1
|
Zhang C, Jiang X, Wang X, Cao X, Zhou L, Xing Y, Xu N. The effect of optical-acoustic phonon coupling on the thermal conductivity of 2D MgI 2. Phys Chem Chem Phys 2024; 26:22509-22517. [PMID: 39145772 DOI: 10.1039/d4cp02462a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
2D MgI2 has a large phonon band gap and strong coupling of optical and acoustic phonons, and it is difficult to accurately predict thermal conductivity by considering only three-phonon scattering. Thus, in this study, the effect of four-phonon scattering on the thermal conductivity of a 2D MgI2 lattice was investigated using first-principles calculations combined with Boltzmann transport theory. The results show that with increasing temperature, four-phonon scattering induces an increase in the scattering of phonons at the optical and acoustic phonon coupling (2 THz), as well as in the vicinity of the optical phonon branch (4.5 THz), which leads to the enhancement of the anharmonicity of phonon transport and results in a decrease in the thermal conductivity of the 2D material. At 700 K, the thermal conductivity of MgI2 decreases by over half, from 0.47 W m-1 K-1 to 0.23 W m-1 K-1, when considering both three- and four-phonon scattering, compared to considering only three-phonon scattering. This study confirms the need to consider the role of four-phonon scattering to enhance optical and acoustic phonon coupling to accurately predict the thermal conductivity of 2D materials with larger phonon band gaps.
Collapse
Affiliation(s)
- Chunwei Zhang
- School of Mechanical Engineering, Yancheng Institute of Technology, Jiangsu, 224051, P. R. China
| | - Xiaobo Jiang
- School of Mechanical Engineering, Yancheng Institute of Technology, Jiangsu, 224051, P. R. China
| | - Xiaodan Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Jiangsu, 224051, P. R. China
| | - Xingan Cao
- School of Mechanical Engineering, Yancheng Institute of Technology, Jiangsu, 224051, P. R. China
| | - LinZhen Zhou
- School of Mechanical Engineering, Yancheng Institute of Technology, Jiangsu, 224051, P. R. China
| | - Yuheng Xing
- Department of Physics, Yancheng Institute of Technology, Jiangsu, 224051, P. R. China
| | - Ning Xu
- Department of Physics, Yancheng Institute of Technology, Jiangsu, 224051, P. R. China
| |
Collapse
|
2
|
Zhao J, Zhang Q, Sui L, Niu G, Zhang Y, Wu G, Yu S, Yuan K, Yang X. Evidence of Surface-Mediated Carrier-Phonon Scattering in MXene. ACS NANO 2023. [PMID: 38009540 DOI: 10.1021/acsnano.3c07431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In a two-dimensional (2D) metallic nanostructure, when a sample's thickness is shorter than a carrier mean free path, the ultrathin thickness may influence carrier and energy transport, owing to surface scattering. However, to date, for metallic 2D transition-metal carbides (MXenes), experiments and calculations related to surface scattering have not been performed. The contribution of ultrathin structures to carrier surface scattering in MXene is yet to be explored. Herein, to reveal this effect, we design various models, including metal/MXene, dielectric/MXene, and bulk structure, and analyze their carrier dynamics via ultrafast spectroscopy. The results related to carrier dynamics indicate that the influence of the dielectric/MXene interface and the temperature is negligible. In contrast, the carrier dynamic lifetimes are prolonged owing to weakened surface scattering in metal/MXene, which is supported by ab initio calculations. These results suggest that the carrier-phonon scattering is dominated by surface scattering. These findings can help guide effective energy transport and enhance energy conversion and catalysis.
Collapse
Affiliation(s)
- Jie Zhao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangming Niu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yutong Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Guzelturk B, Kamysbayev V, Wang D, Hu H, Li R, King SB, Reid AH, Lin MF, Wang X, Walko DA, Zhang X, Lindenberg A, Talapin DV. Understanding and Controlling Photothermal Responses in MXenes. NANO LETTERS 2023; 23:2677-2686. [PMID: 36917456 DOI: 10.1021/acs.nanolett.2c05001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
MXenes have the potential for efficient light-to-heat conversion in photothermal applications. To effectively utilize MXenes in such applications, it is important to understand the underlying nonequilibrium processes, including electron-phonon and phonon-phonon couplings. Here, we use transient electron and X-ray diffraction to investigate the heating and cooling of photoexcited MXenes at femtosecond to nanosecond time scales. Our results show extremely strong electron-phonon coupling in Ti3C2-based MXenes, resulting in lattice heating within a few hundred femtoseconds. We also systematically study heat dissipation in MXenes with varying film thicknesses, chemical surface terminations, flake sizes, and annealing conditions. We find that the thermal boundary conductance (TBC) governs the thermal relaxation in films thinner than the optical penetration depth. We achieve a 2-fold enhancement of the TBC, reaching 20 MW m-2 K-1, by controlling the flake size or chemical surface termination, which is promising for engineering heat dissipation in photothermal and thermoelectric applications of the MXenes.
