1
|
Castillo-Blas C, Chester AM, Keen DA, Bennett TD. Thermally activated structural phase transitions and processes in metal-organic frameworks. Chem Soc Rev 2024; 53:3606-3629. [PMID: 38426588 DOI: 10.1039/d3cs01105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The structural knowledge of metal-organic frameworks is crucial to the understanding and development of new efficient materials for industrial implementation. This review classifies and discusses recent advanced literature reports on phase transitions that occur during thermal treatments on metal-organic frameworks and their characterisation. Thermally activated phase transitions and procceses are classified according to the temperaturatures at which they occur: high temperature (reversible and non-reversible) and low temperature. In addition, theoretical calculations and modelling approaches employed to better understand these structural phase transitions are also reviewed.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, OX11 0DE, Didcot, Oxfordshire, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| |
Collapse
|
2
|
Škrjanc A, Jankovič D, Meden A, Mazaj M, Grape ES, Gazvoda M, Zabukovec Logar N. Carbonyl-Supported Coordination in Imidazolates: A Platform for Designing Porous Nickel-Based ZIFs as Heterogeneous Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305258. [PMID: 37797179 DOI: 10.1002/smll.202305258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal-organic framework that have attracted considerable attention as potential functional materials due to their high chemical stability and ease of synthesis. ZIFs are usually composed of zinc ions coordinated with imidazole linkers, with some other transition metals, such as Cu(II) and Co(II), also showing potential as ZIF-forming cations. Despite the importance of nickel in catalysis, no Ni-based ZIF with permanent porosity is yet reported. It is found that the presence and arrangement of the carbonyl functional groups on the imidazole linker play a crucial role in completing the preferred octahedral coordination of nickel, revealing a promising platform for the rational design of Ni-based ZIFs for a wide range of catalytic applications. Herein, the synthesis of the first Ni-based ZIFs is reported and their high potential as heterogeneous catalysts for Suzuki-Miyaura cross-coupling C─C bond forming reactions is demonstrated.
Collapse
Affiliation(s)
- Aljaž Škrjanc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1001, Slovenia
- School of Science, University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia
| | - Dominik Jankovič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, 1001, Slovenia
| | - Anton Meden
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, 1001, Slovenia
| | - Matjaž Mazaj
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1001, Slovenia
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 106 91, Sweden
| | - Martin Gazvoda
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, 1001, Slovenia
| | - Nataša Zabukovec Logar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1001, Slovenia
- School of Science, University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia
| |
Collapse
|
3
|
Zheng Z, Rong Z, Nguyen HL, Yaghi OM. Structural Chemistry of Zeolitic Imidazolate Frameworks. Inorg Chem 2023; 62:20861-20873. [PMID: 38063312 DOI: 10.1021/acs.inorgchem.3c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are a subclass of reticular structures based on tetrahedral four-connected networks of zeolites and minerals. They are composed of transition-metal ions and imidazolate-type linkers, and their pore size and shape, surface area, and functionality can be precisely controlled. Despite their potential, two questions remain unanswered: how to synthesize more diverse ZIF structures and how ZIFs differentiate from other crystalline solids. In other words, how can we use our understanding of their unique structures to better design and synthesize ZIFs? In this Review, we first summarize the methods for synthesizing a wide range of ZIFs. We then review the crystal structure of ZIFs and describe the relationship between their structure and properties using an in-depth analysis. We also discuss several important and intrinsic features that make ZIFs stand out from MOFs and discrete molecular cages. Finally, we outline the future direction for this class of porous crystals.
