positively correlated with stemness markers. The phenotypic and flow cytometry assays demonstrated that suppression of LINC01296 reduced the aggressiveness, cancer stemness features, and colony-forming and self-renewal abilities in oral CSCs. Furthermore, we demonstrated that LINC01296 may enhance cancer stemness features through suppression of the effect of miR-143. Conclusion Silencing of LINC01296 may be a promising direction for oral cancer therapy by reducing cancer stemness via regulation of miR-143.
Collapse
Affiliation(s)
- Kuang-Yuan Liang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung, Taiwan
- Department of Dentistry, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Dennis Chun-Yu Ho
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Pin Yang
- Department of Dentistry, Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yuan Fang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lo-Lin Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Shih-Chi Chao
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ming Liu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Cangelosi D, Brignole C, Bensa V, Tamma R, Malaguti F, Carlini B, Giusto E, Calarco E, Perri P, Ribatti D, Fonseca NA, Moreira JN, Eva A, Amoroso L, Conte M, Garaventa A, Sementa AR, Corrias MV, Ponzoni M, Pastorino F. Nucleolin expression has prognostic value in neuroblastoma patients. EBioMedicine 2022; 85:104300. [PMID: 36209521 PMCID: PMC9547201 DOI: 10.1016/j.ebiom.2022.104300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) represents the most frequent form of extra-cranial solid tumour of infants, responsible for 15% of childhood cancer deaths. Nucleolin (NCL) prognostic value in NB was investigated. METHODS NCL protein expression was retrospectively evaluated in tumour samples of NB patients at diagnosis and after chemotherapy. NCL prognostic value at mRNA level was assessed in a cohort of 20 patients with stage 4 NB (qPCR20, n=20, discovery dataset) and in the MultiPlatform786 including 786 patients of all stages (validation dataset). Overall and event-free survival curves were plotted by Kaplan-Meier method and compared by log-rank test. FINDINGS NCL protein, down-modulated after chemotherapy in association with features of neuroblastic differentiation,resulted statistically significantly overexpressed in NB tumours and higher in stage 4 compared to stage 1,2,3 patients. In the stage 4 patients cohort qPCR20, patients with high NCLmRNA expression revealed a statisticallysignificant lower survival probability than those with low NCL expression (OS: HR 4.1 95%CI 1.2-13.8;p=0.0215[Log-rank test], EFS: HR 4.1 95%CI 1.2-14.0, p=0.0197[Log-rank test]). In the MultiPlatform786 (n=786), multivariate analysis suggested thatNCL expression has a statistically significant prognostic value even in the model adjusted for established prognostic markers. NCL expression significantly stratified also patients with >18 months and stage 4 tumour (OS: HR 1.8 95%CI 1.2-2.7, p=0.0009[Log-rank test]; EFS: HR 1.7 95%CI 1.1-2.5, p=0.002[Log-rank test]), patients with>18 months stage 4 with MYCN non amplified tumour[EFS: HR 2.3 95%CI 1.2-4.7, p=0.01[Log-rank test]), and patients with MYCN non amplified and MYC high [OS: HR 11.9 95%CI 2.3-62.4, p=0.003[Log-rank test]; EFS: HR 7.2 95%CI 1.6-33.4, p=0.01[Log-rank test]). A statistically significant correlation between NCL and MYCN, MYC, and TERT was found in independent datasets (MultiPlatform786 (n=786) and Agilent394 (n=394). Gene set enrichment analysis revealed a statisticallysignificant positive enrichment of MYC target genes and genes involved in telomerase maintenance. INTERPRETATION NCL is a novel and independent (adjusting for age, INSS stage, and MYCN status) prognostic marker for NB. FUNDING IMH-EuroNanoMed II-2015 and AIRC-IG.
Collapse
Affiliation(s)
- Davide Cangelosi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Fabiana Malaguti
- Department of Pathology, IRCCS IstitutoGianninaGaslini, Genoa, Italy
| | - Barbara Carlini
- Department of Pathology, IRCCS IstitutoGianninaGaslini, Genoa, Italy
| | - Elena Giusto
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Nuno André Fonseca
- CNC – Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
| | - Joao Nuno Moreira
- CNC – Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal,Univ Coimbra – University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Massimo Conte
- UOC Oncologia, IRCCS IstitutoGiannina Gaslini, Genova, Italy
| | | | | | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto G. Gaslini, Genoa, Italy,Corresponding authors.
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto G. Gaslini, Genoa, Italy,Corresponding authors.
| |
Collapse
|
12
|
Yangngam S, Prasopsiri J, Hatthakarnkul P, Thongchot S, Thuwajit P, Yenchitsomanus PT, Edwards J, Thuwajit C. Cellular localization of nucleolin determines the prognosis in cancers: a meta-analysis. J Mol Med (Berl) 2022; 100:1145-1157. [PMID: 35861882 PMCID: PMC9329415 DOI: 10.1007/s00109-022-02228-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
Abstract
Nucleolin (NCL) is a multifunctional protein expressed in the nucleus, cytoplasm, and cell membrane. Overexpression of NCL has a controversial role as a poor prognostic marker in cancers. In this study, a meta-analysis was performed to evaluate the prognostic value of NCL in different subcellular localizations (cytoplasmic (CyNCL) and nuclear (NuNCL)) across a range of cancers. PubMed was searched for relevant publications. Data were extracted and analyzed from 12 studies involving 1221 patients with eight cancer types. The results revealed high total NCL was significantly associated with poor overall survival (OS) (HR = 2.85 (1.94, 4.91), p < 0.00001, I2 = 59%) and short disease-free survival (DFS) (HR = 3.57 (2.76, 4.62), p < 0.00001, I2 = 2%). High CyNCL was significantly associated with poor OS (HR = 4.32 (3.01, 6.19), p < 0.00001, I2 = 0%) and short DFS (HR = 3.00 (2.17, 4.15), p < 0.00001, I2 = 0%). In contrast, high NuNCL correlated with increased patient OS (HR = 0.42 (0.20, 0.86), p = 0.02, I2 = 66%), with no significant correlation to DFS observed (HR = 0.46 (0.19, 1.14), p = 0.09, I2 = 57%). This study supports the role of subcellular NCL as a poor prognostic cancer biomarker.