Collapse
Affiliation(s)
- Burak Guzelturk
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Vladislav Kamysbayev
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Di Wang
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Huicheng Hu
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ruiyu Li
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Sarah B King
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander H Reid
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Donald A Walko
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Aaron Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Colin-Ulloa E, Fitzgerald A, Montazeri K, Mann J, Natu V, Ngo K, Uzarski J, Barsoum MW, Titova LV. Ultrafast Spectroscopy of Plasmons and Free Carriers in 2D MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208659. [PMID: 36369973 DOI: 10.1002/adma.202208659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
2D MXenes have diverse and chemically tunable optical properties that arise from an interplay between free carriers, interband transitions, and plasmon resonances. The nature of photoexcitations and their dynamics in three different members of the MXene family, Ti3 C2 , Mo2 Ti2 C3 , and Nb2 C, are investigated using two complementary pump-probe techniques, transient optical absorption, and time-resolved terahertz (THz) spectroscopy. Measurements reveal pronounced plasmonic effects in the visible and near-IR in all three. Optical excitation, with either 400 or 800 nm pulses, results in a rapid increase in lattice temperature, evidenced by a pronounced broadening of the plasmon mode that presents as a plasmon bleach in transient absorption measurements. Observed kinetics of plasmon bleach recovery provide a means to monitor lattice cooling. Remarkably slow cooling, proceeding over hundreds of picoseconds to nanoseconds time scales, implies MXenes have low thermal conductivities. The slowest recovery kinetics are observed in the MXene with the highest free carrier density, viz. Ti3 C2 , that supports phonon scattering by free carriers as a possible mechanism limiting thermal conductivity. These new insights into photoexcitation dynamics can facilitate their applications in photothermal solar energy conversion, plasmonic devices, and even photothermal therapy and drug delivery.
Collapse
Affiliation(s)
- Erika Colin-Ulloa
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Andrew Fitzgerald
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Kiana Montazeri
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Javery Mann
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Varun Natu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, India
| | - Ken Ngo
- US Army DEVCOM Soldier Center, Natick, MA, 01760, USA
| | | | - Michel W Barsoum
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Lyubov V Titova
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| |
Collapse
|
5
|
Zhang Q, Li J, Wen J, Li W, Chen X, Zhang Y, Sun J, Yan X, Hu M, Wu G, Yuan K, Guo H, Yang X. Simultaneous capturing phonon and electron dynamics in MXenes. Nat Commun 2022; 13:7900. [PMID: 36550116 PMCID: PMC9780317 DOI: 10.1038/s41467-022-35605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Plasmonic MXenes are of particular interest, because of their unique electron and phonon structures and multiple surface plasmon effects, which are different from traditional plasmonic materials. However, to date, how electronic energy damp to lattice vibrations (phonons) in MXenes has not been unraveled. Here, we employed ultrafast broadband impulsive vibrational spectroscopy to identify the energy damping channels in MXenes (Ti3C2Tx and Mo2CTx). Distinctive from the well-known damping pathways, our results demonstrate a different energy damping channel, in which the Ti3C2Tx plasmonic electron energy transfers to coherent phonons by nonthermal electron mediation after Landau damping, without involving electron-electron scattering. Moreover, electrons are observed to strongly couple with A1g mode (~60 fs, 85-100%) and weakly couple with Eg mode (1-2 ps, 0-15%). Our results provide new insight into the electron-phonon interaction in MXenes, which allows the design of materials enabling efficient manipulation of electron transport and energy conversion.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Jiebo Li
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P.R. China.