Collapse
Affiliation(s)
- Zhiling Zheng
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Zichao Rong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Ha L Nguyen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Omar M Yaghi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
4
|
Zhao Y, Mao Z, Jia J, Dai C, Li L, Zhou Y. Novel Electrochemiluminescent Biosensor to Ultrasensitively Detect U94 Gene in Human Herpesvirus 6 Using Metal-Organic Framework-Based Nanoemitters Comprising Iridium(III) Complexes via One-Pot Coordination Reaction Strategy. Anal Chem 2023; 95:17117-17124. [PMID: 37943782 DOI: 10.1021/acs.analchem.3c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The detection of the U94 gene in human herpesvirus 6 is crucial for early diagnosis of HHV-6 infections, which could induce acute febrile illness in infants. In this work, the first ultrasensitive electrochemiluminescence (ECL) biosensor for detecting U94 gene in Human Herpesvirus 6 was successfully designed by utilizing efficient novel metal-organic framework (MOF)-based ECL nanoemitters comprising iridium(III) complexes (Ir-ZIF-8-NH2) synthesized via one-pot coordination reaction strategy as an ECL indicator and a target-catalyzed hairpin assembly (CHA) signal amplification strategy. The as-prepared ECL indicator Ir-ZIF-8-NH2 exhibited an approximately 2.7-fold ECL intensity compared with its small molecular analogue of emissive iridium(III) complex named IrppymIM formed by in situ coordination reaction between iridium(III) solvent complex and imidazole ligands. In addition, a target-catalyzed hairpin assembly (CHA) strategy was employed to further improve the sensitivity of the proposed ECL biosensor, which demonstrated a wide linear range from 1 fM to 1 μM and the limit of detection as low as 0.113 fM (S/N = 3). Significantly, this biosensor was successfully applied to detect U94 gene in plasmids and real virus samples. The recoveries were in the range of 97.0-109.0% for plasmids and 95.7-107.5% for real virus samples with a relative standard deviation (RSD) of 1.87-2.53%. These satisfactory experimental results from the proposed ECL biosensor in this work would inevitably promote the development of new time/cost-effective and sensitive methods to detect HHV-6 with a major global health threat and substantial burden on healthcare in the future.
Collapse
Affiliation(s)
- Yibo Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Ziwang Mao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenji Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
5
|
Barrio J, Li J, Shalom M. Carbon Nitrides from Supramolecular Crystals: From Single Atoms to Heterojunctions and Advanced Photoelectrodes. Chemistry 2023; 29:e202302377. [PMID: 37605638 DOI: 10.1002/chem.202302377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Carbon nitride materials (CN) have become one of the most studied photocatalysts within the last 15 years. While CN absorbs visible light, its low porosity and fast electron-hole recombination hinder its photoelectric performance and have motivated the research in the modification of its physical and chemical properties (such as energy band structure, porosity, or chemical composition) by different means. In this Concept we review the utilization of supramolecular crystals as CN precursors to tailor its properties. We elaborate on the features needed in a supramolecular crystal to serve as CN precursor, we delve on the influence of metal-free crystals in the morphology and porosity of the resulting materials and then discuss the formation of single atoms and heterojunctions when employing a metal-organic crystal. We finally discuss the performance of CN photoanodes derived from crystals and highlight the current standing challenges in the field.
Collapse
Affiliation(s)
- Jesús Barrio
- Department of Chemical Engineering, Imperial College London, London, SW72AZ, England, UK
| | - Junyi Li
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
6
|
León-Alcaide L, López-Cabrelles J, Esteve-Rochina M, Ortí E, Calbo J, Huisman BAH, Sessolo M, Waerenborgh JC, Vieira BJC, Mínguez Espallargas G. Implementing Mesoporosity in Zeolitic Imidazolate Frameworks through Clip-Off Chemistry in Heterometallic Iron-Zinc ZIF-8. J Am Chem Soc 2023; 145:23249-23256. [PMID: 37813379 PMCID: PMC10603776 DOI: 10.1021/jacs.3c08017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/11/2023]
Abstract
Bond breaking has emerged as a new tool to postsynthetically modify the pore structure in metal-organic frameworks since it allows us to obtain pore environments in structures that are inaccessible by other techniques. Here, we extend the concept of clip-off chemistry to archetypical ZIF-8, taking advantage of the different stabilities of the bonds between imidazolate and Zn and Fe metal atoms in heterometallic Fe-Zn-ZIF-8. We demonstrate that Fe centers can be removed selectively without affecting the backbone of the structure that is supported by the Zn atoms. This allows us to create mesopores within the highly stable ZIF-8 structure. The strategy presented, combined with control of the amount of iron centers incorporated into the structure, permits porosity engineering of ZIF materials and opens a new avenue for designing novel hierarchical porous frameworks.