Collapse
Affiliation(s)
- Supaporn Yangngam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jaturawitt Prasopsiri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Phimmada Hatthakarnkul
- Biomedical Sciences Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, G61 1QH, UK
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, G61 1QH, UK
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
13
|
Nucleolin Overexpression Predicts Patient Prognosis While Providing a Framework for Targeted Therapeutic Intervention in Lung Cancer. Cancers (Basel) 2022; 14:cancers14092217. [PMID: 35565346 PMCID: PMC9101044 DOI: 10.3390/cancers14092217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Despite the clinical benefit of new anticancer therapies, such as immune checkpoint inhibitors, lung cancer remains the most frequent cause of cancer-related death worldwide, thus supporting the need to develop novel anticancer treatments. Endothelial cells of the tumor-associated vasculature are easily accessible to drugs administered intravenously, besides having greater genetic stability than neoplastic cells and thus lowering the risk of developing drug resistance. In this respect, the identification of alternative targets, and therapeutic strategies, within the tumor vasculature is of high relevance. Accordingly, this work aimed at characterizing nucleolin expression in patient-derived pulmonary carcinomas and further validating nucleolin as a novel target to mediate successful therapeutic interventions against human lung cancers. The highlighted prognostic value of nucleolin points towards the applicability of nucleolin-based targeting strategies against nucleolinhigh pulmonary carcinomas, present in every disease stage, in a clinical trial setting. Abstract Notwithstanding the advances in the treatment of lung cancer with immune checkpoint inhibitors, the high percentage of non-responders supports the development of novel anticancer treatments. Herein, the expression of the onco-target nucleolin in patient-derived pulmonary carcinomas was characterized, along with the assessment of its potential as a therapeutic target. The clinical prognostic value of nucleolin for human pulmonary carcinomas was evaluated through data mining from the Cancer Genome Atlas project and immunohistochemical detection in human samples. Cell surface expression of nucleolin was evaluated by flow cytometry and subcellular fraction Western blotting in lung cancer cell lines. Nucleolin mRNA overexpression correlated with poor overall survival of lung adenocarcinoma cancer patients and further predicted the disease progression of both lung adenocarcinoma and squamous carcinoma. Furthermore, a third of the cases presented extra-nuclear expression, contrasting with the nucleolar pattern in non-malignant tissues. A two- to twelve-fold improvement in cytotoxicity, subsequent to internalization into the lung cancer cell lines of doxorubicin-loaded liposomes functionalized by the nucleolin-binding F3 peptide, was correlated with the nucleolin cell surface levels and the corresponding extent of cell binding. Overall, the results suggested nucleolin overexpression as a poor prognosis predictor and thus a target for therapeutic intervention in lung cancer.
Collapse
|
14
|
Xu G, Tang K, Hao Y, Wang X, Sui L. Polymeric Nanocarriers Loaded with a Combination of Gemcitabine and Salinomycin: Potential Therapeutics for Liver Cancer Treatment. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02251-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Wang J, Wang Z, Lin W, Han Q, Yan H, Yao W, Dong R, Jia D, Dong K, Li K. LINC01296 promotes neuroblastoma tumorigenesis via the NCL-SOX11 regulatory complex. Mol Ther Oncolytics 2022; 24:834-848. [PMID: 35317520 PMCID: PMC8917274 DOI: 10.1016/j.omto.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Long non-coding RNA LINC01296 has been shown to predict the invasiveness and poor outcomes of patients with NB. Our study validated its prognostic value and investigated the biological function and potential mechanism of LINC01296 regulating NB. Results illuminated that LINC01296 expression was significantly correlated with unfavorable prognosis and malignant clinical features according to the public NB database. We identified that silencing LINC01296 repressed NB cell proliferation and migration and promoted apoptosis. Moreover, LINC01296 knockdown inhibited tumor growth in vivo. The opposite results were observed through the dCas9 Synergistic Activation Mediator System (dCas9/SAM) activating LINC01296. Mechanistically, we revealed that LINC01296 could directly bind to nucleolin (NCL), forming a complex that activated SRY-box transcription factor 11 (SOX11) gene transcription and accelerated tumor progression. In conclusion, our findings uncover a crucial role of the LINC01296-NCL-SOX11 complex in NB tumorigenesis and may serve as a prognostic biomarker and effective therapeutic target for NB.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Zuopeng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Weihong Lin
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Qilei Han
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Hanlei Yan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Deshui Jia
- Laboratory of Cancer Genomics and Biology, Department of Urology, and Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| |
Collapse
|
16
|
Li B, Wu J, Tang L, Lian X, Li Z, Duan W, Qin T, Zhao X, Hu Y, Zhang C, Li T, Hao J, Zhang W, Zhang J, Wu S. Synthesis and anti-tumor activity evaluation of salinomycin C20- O-alkyl/benzyl oxime derivatives. Org Biomol Chem 2022; 20:870-876. [PMID: 35006233 DOI: 10.1039/d1ob02292j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seventeen C20-O-alkyl/benzyl oxime derivatives were synthesized by a concise and effective method. Most of these derivatives showed tens to several hundred nanomolar IC50 values against HT-29 colorectal, HGC-27 gastric and MDA-MB-231 breast cancer cells, whose antiproliferative activity is 15-240 fold better than that of salinomycin. The C20-oxime etherified derivatives can coordinate potassium ions, and further adjust the cytosolic Ca2+ concentrations in HT-29 cells. The significant improvement of the potency should be attributed to the better ion binding and transport ability of the modified derivatives. In addition, the C20-O-alkyl/benzyl oxime derivatives showed much better selectivity indexes (SI) than salinomycin, indicating that they present lower neurotoxic risk.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Jun Wu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Tang
- Medical School of Kunming University of Science and Technology, Kunming, 650031, China.
