1
|
Benjamin AB, Stunkard LM, Ling J, Nice JN, Lohman JR. Structures of chloramphenicol acetyltransferase III and Escherichia coli β-ketoacylsynthase III co-crystallized with partially hydrolysed acetyl-oxa(dethia)CoA. Acta Crystallogr F Struct Biol Commun 2023; 79:61-69. [PMID: 36862094 PMCID: PMC9979976 DOI: 10.1107/s2053230x23001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Acetyl coenzyme A (acetyl-CoA) is a reactive metabolite that nonproductively hydrolyzes in a number of enzyme active sites in the crystallization time frame. In order to elucidate the enzyme-acetyl-CoA interactions leading to catalysis, acetyl-CoA substrate analogs are needed. One possible analog for use in structural studies is acetyl-oxa(dethia)CoA (AcOCoA), in which the thioester S atom of CoA is replaced by an O atom. Here, structures of chloramphenicol acetyltransferase III (CATIII) and Escherichia coli ketoacylsynthase III (FabH) from crystals grown in the presence of partially hydrolyzed AcOCoA and the respective nucleophile are presented. Based on the structures, the behavior of AcOCoA differs between the enzymes, with FabH reacting with AcOCoA and CATIII being unreactive. The structure of CATIII reveals insight into the catalytic mechanism, with one active site of the trimer having relatively clear electron density for AcOCoA and chloramphenicol and the other active sites having weaker density for AcOCoA. One FabH structure contains a hydrolyzed AcOCoA product oxa(dethia)CoA (OCoA), while the other FabH structure contains an acyl-enzyme intermediate with OCoA. Together, these structures provide preliminary insight into the use of AcOCoA for enzyme structure-function studies with different nucleophiles.
Collapse
Affiliation(s)
- Aaron B. Benjamin
- Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | - Lee M. Stunkard
- Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | - Jianheng Ling
- Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | - Jaelen N. Nice
- Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | - Jeremy R. Lohman
- Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
McNaught KJ, Kuatsjah E, Zahn M, Prates ÉT, Shao H, Bentley GJ, Pickford AR, Gruber JN, Hestmark KV, Jacobson DA, Poirier BC, Ling C, San Marchi M, Michener WE, Nicora CD, Sanders JN, Szostkiewicz CJ, Veličković D, Zhou M, Munoz N, Kim YM, Magnuson JK, Burnum-Johnson KE, Houk KN, McGeehan JE, Johnson CW, Beckham GT. Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440. Metab Eng 2023; 76:193-203. [PMID: 36796578 DOI: 10.1016/j.ymben.2023.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.
Collapse
Affiliation(s)
- Kevin J McNaught
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Eugene Kuatsjah
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Michael Zahn
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Érica T Prates
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Huiling Shao
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA, 90095, USA
| | - Gayle J Bentley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Andrew R Pickford
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Josephine N Gruber
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Kelley V Hestmark
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Daniel A Jacobson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Brenton C Poirier
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chen Ling
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Myrsini San Marchi
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA, 90095, USA
| | - William E Michener
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA, 90095, USA
| | - Caralyn J Szostkiewicz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nathalie Munoz
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Young-Mo Kim
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jon K Magnuson
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin E Burnum-Johnson
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, CA, 90095, USA
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
3
|
Boram TJ, Benjamin AB, de Sousa AS, Stunkard LM, Stewart TA, Adams TJ, Craft NA, Velázquez-Marrero KG, Ling J, Nice JN, Lohman JR. Activity of Fatty Acid Biosynthesis Initiating Ketosynthase FabH with Acetyl/Malonyl-oxa/aza(dethia)CoAs. ACS Chem Biol 2023; 18:49-58. [PMID: 36626717 PMCID: PMC10311946 DOI: 10.1021/acschembio.2c00667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fatty acid and polyketide biosynthetic enzymes exploit the reactivity of acyl- and malonyl-thioesters for catalysis. A prime example is FabH, which initiates fatty acid biosynthesis in many bacteria and plants. FabH performs an acyltransferase reaction with acetyl-CoA to generate an acetyl-S-FabH acyl-enzyme intermediate and subsequent decarboxylative Claisen-condensation with a malonyl-thioester carried by an acyl carrier protein (ACP). We envision that crystal structures of FabH with substrate analogues can provide insight into the conformational changes and enzyme/substrate interactions underpinning the distinct reactions. Here, we synthesize acetyl/malonyl-CoA analogues with esters or amides in place of the thioester and characterize their stability and behavior as Escherichia coli FabH substrates or inhibitors to inform structural studies. We also characterize the analogues with mutant FabH C112Q that mimics the acyl-enzyme intermediate allowing dissection of the decarboxylation reaction. The acetyl- and malonyl-oxa(dethia)CoA analogues undergo extremely slow hydrolysis in the presence of FabH or the C112Q mutant. Decarboxylation of malonyl-oxa(dethia)CoA by FabH or C112Q mutant was not detected. The amide analogues were completely stable to enzyme activity. In enzyme assays with acetyl-CoA and malonyl-CoA (rather than malonyl-ACP) as substrates, acetyl-oxa(dethia)CoA is surprisingly slightly activating, while acetyl-aza(dethia)CoA is a moderate inhibitor. The malonyl-oxa/aza(dethia)CoAs are inhibitors with Ki's near the Km of malonyl-CoA. For comparison, we determine the FabH catalyzed decomposition rates for acetyl/malonyl-CoA, revealing some fundamental catalytic traits of FabH, including hysteresis for malonyl-CoA decarboxylation. The stability and inhibitory properties of the substrate analogues make them promising for structure-function studies to reveal fatty acid and polyketide enzyme/substrate interactions.