Collapse
Affiliation(s)
- Luis León-Alcaide
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Javier López-Cabrelles
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - María Esteve-Rochina
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Enrique Ortí
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Joaquín Calbo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Bas A. H. Huisman
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Michele Sessolo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - João C. Waerenborgh
- Centro
de Ciências e Tecnologias Nucleares, DECN, Instituto Superior
Técnico, Universidade de Lisboa, Bobadela LRS 2695-066, Portugal
| | - Bruno J. C. Vieira
- Centro
de Ciências e Tecnologias Nucleares, DECN, Instituto Superior
Técnico, Universidade de Lisboa, Bobadela LRS 2695-066, Portugal
| | | |
Collapse
|
7
|
Mazloomi S, Amarloei A, Gholami F, Haghighat GA, Badalians Gholikandi G, Nourmoradi H, Mohammadi AA, Fattahi M, Nguyen Le B. Parametric study and process modeling for metronidazole removal by rhombic dodecahedron ZIF-67 crystals. Sci Rep 2023; 13:14654. [PMID: 37669982 PMCID: PMC10480145 DOI: 10.1038/s41598-023-41724-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Metronidazole (MNZ) is an extensively used antibiotic against bacterial infections for humans and farm animals. Prevention of antibiotics discharge is essential to prevent adverse environmental and health impacts. A member of metal-organic frameworks, zeolite imidazole framework-67 with cobalt sulfate precursor (ZIF-67-SO4) and exceptional physio-chemical properties was prepared via room temperature precipitation to adsorb MNZ. The study framework was designed by Box-Behnken Design to evaluate the effect of pH, ZIF-67-SO4 dose, and contact time on adsorption efficiency. The polynomial model fitted the adsorption system indicated the optimal condition for 97% MNZ removal occurs at pH = 7, adsorbent dosage = 1 g/L, and mixing time = 60 min. The model also revealed that the removal increased with contact time and decreased at strong pH. Equilibrium and kinetic study also indicated the adsorption of MNZ followed the intra-particle diffusion model and the Langmuir isotherm model with a qmax = 63.03 mg/g. The insignificant loss in removal efficacy in use-reuse adsorption cycles reflected the practical viability of ZIF-67-SO4.
Collapse
Affiliation(s)
- Sajad Mazloomi
- Biotechnology and Medicinal Plants Research Center, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Amarloei
- Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faeze Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Haghighat
- Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
- Department of Environmental Health Engineering, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Heshmatollah Nourmoradi
- Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
- School of Engineering &Technology, Duy Tan University, Da Nang, Vietnam.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering &Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
8
|
Subanbekova A, Nikolayenko VI, Bezrukov AA, Sensharma D, Kumar N, O'Hearn DJ, Bon V, Wang SQ, Koupepidou K, Darwish S, Kaskel S, Zaworotko MJ. Water vapour and gas induced phase transformations in an 8-fold interpenetrated diamondoid metal-organic framework. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:9691-9699. [PMID: 37153821 PMCID: PMC10153660 DOI: 10.1039/d3ta01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
In this work, we report the synthesis, structural characterisation and sorption properties of an 8-fold interpenetrated diamondoid (dia) metal-organic framework (MOF) that is sustained by a new extended linker ligand, [Cd(Imibz)2], X-dia-2-Cd, HImibz or 2 = 4-((4-(1H-imidazol-1-yl)phenylimino)methyl)benzoic acid. X-dia-2-Cd was found to exhibit reversible single-crystal-to-single-crystal (SC-SC) transformations between four distinct phases: an as-synthesised (from N,N-dimethylformamide) wide-pore phase, X-dia-2-Cd-α; a narrow-pore phase, X-dia-2-Cd-β, formed upon exposure to water; a narrow-pore phase obtained by activation, X-dia-2-Cd-γ; a medium-pore CO2-loaded phase X-dia-2-Cd-δ. While the space group remained constant in the four phases, the cell volumes and calculated void space ranged from 4988.7 Å3 and 47% (X-dia-2-Cd-α), respectively, to 3200.8 Å3 and 9.1% (X-dia-2-Cd-γ), respectively. X-dia-2-Cd-γ also exhibited a water vapour-induced structural transformation to the water-loaded X-dia-2-Cd-β phase, resulting in an S-shaped sorption isotherm. The inflection point occurred at 18% RH with negligible hysteresis on the desorption profile. Water vapour temperature-humidity swing cycling (60% RH, 300 K to 0% RH, 333 K) indicated hydrolytic stability of X-dia-2-Cd and working capacity was retained after 128 cycles of sorbent regeneration. CO2 (at 195 K) was also observed to induce a structural transformation in X-dia-2-Cd-γ and in situ PXRD studies at 1 bar of CO2, 195 K revealed the formation of X-dia-2-Cd-δ, which exhibited 31% larger unit cell volume than X-dia-2-Cd-γ.