| | - Jiao Wen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Wei Li
- GuSu Laboratory of Materials, Suzhou, 215123, Jiangsu, China
| | - Xin Chen
- GuSu Laboratory of Materials, Suzhou, 215123, Jiangsu, China
| | - Yifan Zhang
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Jingyong Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Xin Yan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P. R. China
| | - Mingjun Hu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Hongbo Guo
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- Hefei National Laboratory, Hefei, 230088, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
6
|
Zhou H, Ong ZY, Zhang G, Zhang YW. Computational predictions of quantum thermal transport across nanoscale interfaces. NANOSCALE 2022; 14:9209-9217. [PMID: 35726755 DOI: 10.1039/d2nr01131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interfaces are essential elements in nanoscale devices and their properties can differ significantly from their bulk counterparts. Because interfaces often act as bottlenecks in heat dissipation, the prediction and control of the interfacial thermal conductance is critical to the design of nanoscale devices. In this review, we examine the recent advances in quantum interfacial thermal transport from a theoretical and computational perspective. We discuss in detail recent advances in the Atomistic Green's Function method which is an important tool for predicting interfacial thermal transport. We also discuss recent progress in the understanding of interfacial transport mechanisms, including the role of interfacial modes, the role of anharmonic phonon-phonon coupling, the role of electron-phonon interaction, and the ways to tune the interfacial thermal conductance. Finally, we give an overview of the challenges and opportunities in this research field.
Collapse
Affiliation(s)
- Hangbo Zhou
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| | - Zhun-Yong Ong
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| | - Gang Zhang
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| | - Yong-Wei Zhang
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| |
Collapse
|
7
|
Yu L, Xu L, Lu L, Alhalili Z, Zhou X. Thermal Properties of MXenes and Relevant Applications. Chemphyschem 2022; 23:e202200203. [PMID: 35674280 DOI: 10.1002/cphc.202200203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Indexed: 11/10/2022]
Abstract
The properties and applications of MXenes (a family of layered transition metal carbides, nitrides, and carbonitrides) have aroused enormous research interests for a decade since the successful synthesis of few-layer transition metal carbides in 2011. Though MXenes, as the building blocks, have already been applied in various fields (such as wearable electronics) owing to the distinctive optical, mechanical and electrical properties, their thermal stability and intrinsic thermal properties were less thoroughly investigated compared to other characteristics in early reports. The pioneering theoretical prediction of the thermoelectric nature of MXenes was performed in 2013 while the first experiment-based report concerning the degradation behavior of the 2D structure at elevated temperatures in a controlled atmosphere was published in 2015, followed by numerous discoveries regarding the thermal properties of MXenes. Herein, after a brief description of the synthesis, this Review summarized the latest insights into the thermal stability and thermophysical properties of MXenes, and further associated these unique properties with relevant applications by multiple examples. Finally, current hurdles and challenges in this field were provided along with some advices on potential research directions in the future.
Collapse
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts, Shaqra University, Sajir, Riyadh, Saudi Arabia
| | - XiaoHong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| |
Collapse
|
8
|
Sun Y, Liu Y, Li R, Li Y, Bai S. Strategies to Improve the Thermoelectric Figure of Merit in Thermoelectric Functional Materials. Front Chem 2022; 10:865281. [PMID: 35665061 PMCID: PMC9160435 DOI: 10.3389/fchem.2022.865281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, thermoelectric functional materials have been widely concerned in temperature difference power generation, electric refrigeration and integrated circui, and so on. In this paper, the design and research progress of thermoelectric materials around lifting ZT value in recent years are reviewed. Optimizing the carrier concentration to improve the Seebeck coefficient, the steady improvement of carrier mobility and the influence of energy band engineering on thermoelectric performance are discussed. In addition, the impact of lattice thermal conductivity on ZT value is also significant. We discuss the general law that the synergistic effect of different dimensions, scales, and crystal structures can reduce lattice thermal conductivity, and introduce the new application of electro-acoustic decoupling in thermoelectric materials. Finally, the research of thermoelectric materials is summarized and prospected in the hope of providing practical ideas for expanding the application and scale industrialization of thermoelectric devices.