| | - Xu Lian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Zhongwen Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenfang Duan
- Medical School of Kunming University of Science and Technology, Kunming, 650031, China.
| | - Tong Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Xintong Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Yuhua Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Chi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Tianlei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Jie Hao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Jihong Zhang
- Medical School of Kunming University of Science and Technology, Kunming, 650031, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
17
|
Zheng J, Li D, Jiao J, Duan C, Wang Z, Xiang Y. Dual aptamer recognition-based G-quadruplex nanowires to selectively analyze cancer-derived exosomes. Talanta 2021; 235:122748. [PMID: 34517616 DOI: 10.1016/j.talanta.2021.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/15/2022]
Abstract
Cancer-derived exosomes have emerged as a valuable biomarker for cancer diagnosis and prognosis. However, the heterogeneity of exosomes often leads to low selectivity based on the single recognition method. Given this, we have developed a dual-aptamer recognition strategy based on G-quadruplex nanowires for selective analysis of exosomes. In this work, target exosomes were first captured by CD63 aptamers modified on magnetic beads (MBs) and then combined with AS1411 aptamer, which shows high binding affinity to nucleolin when forming stable G-quadruplex structure. Then the free myc monomer can spontaneously assemble into higher order G-wire superstructures on the allosteric AS1411, and resulting enhanced fluorescence signal, which can realize sensitive and specific analysis of the target exosomes. This dual-aptamer recognition-based method is simple and universal for different types of exosomes, which is of great significance for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Ji Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jin Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Zhongyun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
18
|
Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021; 42:1037-1063. [PMID: 34786735 PMCID: PMC9298915 DOI: 10.1002/med.21870] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self‐renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti‐CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad‐spectrum activities, including the important anti‐CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor‐specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA
| | - Yunyi Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas, USA
| |
Collapse
|
19
|
Dai L, Wei D, Zhang J, Shen T, Zhao Y, Liang J, Ma W, Zhang L, Liu Q, Zheng Y. Aptamer-conjugated mesoporous polydopamine for docetaxel targeted delivery and synergistic photothermal therapy of prostate cancer. Cell Prolif 2021; 54:e13130. [PMID: 34599546 PMCID: PMC8560597 DOI: 10.1111/cpr.13130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives It is imperative to develop efficient strategies on the treatment of prostate cancer. Here, we constructed multifunctional nanoparticles, namely AS1411@MPDA‐DTX (AMD) for targeted and synergistic chemotherapy/photothermal therapy of prostate cancer. Materials and Methods Mesoporous polydopamine (MPDA) nanoparticles were prepared by a one‐pot synthesis method, DTX was loaded through incubation, and AS1411 aptamer was modified onto MPDA by the covalent reaction. The prepared nanoparticles were characterized by ultra‐micro spectrophotometer, Fourier transform infrared spectra, transmission electron microscope, and so on. The targeting ability was detected by selective uptake and cell killing. The mechanism of AMD‐mediated synergistic therapy was detected by Western blot and immunofluorescence. Results The prepared nanoparticles can be easily synthesized and possessed excellent water solubility, stability, and controlled drug release ability, preferentially in acidic context. Based on in vitro and in vivo results, the nanoparticles can efficiently target prostate cancer cells, promote DTX internalization, and enhance the antitumor effects of chemo‐photothermal therapy strategies under the NIR laser irradiation. Conclusions As a multifunctional nanoplatform, AS1411@MPDA‐DTX could efficiently target prostate cancer cells, promote DTX internalization, and synergistically enhance the antiprostate cancer efficiency by combining with NIR irradiation.