Collapse
Affiliation(s)
- Aizhamal Subanbekova
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Varvara I Nikolayenko
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Andrey A Bezrukov
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Debobroto Sensharma
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Naveen Kumar
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Daniel J O'Hearn
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Volodymyr Bon
- Faculty of Chemistry, Technische Universität Dresden Bergstrasse 66 01062 Dresden Germany
| | - Shi-Qiang Wang
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way 138634 Singapore
| | - Kyriaki Koupepidou
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Shaza Darwish
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Stefan Kaskel
- Faculty of Chemistry, Technische Universität Dresden Bergstrasse 66 01062 Dresden Germany
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| |
Collapse
|
9
|
Gao Z, Li B, Li Z, Yu T, Wang S, Fang Q, Qiu S, Xue M. Free-Standing Metal-Organic Framework Membranes Made by Solvent-Free Space-Confined Conversion for Efficient H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19241-19249. [PMID: 37029737 DOI: 10.1021/acsami.3c02208] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metal-organic frameworks (MOFs) are promising candidates for the advanced membrane materials based on their diverse structures, modifiable pore environment, precise pore sizes, etc. Nevertheless, the use of supports and large amounts of solvents in traditional solvothermal synthesis of MOF membranes is considered inefficient, costly, and environmentally problematic, coupled with challenges in their scalable manufacturing. In this work, we report a solvent-free space-confined conversion (SFSC) approach for the fabrication of a series of free-standing MOF (ZIF-8, Zn(EtIm)2, and Zn2(BIm)4) membranes. This approach excludes the employment of solvents and supports that require tedious pretreatment and, thus, makes the process more environment-friendly and highly efficient. The free-standing membranes feature a robust and unique architecture, which comprise dense surface layers and highly porous interlayer with large amounts of irregular-shaped micron-scale pore cavities, inducing satisfactory H2/CO2 selectivities and exceptional H2 permeances. The ZIF-8 membrane affords a considerable H2 permeance of 2653.7 GPU with a competitive H2/CO2 selectivity of 17.1, and the Zn(EtIm)2 membrane exhibits a high H2/CO2 selectivity of 22.1 with an excellent H2 permeance (6268.7 GPU). The SFSC approach potentially provides a new pathway for preparing free-standing MOF membranes under solvent-free conditions, rendering it feasible for scale-up production of membrane materials for gas separation.
Collapse
Affiliation(s)
- Zhuangzhuang Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Baoju Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tongwen Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Shuchang Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ming Xue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
10
|
Azbell TJ, Pitt TA, Bollmeyer MM, Cong C, Lancaster KM, Milner PJ. Ionothermal Synthesis of Metal-Organic Frameworks Using Low-Melting Metal Salt Precursors. Angew Chem Int Ed Engl 2023; 62:e202218252. [PMID: 36811601 PMCID: PMC10079605 DOI: 10.1002/anie.202218252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with myriad potential applications in chemical separations, catalysis, and drug delivery. A major barrier to the application of MOFs is their poor scalability, as most frameworks are prepared under highly dilute solvothermal conditions using toxic organic solvents. Herein, we demonstrate that combining a range of linkers with low-melting metal halide (hydrate) salts leads directly to high-quality MOFs without added solvent. Frameworks prepared under these ionothermal conditions possess porosities comparable to those prepared under traditional solvothermal conditions. In addition, we report the ionothermal syntheses of two frameworks that cannot be prepared directly under solvothermal conditions. Overall, the user-friendly method reported herein should be broadly applicable to the discovery and synthesis of stable metal-organic materials.