Collapse
Affiliation(s)
- Yan Sun
- College of Material Science Engineer, Liaoning Technical University, Fuxin, China
- College of Material Science Engineer, Harbin Institute of Technology, Harbin, China
| | - Yue Liu
- College of Material Science Engineer, Liaoning Technical University, Fuxin, China
| | - Ruichuan Li
- College of Material Science Engineer, Liaoning Technical University, Fuxin, China
| | - Yanshuai Li
- College of Material Science Engineer, Liaoning Technical University, Fuxin, China
- *Correspondence: Yanshuai Li,
| | - Shizheng Bai
- College of Material Science Engineer, Liaoning Technical University, Fuxin, China
| |
Collapse
|
9
|
Bai Z, He D, Fu S, Miao Q, Liu S, Huang M, Zhao K, Wang Y, Zhang X. Recent progress in electron–phonon interaction of two‐dimensional materials. NANO SELECT 2022. [DOI: 10.1002/nano.202100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Zhiying Bai
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology Beijing Jiaotong University Beijing China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology Beijing Jiaotong University Beijing China
| | - Shaohua Fu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology Beijing Jiaotong University Beijing China
| | - Qing Miao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology Beijing Jiaotong University Beijing China
| | - Shuangyan Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology Beijing Jiaotong University Beijing China
| | - Mohan Huang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology Beijing Jiaotong University Beijing China
| | - Kun Zhao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology Beijing Jiaotong University Beijing China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology Beijing Jiaotong University Beijing China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology Beijing Jiaotong University Beijing China
| |
Collapse
|
10
|
Rani C, Tanwar M, Ghosh T, Kandpal S, Pathak DK, Chaudhary A, Yogi P, Saxena SK, Kumar R. Raman Spectroscopy as a Simple yet Effective Analytical Tool for Determining Fermi Energy and Temperature Dependent Fermi Shift in Silicon. Anal Chem 2022; 94:1510-1514. [DOI: 10.1021/acs.analchem.1c03624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chanchal Rani
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Manushree Tanwar
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Tanushree Ghosh
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Suchita Kandpal
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Devesh K. Pathak
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Anjali Chaudhary
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Priyanka Yogi
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | | | - Rajesh Kumar
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India
- Centre for Indian Scientific Knowledge Systems, Indian Institute of Technology Indore, Simrol 453552, India
| |
Collapse
|
11
|
Yuan W, Ueji K, Yagi T, Endo T, Lim HE, Miyata Y, Yomogida Y, Yanagi K. Control of Thermal Conductance across Vertically Stacked Two-Dimensional van der Waals Materials via Interfacial Engineering. ACS NANO 2021; 15:15902-15909. [PMID: 34585910 DOI: 10.1021/acsnano.1c03822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A comprehensive understanding of the roles of various nanointerfaces in thermal transport is of critical significance but remains challenging. A two-dimensional van der Waals (vdW) heterostructure with tunable interface lattice mismatch provides an ideal platform to explore the correlation between thermal properties and nanointerfaces and achieve controllable tuning of heat flow. Here, we demonstrate that interfacial engineering is an efficient strategy to tune thermal transport via systematic investigation of the thermal conductance (G) across a series of large-area four-layer stacked vdW materials using an improved polyethylene glycol-assisted time-domain thermoreflectance method. Owing to its rich interfacial mismatch and weak interfacial coupling, the vertically stacked MoSe2-MoS2-MoSe2-MoS2 heterostructure demonstrates the lowest G of 1.5 MW m-2 K-1 among all vdW structures. A roadmap to tune G via homointerfacial mismatch, interfacial coupling, and heterointerfacial mismatch is further demonstrated for thermal tuning. Our work reveals the roles of various interfacial effects on heat flow and highlights the importance of the interfacial mismatch and coupling effects in thermal transport. The design principle is also promising for application in other areas, such as the electrical tuning of energy storage and conversion and the thermoelectricity tuning of thermoelectronics.
Collapse
Affiliation(s)
- Wenyu Yuan
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kan Ueji
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Takashi Yagi
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Takahiko Endo
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Hong En Lim
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yohei Yomogida
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kazuhiro Yanagi
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
12
|
Ahmad H, Ramli R, Ismail NN, Aidit SN, Yusoff N, Samion MZ. Passively mode locked thulium and thulium/holmium doped fiber lasers using MXene Nb 2C coated microfiber. Sci Rep 2021; 11:11652. [PMID: 34078979 PMCID: PMC8172565 DOI: 10.1038/s41598-021-90978-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
As a result of the emergence of two-dimensional (2D) materials for various opto-electronics applications, a new class of materials named MXenes have been attracting interests due to their outstanding nonlinear properties. In this work, an MXene niobium carbide (Nb2C) was proposed and demonstrated as a saturable absorber to induce mode-locking in thulium- and thulium/holmium-doped fiber lasers. The Nb2C solution was first prepared using the liquid exfoliation technique, and then deposited onto a microfiber for integration into the laser cavity. Stable mode-locking operation was observed in both laser cavities, where the center wavelengths of the laser were recorded at 1944 nm for the TDFL and 1950 nm for the THDFL. The generated pulses in the TDFL and THDFL had repetition rates of 9.35 and 11.76 MHz respectively, while their corresponding pulse widths were 1.67 and 1.34 ps. Both of the lasers were highly stable, having SNR values of more than 52 dB and showed no major fluctuations when tested for their long-term stabilities. The results demonstrate an excellent performance of the Nb2C as a saturable absorber, offering opportunities to further explore MXenes for future photonics devices.