Collapse
Affiliation(s)
- Liang Dai
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Dapeng Wei
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jidong Zhang
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Tianyu Shen
- State Key Laboratory of Medicinal Chemical Biology, School of Medicine, Nankai University, Tianjin, China
| | - Yuming Zhao
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Junqiang Liang
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Wangteng Ma
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Limin Zhang
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Qingli Liu
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Yue Zheng
- Department of Gastroenterology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
20
|
Brignole C, Bensa V, Fonseca NA, Del Zotto G, Bruno S, Cruz AF, Malaguti F, Carlini B, Morandi F, Calarco E, Perri P, Moura V, Emionite L, Cilli M, De Leonardis F, Tondo A, Amoroso L, Conte M, Garaventa A, Sementa AR, Corrias MV, Ponzoni M, Moreira JN, Pastorino F. Cell surface Nucleolin represents a novel cellular target for neuroblastoma therapy. J Exp Clin Cancer Res 2021; 40:180. [PMID: 34078433 PMCID: PMC8170797 DOI: 10.1186/s13046-021-01993-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Nucleolin (NCL) is a protein overexpressed and partially localized on the cell surface of tumor cells of adult cancers. Little is known about NCL and pediatric tumors and nothing is reported about cell surface NCL and NB. METHODS NB cell lines, Schwannian stroma-poor NB tumors and bone marrow (BM)-infiltrating NB cells were evaluated for the expression of cell surface NCL by Flow Cytometry, Imaging Flow Cytometry and Immunohistochemistry analyses. The cytotoxic activity of doxorubicin (DXR)-loaded nanocarriers decorated with the NCL-recognizing F3 peptide (T-DXR) was evaluated in terms of inhibition of NB cell proliferation and induction of cell death in vitro, whereas metastatic and orthotopic animal models of NB were used to examine their in vivo anti-tumor potential. RESULTS NB cell lines, NB tumor cells (including patient-derived and Patient-Derived Xenografts-PDX) and 70% of BM-infiltrating NB cells show cell surface NCL expression. NCL staining was evident on both tumor and endothelial tumor cells in NB xenografts. F3 peptide-targeted nanoparticles, co-localizing with cell surface NCL, strongly associates with NB cells showing selective tumor cell internalization. T-DXR result significantly more effective, in terms of inhibition of cell proliferation and reduction of cell viability in vitro, and in terms of delay of tumor growth in all NB animal model tested, when compared to both control mice and those treated with the untargeted formulation. CONCLUSIONS Our findings demonstrate that NCL could represent an innovative therapeutic cellular target for NB.
Collapse
Affiliation(s)
- Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nuno A Fonseca
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- TREAT U, SA - Parque Industrial de Taveiro, Lote 44, 3045-508, Coimbra, Portugal
| | - Genny Del Zotto
- Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Ana F Cruz
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Fabiana Malaguti
- Department of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Barbara Carlini
- Department of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vera Moura
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- TREAT U, SA - Parque Industrial de Taveiro, Lote 44, 3045-508, Coimbra, Portugal
| | - Laura Emionite
- Animal Facility, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Annalisa Tondo
- UOC Oncologia Pediatrica, Ospedale Meyer, Florence, Italy
| | | | | | | | - Angela R Sementa
- Department of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Maria V Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Joao N Moreira
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
21
|
Jianghong L, Tingting M, Yingping Z, Tong Y, Lanxia Z, Jingwen L, Wentao Z, Pengbo C, Hong Y, Fuqiang H. Aptamer and Peptide-Modified Lipid-Based Drug Delivery Systems in Application of Combined Sequential Therapy of Hepatocellular Carcinoma. ACS Biomater Sci Eng 2021; 7:2558-2568. [PMID: 34047187 DOI: 10.1021/acsbiomaterials.1c00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is known as the most common malignancy of the hepatobiliary system with a continued increase in incidence but limited therapeutic options. Nanomedicine has provided a promising strategy through engineered nanocarriers that are capable of targeting therapeutic agents specifically to tumor cells. In this research, two aptamer/peptide-modified lipid-based drug delivery systems (A54-PEG-SLN/OXA and A15-PEG-SLN/SAL) were developed as a sequential therapeutic strategy to conquer specific hepatocellular carcinoma. The nanomedicine A54-PEG-SLN/OXA was able to target specific hepatocellular carcinoma cell BEL-7402 and exhibited a strong targeting ability and antitumor efficiency both in vitro and in vivo. The A15-PEG-SLN/SAL could target and penetrate deeply to the spheroid composed of CD133+ cancer cells. In the study of developing a sequential therapeutic strategy, we demonstrated that A54-PEG-SLN/OXA could kill tumor cells and expose CD133+ cancer cells. After the administration of A15-PEG-SLN/SAL, the growth of the tumors was significantly inhibited. In conclusion, the aptamer/peptide-modified lipid-based drug delivery systems, A54-PEG-SLN/OXA and A15-PEG-SLN/SAL, could specifically target carcinoma cells and had an evident antitumor effect when administrated sequentially.
Collapse
Affiliation(s)
- Lv Jianghong
- Sir Run Run Shaw Hospital School of Medicine Zhejiang University No. 3 Qingchun East Road, Hangzhou 310016, China
| | - Meng Tingting
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Zeng Yingping
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yu Tong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Zhao Lanxia
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong Province 266000, P. R. China
| | - Liu Jingwen
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, United States
| | - Zhou Wentao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Chen Pengbo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yuan Hong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Hu Fuqiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| |
Collapse
|
22
|
Lei Y, Wang X, Sun H, Fu Y, Tian Y, Yang L, Wang J, Xia F. Association of Preoperative NANOG-Positive Circulating Tumor Cell Levels With Recurrence of Hepatocellular Carcinoma. Front Oncol 2021; 11:601668. [PMID: 34123777 PMCID: PMC8190394 DOI: 10.3389/fonc.2021.601668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) and Circulating tumor cells (CTCs) have been proposed as fundamental causes for the recurrence of hepatocellular carcinoma (HCC). CTCs isolated from patients with HCC illustrate a unique Nanog expression profile analysis. The aim of this study was to enhance the prediction of recurrence and prognosis of the CTC phenotype in patients with HCC by combining Nanog expression into a combined forecasting model. SUBJECTS MATERIALS AND METHODS We collected 320 blood samples from 160 patients with HCC cancer before surgery and used CanPatrol™ CTC enrichment technology and in situ hybridization (ISH) to enrich and detect CTCs and CSCs. Nanog expression in all CTCs was also determined. In addition, RT-PCR and immunohistochemistry were used to study the expression of Nanog, E-Cadherin, and N-Cadherin in liver cancer tissues and to conduct clinical correlation studies. RESULTS The numbers of EpCAM mRNA+ CTCs and Nanog mRNA+ CTCs were strongly correlated with postoperative HCC recurrence (CTC number (P = 0.03), the total number of mixed CTCS (P = 0.02), and Nanog> 6.7 (P = 0.001), with Nanog > 6.7 (P = 0.0003, HR = 2.33) being the most crucial marker. There are significant differences in the expression of Nanog on different types of CTC: most Epithelial CTCs do not express Nanog, while most of Mixed CTC and Mesenchymal CTC express Nanog, and their positive rates are 38.7%, 66.7%, and 88.7%, respectively, (P=0.0001). Moreover, both CTC (≤/> 13.3) and Nanog (≤/>6.7) expression were significantly correlated with BCLC stage, vascular invasion, tumor size, and Hbv-DNA (all P < 0.05). In the young group and the old group, patients with higher Nanog expression had a higher recurrence rate. (P < 0.001). CONCLUSIONS The number of Nanog-positive cells showed positive correlation with the poor prognosis of HCC patients. The detection and analysis of CTC markers (EpCAM and CK8, 18, CD45 Vimentin,Twist and 19) and CSCs markers (NANOG) are of great value in the evaluation of tumor progression.