Collapse
Affiliation(s)
- Trevor J. Boram
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Aaron B. Benjamin
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Amanda Silva de Sousa
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Lee M. Stunkard
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Taylor A. Stewart
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Timothy J. Adams
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Nicholas A. Craft
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Kevin G. Velázquez-Marrero
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Jianheng Ling
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Jaelen N. Nice
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Jeremy R. Lohman
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| |
Collapse
|
4
|
Dickinson MS, Miyazawa T, McCool RS, Keatinge-Clay AT. Priming enzymes from the pikromycin synthase reveal how assembly-line ketosynthases catalyze carbon-carbon chemistry. Structure 2022; 30:1331-1339.e3. [PMID: 35738283 PMCID: PMC9444953 DOI: 10.1016/j.str.2022.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
The first domain of modular polyketide synthases (PKSs) is most commonly a ketosynthase (KS)-like enzyme, KSQ, that primes polyketide synthesis. Unlike downstream KSs that fuse α-carboxyacyl groups to growing polyketide chains, it performs an extension-decoupled decarboxylation of these groups to generate primer units. When Pik127, a model triketide synthase constructed from modules of the pikromycin synthase, was studied by cryoelectron microscopy (cryo-EM), the dimeric didomain comprised of KSQ and the neighboring methylmalonyl-selective acyltransferase (AT) dominated the class averages and yielded structures at 2.5- and 2.8-Å resolution, respectively. Comparisons with ketosynthases complexed with their substrates revealed the conformation of the (2S)-methylmalonyl-S-phosphopantetheinyl portion of KSQ and KS substrates prior to decarboxylation. Point mutants of Pik127 probed the roles of residues in the KSQ active site, while an AT-swapped version of Pik127 demonstrated that KSQ can also decarboxylate malonyl groups. Mechanisms for how KSQ and KS domains catalyze carbon-carbon chemistry are proposed.
Collapse
Affiliation(s)
- Miles S Dickinson
- Sauer Structural Biology Lab, The University of Texas at Austin, 102 E. 24th Street, Austin, TX 78712, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th Street, Austin, TX 78712, USA
| | - Ryan S McCool
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th Street, Austin, TX 78712, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th Street, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Chisuga T, Nagai A, Miyanaga A, Goto E, Kishikawa K, Kudo F, Eguchi T. Structural Insight into the Reaction Mechanism of Ketosynthase-Like Decarboxylase in a Loading Module of Modular Polyketide Synthases. ACS Chem Biol 2022; 17:198-206. [PMID: 34985877 DOI: 10.1021/acschembio.1c00856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ketosynthase-like decarboxylase (KSQ) domains are widely distributed in the loading modules of modular polyketide synthases (PKSs) and are proposed to catalyze the decarboxylation of a malonyl or methylmalonyl unit for the construction of the PKS starter unit. KSQ domains have high sequence similarity to ketosynthase (KS) domains, which catalyze transacylation and decarboxylative condensation in polyketide and fatty acid biosynthesis, except that the catalytic Cys residue of KS domains is replaced by Gln in KSQ domains. Here, we present biochemical analyses of GfsA KSQ and CmiP4 KSQ, which are involved in the biosynthesis of FD-891 and cremimycin, respectively. In vitro analysis showed that these KSQ domains catalyze the decarboxylation of malonyl and methylmalonyl units. Furthermore, we determined the crystal structure of GfsA KSQ in complex with a malonyl thioester substrate analogue, which enabled identification of key amino acid residues involved in the decarboxylation reaction. The importance of these residues was confirmed by mutational analysis. On the basis of these findings, we propose a mechanism of the decarboxylation reaction catalyzed by GfsA KSQ. GfsA KSQ initiates decarboxylation by fixing the substrate in a suitable conformation for decarboxylation. The formation of enolate upon decarboxylation is assisted by two conserved threonine residues. Comparison of the structure of GfsA KSQ with those of KS domains suggests that the Gln residue in the active site of the KSQ domain mimics the acylated Cys residue in the active site of KS domains.