Collapse
Affiliation(s)
- H Ahmad
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Physics Dept, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - R Ramli
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - N N Ismail
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S N Aidit
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - N Yusoff
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - M Z Samion
- Photonics Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Gao L, Ma C, Wei S, Kuklin AV, Zhang H, Ågren H. Applications of Few-Layer Nb 2C MXene: Narrow-Band Photodetectors and Femtosecond Mode-Locked Fiber Lasers. ACS NANO 2021; 15:954-965. [PMID: 33480253 DOI: 10.1021/acsnano.0c07608] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although the physicochemical properties of niobium carbide (Nb2C) have been widely investigated, their exploration in the field of photoelectronics is still at the infancy stage with many potential applications that remain to be exploited. Hence, it is demonstrated here that few-layer Nb2C MXene can serve as an excellent building block for both photoelectrochemical-type photodetectors (PDs) and mode-lockers. We show that the photoresponse performance can be readily adjusted by external conditions and that Nb2C NSs exhibit a great potential for narrow-band PDs. The demonstrated mechanism was further confirmed by work functions predicted by density functional theory calculations. In addition, as an optical switch for passively mode-locked fiber lasers, ultrastable pulses can be demonstrated in the telecommunication and mid-infrared regions for Nb2C MXene, and as high as the 69th harmonic order with 411 MHz at the center wavelength of 1882 nm can be achieved. These intriguing results indicate that few-layer Nb2C nanosheets can be used as building blocks for various photoelectronic devices, further broadening the application prospects of two-dimensional MXenes.
Collapse
Affiliation(s)
- Lingfeng Gao
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China
| | - Chunyang Ma
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China
| | - Songrui Wei
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China
| | - Artem V Kuklin
- Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
14
|
Peng Y, Lin C, Long L, Masaki T, Tang M, Yang L, Liu J, Huang Z, Li Z, Luo X, Lombardi JR, Yang Y. Charge-Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes with Excellent SERS Sensitivity for SARS-CoV-2 S Protein Detection. NANO-MICRO LETTERS 2021; 13:52. [PMID: 33425476 PMCID: PMC7783703 DOI: 10.1007/s40820-020-00565-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/19/2020] [Indexed: 05/18/2023]
Abstract
The outbreak of coronavirus disease 2019 has seriously threatened human health. Rapidly and sensitively detecting SARS-CoV-2 viruses can help control the spread of viruses. However, it is an arduous challenge to apply semiconductor-based substrates for virus SERS detection due to their poor sensitivity. Therefore, it is worthwhile to search novel semiconductor-based substrates with excellent SERS sensitivity. Herein we report, for the first time, Nb2C and Ta2C MXenes exhibit a remarkable SERS enhancement, which is synergistically enabled by the charge transfer resonance enhancement and electromagnetic enhancement. Their SERS sensitivity is optimized to 3.0 × 106 and 1.4 × 106 under the optimal resonance excitation wavelength of 532 nm. Additionally, remarkable SERS sensitivity endows Ta2C MXenes with capability to sensitively detect and accurately identify the SARS-CoV-2 spike protein. Moreover, its detection limit is as low as 5 × 10-9 M, which is beneficial to achieve real-time monitoring and early warning of novel coronavirus. This research not only provides helpful theoretical guidance for exploring other novel SERS-active semiconductor-based materials but also provides a potential candidate for the practical applications of SERS technology.