Collapse
Affiliation(s)
- Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xishu Wang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ludi Yang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| |
Collapse
|
23
|
Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 2021; 223:107800. [PMID: 33421449 DOI: 10.1016/j.pharmthera.2021.107800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BCa) is one of the most prevalent malignant tumors affecting women's health worldwide. The recurrence and metastasis of BCa have made it a long-standing challenge to achieve remission-persistent or disease-undetectable clinical outcomes. Cancer stem cells (CSCs) possess the ability to self-renew and generate heterogeneous tumor bulk. The existence of CSCs has been found to be vital in the initiation, metastasis, therapy resistance, and recurrence of tumors across cancer types. Because CSCs grow slowly in their dormant state, they are insensitive to conventional chemotherapies; however, when CSCs emerge from their dormant state and become clinically evident, they usually acquire genetic traits that make them resistant to existing therapies. Moreover, CSCs also show evidence of acquired drug resistance in synchrony with tumor relapses. The concept of CSCs provides a new treatment strategy for BCa. In this review, we highlight the recent advances in research on breast CSCs and their association with epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs), plasticity of tumor cells, tumor microenvironment (TME), T-cell modulatory protein PD-L1, and non-coding RNAs. On the basis that CSCs are associated with multiple dysregulated biological processes, we envisage that increased understanding of disease sub-classification, selected combination of conventional treatment, molecular aberration directed therapy, immunotherapy, and CSC targeting/sensitizing strategy might improve the treatment outcome of patients with advanced BCa. We also discuss novel perspectives on new drugs and therapeutics purposing the potent and selective expunging of CSCs.
Collapse
|
24
|
Lin S, Liu H, Svenningsen EB, Wollesen M, Jacobsen KM, Andersen FD, Moyano-Villameriel J, Pedersen CN, Nørby P, Tørring T, Poulsen TB. Expanding the antibacterial selectivity of polyether ionophore antibiotics through diversity-focused semisynthesis. Nat Chem 2020; 13:47-55. [PMID: 33353970 PMCID: PMC7610524 DOI: 10.1038/s41557-020-00601-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Polyether ionophores are complex natural products capable of transporting cations across biological membranes. Many polyether ionophores possess potent antimicrobial activity and a few selected compounds have ability to target aggressive cancer cells. Nevertheless, ionophore function is believed to be associated with idiosyncratic cellu-lar toxicity and, consequently, human clinical development has not been pursued. Here, we demonstrate that structurally novel polyether ionophores can be efficiently constructed by recycling components of highly abundant polyethers to afford analogues with enhanced anti-bacterial selectivity compared to a panel of natural polyether ionophores. We used classic degradation reactions of the natural polyethers lasalocid and monensin and combined the resulting fragments with building blocks provided by total synthesis, including halogen-functionalized tetronic acids as cation-binding groups. Our results suggest that structural optimization of polyether ionophores is possible and that this area represents a potential opportunity for future methodological innovation.
Collapse
Affiliation(s)
- Shaoquan Lin
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Han Liu
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | | | | | - Frederikke D Andersen
- Department of Engineering-Microbial Biosynthesis, Aarhus University, Aarhus, Denmark
| | | | | | - Peter Nørby
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Thomas Tørring
- Department of Engineering-Microbial Biosynthesis, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
25
|
Ha J, Park H, Park J, Park SB. Recent advances in identifying protein targets in drug discovery. Cell Chem Biol 2020; 28:394-423. [PMID: 33357463 DOI: 10.1016/j.chembiol.2020.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Phenotype-based screening has emerged as an alternative route for discovering new chemical entities toward first-in-class therapeutics. However, clarifying their mode of action has been a significant bottleneck for drug discovery. For target protein identification, conventionally bioactive small molecules are conjugated onto solid supports and then applied to isolate target proteins from whole proteome. This approach requires a high binding affinity between bioactive small molecules and their target proteins. Besides, the binding affinity can be significantly hampered after structural modifications of bioactive molecules with linkers. To overcome these limitations, two major strategies have recently been pursued: (1) the covalent conjugation between small molecules and target proteins using photoactivatable moieties or electrophiles, and (2) label-free target identification through monitoring target engagement by tracking the thermal, proteolytic, or chemical stability of target proteins. This review focuses on recent advancements in target identification from covalent capturing to label-free strategies.