Collapse
Affiliation(s)
- Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Akira Nagai
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Ena Goto
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Kosuke Kishikawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| |
Collapse
|
6
|
Stunkard LM, Benjamin AB, Bower JB, Huth TJ, Lohman JR. Substrate Enolate Intermediate and Mimic Captured in the Active Site of Streptomyces coelicolor Methylmalonyl-CoA Epimerase*. Chembiochem 2021; 23:e202100487. [PMID: 34856049 DOI: 10.1002/cbic.202100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/02/2021] [Indexed: 11/05/2022]
Abstract
Methylmalonyl-CoA epimerase (MMCE) is proposed to use general acid-base catalysis, but the proposed catalytic glutamic acids are highly asymmetrical in the active site unlike many other racemases. To gain insight into the puzzling relationships between catalytic mechanism, structure, and substrate preference, we solved Streptomyces coelicolor MMCE structures with substrate or 2-nitropropionyl-CoA, an intermediate/transition state analogue. Both ligand bound structures have a planar methylmalonate/2-nitropropionyl moiety indicating a deprotonated C2 with ≥4 Å distances to either catalytic acid. Both glutamates interact with the carboxylate/nitro group, either directly or through other residues. This suggests the proposed catalytic acids sequentially catalyze proton shifts between C2 and carboxylate of the substrate with an enolate intermediate. In addition, our structures provide a platform to design mutations for expanding substrate scope to support combinatorial biosynthesis.
Collapse
Affiliation(s)
- Lee M Stunkard
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, USA
| | - Aaron B Benjamin
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, USA
| | - James B Bower
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, USA
| | - Tyler J Huth
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, USA
| | - Jeremy R Lohman
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Mindrebo JT, Chen A, Kim WE, Re RN, Davis TD, Noel JP, Burkart MD. Structure and Mechanistic Analyses of the Gating Mechanism of Elongating Ketosynthases. ACS Catal 2021; 11:6787-6799. [DOI: 10.1021/acscatal.1c00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jeffrey T. Mindrebo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Rebecca N. Re
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Tony D. Davis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Joseph P. Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
8
|
Stunkard LM, Kick BJ, Lohman JR. Structures of LnmK, a Bifunctional Acyltransferase/Decarboxylase, with Substrate Analogues Reveal the Basis for Selectivity and Stereospecificity. Biochemistry 2021; 60:365-372. [PMID: 33482062 DOI: 10.1021/acs.biochem.0c00893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LnmK stereospecifically accepts (2R)-methylmalonyl-CoA, generating propionyl-S-acyl carrier protein to support polyketide biosynthesis. LnmK and its homologues are the only known enzymes that carry out a decarboxylation (DC) and acyl transfer (AT) reaction in the same active site as revealed by structure-function studies. Substrate-assisted catalysis powers LnmK, as decarboxylation of (2R)-methylmalonyl-CoA generates an enolate capable of deprotonating active site Tyr62, and the Tyr62 phenolate subsequently attacks propionyl-CoA leading to a propionyl-O-LnmK acyl-enzyme intermediate. Due to the inherent reactivity of LnmK and methylmalonyl-CoA, a substrate-bound structure could not be obtained. To gain insight into substrate specificity, stereospecificity, and catalytic mechanism, we determined the structures of LnmK with bound substrate analogues that bear malonyl-thioester isosteres where the carboxylate is represented by a nitro or sulfonate group. The nitro-bearing malonyl-thioester isosteres bind in the nitronate form, with specific hydrogen bonds that allow modeling of the (2R)-methylmalonyl-CoA substrate and rationalization of stereospecificity. The sulfonate isosteres bind in multiple conformations, suggesting the large active site of LnmK allows multiple binding modes. Considering the smaller malonyl group has more conformational freedom than the methylmalonyl group, we hypothesized the active site can entropically screen against catalysis with the smaller malonyl-CoA substrate. Indeed, our kinetic analysis reveals malonyl-CoA is accepted at 1% of the rate of methylmalonyl-CoA. This study represents another example of how our nitro- and sulfonate-bearing methylmalonyl-thioester isosteres are of use for elucidating enzyme-substrate binding interactions and revealing insights into catalytic mechanism. Synthesis of a larger panel of analogues presents an opportunity to study enzymes with complicated structure-function relationships such as acyl-CoA carboxylases, trans-carboxytransferases, malonyltransferases, and β-ketoacylsynthases.