Collapse
Affiliation(s)
- Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 People’s Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049 People’s Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 People’s Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049 People’s Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Li Long
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641 People’s Republic of China
| | - Tanemura Masaki
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, 466-8555 Japan
| | - Mao Tang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 People’s Republic of China
| | - Lili Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 People’s Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049 People’s Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jianjun Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 People’s Republic of China
| | - Zhengren Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 People’s Republic of China
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641 People’s Republic of China
| | - Xiaoying Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032 People’s Republic of China
| | | | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050 People’s Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| |
Collapse
|
15
|
Xu D, Yang F, Qu D, Wang Z, Gu L, Wu W, Lv R. Transferred Photothermal to Photodynamic Therapy Based on the Marriage of Ultrathin Titanium Carbide and Up-Conversion Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13060-13069. [PMID: 33095589 DOI: 10.1021/acs.langmuir.0c02521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this research, upconversion nanoparticles (UCNPs) are used as a light conversion carrier, and their deep light source penetrability is closely combined with ultrathin two-dimensional (2D) Ti3C2Tx to explore the application efficiency of the complex in phototherapy. Due to the advantages of 2D Ti3C2Tx with its high absorbance to ultraviolet/visible light, rich atomic defects to load the drugs, and adjustable thinner structure, this 2D material is beneficially applied as the energy donor. UCNPs@Ti3C2Tx with a photothermal conversion efficiency of 20.7% is proven with the ability to generate reactive oxygen species under a 980 nm laser at the cellular level. Importantly, the main photothermal therapy method can be changed to a photodynamic therapy method due to the degradation of Ti3C2Tx to TiO2 under the oxygen-bearing environment. The in vivo experiment was continued to verify that UCNPs@Ti3C2Tx can kill tumor cells and inhibit tumor growth within a certain period. In addition, in vivo treatment with a combination of immunotherapy and phototherapy of UCNPs@ Ti3C2Tx is carried out to achieve stronger tumor inhibition over the prolonged time points.
Collapse
Affiliation(s)
- Danyang Xu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, P. R. China
| | - Fan Yang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, P. R. China
| | - Danyao Qu
- Interdisciplinary Research Center of Smart Sensor, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710071, P. R. China
| | - Zhenni Wang
- Interdisciplinary Research Center of Smart Sensor, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710071, P. R. China
| | - Long Gu
- Interdisciplinary Research Center of Smart Sensor, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710071, P. R. China
| | - Weiwei Wu
- Interdisciplinary Research Center of Smart Sensor, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710071, P. R. China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, P. R. China
| |
Collapse
|
16
|
Fu Z, Wang N, Legut D, Si C, Zhang Q, Du S, Germann TC, Francisco JS, Zhang R. Rational Design of Flexible Two-Dimensional MXenes with Multiple Functionalities. Chem Rev 2019; 119:11980-12031. [DOI: 10.1021/acs.chemrev.9b00348] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhongheng Fu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Ning Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Dominik Legut
- IT4Innovations, VSB—Technical University of Ostrava, CZ-708 00 Ostrava, Czech Republic
| | - Chen Si
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| | - Shiyu Du
- Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Timothy C. Germann
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joseph S. Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ruifeng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
17
|
Chen J, Tan X, Lin P, Sa B, Zhou J, Zhang Y, Wen C, Sun Z. Comprehensive understanding of intrinsic mobility in the monolayers of III-VI group 2D materials. Phys Chem Chem Phys 2019; 21:21898-21907. [PMID: 31552974 DOI: 10.1039/c9cp04407h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monolayers of III-VI group two-dimensional (2D) materials MX (M = Ga and In and X = S, Se, and Te) have attracted global interest for potential applications in electronic and photoelectric devices due to their attractive physical and chemical characteristics. However, a comprehensive understanding of the distinguished carrier mobility in MX monolayers is of great importance and not yet clear. Herein, using a Boltzmann transport equation (BTE) solver and first principles calculations, we have precisely revealed that the intrinsic mobility in MX monolayers is significantly limited by phonon scattering. Note that the longitudinal acoustic phonon mode and optic phonon modes and were found predominantly coupled with electrons, which strongly restrained the intrinsic mobility in the MX monolayers. Interestingly, apart from a moderate band gap, the GaSe and GaTe monolayers exhibit high electron mobility exceeding 103 cm2 V-1 s-1 and may serve as outstanding electron transport channels. We believe that our findings will shed light on the design and applications of MX monolayers and 2D materials in nanoscale electronic and photoelectric devices.
Collapse
Affiliation(s)
- Jianhui Chen
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|