Collapse
Affiliation(s)
- Jaeyoung Ha
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Hankum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea; CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
26
|
Yu WH, Wu E, Li Y, Hou HH, Yu SSC, Huang PT, Kuo WH, Qi D, Yu CJ. Matrix Metalloprotease-7 Mediates Nucleolar Assembly and Intra-nucleolar Cleaving p53 in Gefitinib-Resistant Cancer Stem Cells. iScience 2020; 23:101600. [PMID: 33089100 PMCID: PMC7559243 DOI: 10.1016/j.isci.2020.101600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 09/18/2020] [Indexed: 01/11/2023] Open
Abstract
The enlarged distinct bulky-ball-like nucleolus matrix assembly is observed in most cancer stem cells (CSCs); however, the underlying mechanism is largely unknown. We show that matrix metalloproteinase-7 (MMP-7) shedding MUC-1 SEA domain releases MUC-1 C-ter, facilitating the nucleolus trafficking of p53 in gefitinib-resistant lung CSCs. The nucleolus colocalizations of p53, MUC-1 C-ter, MMP-7 and nucleolin were observed in the CD34+ CXADR+ CD44v3+ gefitinib-resistant EGFRL858R/T790M CSC colonies. MUC-1 C-ter induced a unique porous bulky-ball-shaped, cagelike nucleolus that functions as a nucleus molecular “garage” for potent tumor suppressor, p53. Nucleolus could also facilitate the novel sub-nucleus compartment for proteolytic processing p53 by MMP-7 to generate a 35 kDa fragment. Moreover, we show that salinomycin, an anti-CSC agent, disrupts nucleolus by inducing nucleoplasm translocation of p53 and sensitizing CSC to chemotherapy drugs. Thus, this study highlights the MMP-7-MUC-1-p53 axis in nucleolus as a potential therapeutic target for anti-CSCs to resolve the chemotherapy-resistance dilemma. MMP-7 cleaves the SEA domain of MUC-1 and releases MUC-1 C-ter MUC-1 C-ter mediates bulky-ball-like nucleolus assembly trapping p53 in nucleolus MMP-7 cleaves p53 to 35 kDa fragments in the nucleolus of gefitinib-resistant CSCs Salinomycin induces p53 nucleoplasm translocation sensitizing CSCs to gefitinib
Collapse
Affiliation(s)
- Wei-Hsuan Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Molecular Image Center, College of Medicine. National Taiwan University, Taipei 10051, Taiwan
| | - Erxi Wu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76508, USA.,Colleges of Medicine and Pharmacy, Texas A&M University, Health Science Center, College Station, TX 77843, USA.,Livestrong Cancer Institutes and Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX 78712, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Health Systems North Campus Research Complex, Ann Arbor, MI 48109, USA
| | - Hsin-Han Hou
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shuan-Su C Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Po-Tsang Huang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Dan Qi
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76508, USA
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan
| |
Collapse
|
27
|
Jing Y, Cai M, Zhou L, Jiang J, Gao J, Wang H. Aptamer AS1411 utilized for super-resolution imaging of nucleolin. Talanta 2020; 217:121037. [PMID: 32498876 DOI: 10.1016/j.talanta.2020.121037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
Abstract
Nucleolin (NCL) is a multifunctional protein that mainly localizes in the nucleolus and also distributes in the nucleoplasm, cytoplasm and cell membrane. Most studies focus on its biofunctions in cell activities and diseases, however, its detailed distribution and organization pattern in situ remains obscure. Moreover, antibodies were commonly used to investigate NCL in cells. It is worth noting that antibody labeling of intracellular proteins needs detergents to permeabilize the membrane, which could disrupt the membrane structure and proteins. The emergence of aptamer AS1411 provides us a good choice to recognize the NCL without permeabilization owing to its superior cellular uptake and enhanced stability. Therefore, we applied aptamer AS1411 to super-resolution imaging to visualize the distribution of NCL at a nanometer level. Aptamer achieved a better recognition of intracellular NCL and displayed the detailed structure of NCL in different parts of cells. Significantly, cytoplasmic and membrane NCL have higher expression and larger clusters in cancer cells than that in normal cells. Our work presented a detailed organization of NCL in cells and revealed the distribution differences between cancer cells and normal cells, which promote the understanding of its functions in physiology and pathology.
Collapse
Affiliation(s)
- Yingying Jing
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Lulu Zhou
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230027, China; Laboratory for Marine Biology and Biotechnology, Qing Dao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong, 266237, China.
| |
Collapse
|
28
|
Antisense oligonucleotides targeting lncRNA AC104041.1 induces antitumor activity through Wnt2B/β-catenin pathway in head and neck squamous cell carcinomas. Cell Death Dis 2020; 11:672. [PMID: 32826863 PMCID: PMC7443144 DOI: 10.1038/s41419-020-02820-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) contribute to the initiation and progression of various tumors, including head and neck squamous carcinoma (HNSCC), which is a common malignancy with high morbidity and low survival rate. However, the mechanism of lncRNAs in HNSCC tumorigenesis remains largely unexplored. In this work, we identified a novel lncRNA AC104041.1 which is highly upregulated and correlated with poor survival in HNSCC patients. Moreover, AC104041.1 overexpression significantly promoted tumor growth and metastasis of HNSCC in vitro and in vivo. Mechanistically, AC104041.1 mainly located in the cytoplasm and could function as ceRNA (competing endogenous RNA) for miR-6817-3p, thereby stabilized Wnt2B, and consequently inducing β-catenin nuclear translocation and activation. Moreover, we demonstrate that salinomycin, which as a highly effective antibiotic in the elimination of cancer stem cells through the Wnt/β-catenin signaling, could enhance the inhibition of tumor growth by antisense oligonucleotides (ASO) targeting AC104041.1 in HNSCC cells and PDXs (patient-derived xenograft) model. Thus, our data provide preclinical evidence to support a novel strategy of ASOs targeting AC104041.1 in combination with salinomycin and may as a beneficial treatment approach for HNSCC.