Collapse
Affiliation(s)
- Lee M Stunkard
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Benjamin J Kick
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeremy R Lohman
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Sheng X, Himo F. Mechanism of 3-Methylglutaconyl CoA Decarboxylase AibA/AibB: Pericyclic Reaction versus Direct Decarboxylation. Angew Chem Int Ed Engl 2020; 59:22973-22977. [PMID: 32914510 PMCID: PMC7756340 DOI: 10.1002/anie.202008919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/08/2020] [Indexed: 12/11/2022]
Abstract
The enzyme 3-methylglutaconyl coenzyme A (CoA) decarboxylase (called AibA/AibB) catalyzes the decarboxylation of 3-methylglutaconyl CoA to generate 3,3-dimethylacrylyl-CoA, representing an important step in the biosynthesis of isovaleryl-coenzyme A in Myxococcus xanthus when the regular pathway is blocked. A novel mechanism involving a pericyclic transition state has previously been proposed for this enzyme, making AibA/AibB unique among decarboxylases. Herein, density functional calculations are used to examine the energetic feasibility of this mechanism. It is shown that the intramolecular pericyclic reaction is associated with a very high energy barrier that is similar to the barrier of the same reaction in the absence of the enzyme. Instead, the calculations show that a direct decarboxylation mechanism has feasible energy barriers that are in line with the experimental observations.
Collapse
Affiliation(s)
- Xiang Sheng
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| |
Collapse
|
10
|
Sheng X, Himo F. Mechanism of 3‐Methylglutaconyl CoA Decarboxylase AibA/AibB: Pericyclic Reaction versus Direct Decarboxylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Fahmi Himo
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| |
Collapse
|
11
|
Belz TF, Bremer PT, Zhou B, Blake S, Ellis B, Eubanks LM, Janda KD. Sulfonate-isosteric replacement examined within heroin-hapten vaccine design. Bioorg Med Chem Lett 2020; 30:127388. [PMID: 32738981 PMCID: PMC7398700 DOI: 10.1016/j.bmcl.2020.127388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Heroin overdose and addiction remain significant health and economic burdens in the world today costing billions of dollars annually. Moreover, only limited pharmacotherapeutic options are available for treatment of heroin addiction. In our efforts to combat the public health threat posed by heroin addiction, we have developed vaccines against heroin. To expand upon our existing heroin-vaccine arsenal, we synthesized new aryl and alkyl sulfonate ester haptens; namely aryl-mono-sulfonate (HMsAc) and Aryl/alkyl-di-sulfonate (H(Ds)2) as carboxyl-isosteres of heroin then compared them to our model heroin-hapten (HAc) through vaccination studies. Heroin haptens were conjugated to the carrier protein CRM197 and the resulting CRM-immunoconjugates were used to vaccinate Swiss Webster mice following an established immunization protocol. Binding studies revealed that the highest affinity anti-heroin antibodies were generated by the HMsAc vaccine followed by the HAc and H(Ds)2 vaccines, respectively (HMsAc > HAc≫HDs2). However, neither the HMsAc nor H(Ds)2 vaccines were able to generate high affinity antibodies to the psychoactive metabolite 6-acetyl morphine (6-AM), in comparison to the HAc vaccine. Blood brain bio-distribution studies supported these binding results with vaccine efficiency following the trend HAc > HMsAc ≫ H(Ds)2 The work described herein provides insight into the use of hapten-isosteric replacement in vaccine drug design.
Collapse
Affiliation(s)
- Tyson F Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Paul T Bremer
- Cessation Therapeutics LLC, 3031 Tisch Way Ste 505, San Jose, CA 95128, United States
| | - Bin Zhou
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Steven Blake
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Lisa M Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
12
|
Duncan D, Auclair K. The coenzyme A biosynthetic pathway: A new tool for prodrug bioactivation. Arch Biochem Biophys 2019; 672:108069. [PMID: 31404525 DOI: 10.1016/j.abb.2019.108069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Abstract
Prodrugs account for more than 5% of pharmaceuticals approved worldwide. Over the past decades several prodrug design strategies have been firmly established; however, only a few functional groups remain amenable to this approach. The aim of this overview is to highlight the use of coenzyme A (CoA) biosynthetic enzymes as a recently explored bioactivation scheme and provide information about its scope of utility. This emerging tool is likely to have a strong impact on future medicinal and biological studies as it offers promiscuity, orthogonal selectivity, and the capability of assembling exceptionally large molecules.
Collapse
Affiliation(s)
- Dustin Duncan
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.
| |
Collapse
|