Collapse
|
29
|
Ognibene M, Pezzolo A. Roniciclib down-regulates stemness and inhibits cell growth by inducing nucleolar stress in neuroblastoma. Sci Rep 2020; 10:12902. [PMID: 32737364 PMCID: PMC7395171 DOI: 10.1038/s41598-020-69499-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma, an embryonic tumor arising from neuronal crest progenitor cells, has been shown to contain a population of undifferentiated stem cells responsible for the malignant state and the unfavorable prognosis. Although many previous studies have analyzed neuroblastoma stem cells and their therapeutic targeting, this topic appears still open to novel investigations. Here we found that neurospheres derived from neuroblastoma stem-like cells showed a homogeneous staining for several key nucleolar proteins, such as Nucleolin, Nucleophosmin-1, Glypican-2 and PES-1. We investigated the effects of Roniciclib (BAY 1000394), an anticancer stem cells agent, on neurospheres and on an orthotopic neuroblastoma mouse model, discovering an impressive inhibition of tumor growth and indicating good chances for the use of Roniciclib in vivo. We demonstrated that Roniciclib is not only a Wnt/β-catenin signaling inhibitor, but also a nucleolar stress inducer, revealing a possible novel mechanism underlying Roniciclib-mediated repression of cell proliferation. Furthermore, we found that high expression of Nucleophosmin-1 correlates with patients’ short survival. The co-expression of several stem cell surface antigens such as CD44v6 and CD114, together with the nucleolar markers here described, extends new possibilities to isolate undifferentiated subpopulations from neuroblastoma and identify new targets for the treatment of this childhood malignancy.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, 16147, Genova, Italy. .,Unità di Genetica Medica, IRCCS Istituto Gaslini, 16147, Genova, Italy.
| | - Annalisa Pezzolo
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, 16147, Genova, Italy.
| |
Collapse
|
30
|
Bellat V, Verchère A, Ashe SA, Law B. Transcriptomic insight into salinomycin mechanisms in breast cancer cell lines: synergistic effects with dasatinib and induction of estrogen receptor β. BMC Cancer 2020; 20:661. [PMID: 32678032 PMCID: PMC7364656 DOI: 10.1186/s12885-020-07134-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumors are heterogeneous in nature, composed of different cell populations with various mutations and/or phenotypes. Using a single drug to encounter cancer progression is generally ineffective. To improve the treatment outcome, multiple drugs of distinctive mechanisms but complementary anticancer activities (combination therapy) are often used to enhance antitumor efficacy and minimize the risk of acquiring drug resistance. We report here the synergistic effects of salinomycin (a polyether antibiotic) and dasatinib (a Src kinase inhibitor). METHODS Functionally, both drugs induce cell cycle arrest, intracellular reactive oxygen species (iROS) production, and apoptosis. We rationalized that an overlapping of the drug activities should offer an enhanced anticancer effect, either through vertical inhibition of the Src-STAT3 axis or horizontal suppression of multiple pathways. We determined the toxicity induced by the drug combination and studied the kinetics of iROS production by fluorescence imaging and flow cytometry. Using genomic and proteomic techniques, including RNA-sequencing (RNA-seq), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western Blot, we subsequently identified the responsible pathways that contributed to the synergistic effects of the drug combination. RESULTS Compared to either drug alone, the drug combination showed enhanced potency against MDA-MB-468, MDA-MB-231, and MCF-7 human breast cancer (BC) cell lines and tumor spheroids. The drug combination induces both iROS generation and apoptosis in a time-dependent manner, following a 2-step kinetic profile. RNA-seq data revealed that the drug combination exhibited synergism through horizontal suppression of multiple pathways, possibly through a promotion of cell cycle arrest at the G1/S phase via the estrogen-mediated S-phase entry pathway, and partially via the BRCA1 and DNA damage response pathway. CONCLUSION Transcriptomic analyses revealed for the first time, that the estrogen-mediated S-phase entry pathway partially contributed to the synergistic effect of the drug combination. More importantly, our studies led to the discoveries of new potential therapeutic targets, such as E2F2, as well as a novel drug-induced targeting of estrogen receptor β (ESR2) approach for triple-negative breast cancer treatment, currently lacking of targeted therapies.
Collapse
Affiliation(s)
- Vanessa Bellat
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Alice Verchère
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Sally A Ashe
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Benedict Law
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA. .,Lead contact, New York, USA.
| |
Collapse
|
31
|
Shen FF, Dai SY, Wong NK, Deng S, Wong AST, Yang D. Mediating K +/H + Transport on Organelle Membranes to Selectively Eradicate Cancer Stem Cells with a Small Molecule. J Am Chem Soc 2020; 142:10769-10779. [PMID: 32441923 DOI: 10.1021/jacs.0c02134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecules that are capable of disrupting cellular ion homeostasis offer unique opportunities to treat cancer. However, previously reported synthetic ion transporters showed limited value, as promiscuous ionic disruption caused toxicity to both healthy cells and cancer cells indiscriminately. Here we report a simple yet efficient synthetic K+ transporter that takes advantage of the endogenous subcellular pH gradient and membrane potential to site-selectively mediate K+/H+ transport on the mitochondrial and lysosomal membranes in living cells. Consequent mitochondrial and lysosomal damages enhanced cytotoxicity to chemo-resistant ovarian cancer stem cells (CSCs) via apoptosis induction and autophagy suppression with remarkable selectivity (up to 47-fold). The eradication of CSCs blunted tumor formation in mice. We believe this strategy can be exploited in the structural design and applications of next-generation synthetic cation transporters for the treatment of cancer and other diseases related to dysfunctional K+ channels.
Collapse
Affiliation(s)
- Fang-Fang Shen
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Sheng-Yao Dai
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Nai-Kei Wong
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Shan Deng
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alice Sze-Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
32
|
Li M, Li X, Zhang Y, Wu H, Zhou H, Ding X, Zhang X, Jin X, Wang Y, Yin X, Li C, Yang P, Xu H. Micropeptide MIAC Inhibits HNSCC Progression by Interacting with Aquaporin 2. J Am Chem Soc 2020; 142:6708-6716. [PMID: 32176498 DOI: 10.1021/jacs.0c00706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several important micropeptides encoded by noncoding RNAs have been identified in recent years; however, there have never been any reports of micropeptides in head and neck squamous cell carcinoma (HNSCC). Here we report the discovery and characterization of a human endogenous peptide named micropeptide inhibiting actin cytoskeleton (MIAC). Comprehensive analysis of the TCGA (The Cancer Genome Atlas) database (n = 500), clinical fresh samples (n = 94), and tissue microarrays (n = 60) revealed that lower MIAC expression is correlated with poor overall survival of HNSCC patients. Meanwhile, RNA-sequencing analysis of 9657 human tissues across 32 cancer types from TCGA cohorts found that MIAC is significantly associated with the progression of 5 other different tumors. Mechanistically, MIAC directly interacts with AQP2 (Aquaporin 2) to inhibit the actin cytoskeleton by regulating SEPT2 (Septin 2)/ITGB4 (Integrin Beta 4) and ultimately suppressing the tumor growth and metastasis of HNSCC. Collectively, the mechanism investigation and evaluation of MIAC activity in vivo and in vitro highlights that MIAC plays an important role in HNSCC tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | | | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Xiaomin Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | | | | | | | - Chencheng Li
- Nanjing Anji Biotechnology Co. Ltd., Nanjing, Jiangsu 210009, P. R. China
| | | | | |
Collapse
|
33
|
Song H, Rogers NJ, Allison SJ, Brabec V, Bridgewater H, Kostrhunova H, Markova L, Phillips RM, Pinder EC, Shepherd SL, Young LS, Zajac J, Scott P. Discovery of selective, antimetastatic and anti-cancer stem cell metallohelices via post-assembly modification. Chem Sci 2019; 10:8547-8557. [PMID: 31803429 PMCID: PMC6839601 DOI: 10.1039/c9sc02651g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Helicates and related metallofoldamers, synthesised by dynamic self-assembly, represent an area of chemical space inaccessible by traditional organic synthesis, and yet with potential for discovery of new classes of drug. Here we report that water-soluble, optically pure Fe(ii)- and even Zn(ii)-based triplex metallohelices are an excellent platform for post-assembly click reactions. By these means, the in vitro anticancer activity and most importantly the selectivity of a triplex metallohelix Fe(ii) system are dramatically improved. For one compound, a remarkable array of mechanistic and pharmacological behaviours is discovered: inhibition of Na+/K+ ATPase with potency comparable to the drug ouabain, antimetastatic properties (including inhibition of cell migration, re-adhesion and invasion), cancer stem cell targeting, and finally colonosphere inhibition competitive with the drug salinomycin.
Collapse
Affiliation(s)
- Hualong Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Nicola J Rogers
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Simon J Allison
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Viktor Brabec
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | | | - Hana Kostrhunova
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Lenka Markova
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Roger M Phillips
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Emma C Pinder
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Samantha L Shepherd
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Lawrence S Young
- Warwick Medical School , University of Warwick , Coventry CV4 7AL , UK
| | - Juraj Zajac
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Peter Scott
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| |
Collapse
|
34
|
Liu H, Lin S, Jacobsen KM, Poulsen TB. Chemische Synthesen und chemische Biologie von Carboxylpolyether‐Ionophoren: Aktuelle Entwicklungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Han Liu
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Dänemark
| | - Shaoquan Lin
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Dänemark
| | - Kristian M. Jacobsen
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Dänemark
| | - Thomas B. Poulsen
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Dänemark
| |
Collapse
|
35
|
Liu H, Lin S, Jacobsen KM, Poulsen TB. Chemical Syntheses and Chemical Biology of Carboxyl Polyether Ionophores: Recent Highlights. Angew Chem Int Ed Engl 2019; 58:13630-13642. [PMID: 30793459 DOI: 10.1002/anie.201812982] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 12/21/2022]
Abstract
A central goal of chemical biology is to develop molecular probes that enable fundamental studies of cellular systems. In the hierarchy of bioactive molecules, the so-called ionophore class occupies an unflattering position in the lower branches, with typical labels being "non-specific" and "toxic". In fact, the mere possibility that a candidate molecule possesses "ionophore activity" typically prompts its removal from further studies; ionophores-from a chemical genetics perspective-are molecular outlaws. In stark contrast to this overall poor reputation of ionophores, synthetic chemistry owes some of its most amazing achievements to studies of ionophore natural products, in particular the carboxyl polyethers renowned for their intricate molecular structures. These compounds have for decades been academic battlegrounds where new synthetic methodology is tested and retrosynthetic tactics perfected. Herein, we review the most exciting recent advances in carboxyl polyether ionophore (CPI) synthesis and in addition discuss the burgeoning field of CPI chemical biology.
Collapse
Affiliation(s)
- Han Liu
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Shaoquan Lin
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Kristian M Jacobsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|