Collapse
Affiliation(s)
- Tyler J Azbell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Tristan A Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Melissa M Bollmeyer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Christina Cong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
- Current address: Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
11
|
Xiao Y, Chen Y, Hong AN, Bu X, Feng P. Solvent-free Synthesis of Multi-Module Pore-Space-Partitioned Metal-Organic Frameworks for Gas Separation. Angew Chem Int Ed Engl 2023; 62:e202300721. [PMID: 36780305 DOI: 10.1002/anie.202300721] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Multi-module design of framework materials with multiple distinct building blocks has attracted much attention because such materials are more amenable to compositional and geometrical tuning and thus offer more opportunities for property optimization. Few examples are known that use environmentally friendly and cost-effective solvent-free method to synthesize such materials. Here, we report the use of solvent-free method (also modulator-free) to synthesize a series of multi-module MOFs with high stability and separation property for C2 H2 /CO2 . The synthesis only requires simple mixing of reactants and short reaction time (2 h). Highly porous and stable materials can be made without any post-synthetic activation. The success of solvent-free synthesis of multi-module MOFs reflects the synergy between different modules, resulting in stable pore-partitioned materials, despite the fact that other competitive crystallization pathways with simpler framework compositions also exist.
Collapse
Affiliation(s)
- Yuchen Xiao
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, USA
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, USA
| | - Anh N Hong
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA-90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, USA
| |
Collapse
|
12
|
Jung C, Choi SB, Park J, Jung M, Kim J, Oh H, Kim J. Porous zeolitic imidazolate frameworks assembled with highly-flattened tetrahedral copper(II) centres and 2-nitroimidazolates. Chem Commun (Camb) 2023; 59:4040-4043. [PMID: 36924406 DOI: 10.1039/d2cc06797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cu(II)-based zeolitic imidazolates (Cu-ZIFs), Cu-ZIF-gis and -rho, formulated as Cu(nIm)2 (nIm = 2-nitroimidazolate) have highly-flattened tetrahedral coordination geometry. Cu-ZIF-gis has 2.4 Å cylindrical pores that can adsorb H2 gas, and Cu-ZIF-rho has 19.8 Å cages with a BET surface area of 1320 m2 g-1.
Collapse
Affiliation(s)
- Cheolwon Jung
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Sang Beom Choi
- Department of Physics and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jaewoo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Minji Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Jonghoon Kim
- Department of Physics and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea
| | - Hyunchul Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea. .,Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jaheon Kim
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
13
|
Miguel-Casañ E, Darawsheh MD, Fariña-Torres V, Vitórica-Yrezábal IJ, Andres-Garcia E, Fañanás-Mastral M, Mínguez Espallargas G. Heterometallic palladium-iron metal-organic framework as a highly active catalyst for cross-coupling reactions. Chem Sci 2022; 14:179-185. [PMID: 36605746 PMCID: PMC9769104 DOI: 10.1039/d2sc05192c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
Palladium-based metal-organic frameworks (Pd-MOFs) are an emerging class of heterogeneous catalysts extremely challenging to achieve due to the facile leaching of palladium and its tendency to be reduced. Herein, Pd(ii) was successfully incorporated in the framework of a MOF denoted as MUV-22 using a solvent assisted reaction. This stable MOF, with square-octahedron (soc) topology as MIL-127, and a porosity of 710 m2 g-1, is highly active, selective, and recyclable for the Suzuki-Miyaura allylation of aryl and alkyl boronates as exemplified with the coupling between cinnamyl bromide and Me-Bpin, a typically reluctant reagent in cross-coupling reactions.
Collapse
Affiliation(s)
- Eugenia Miguel-Casañ
- Instituto de Ciencia Molecular (ICMol), Universidad de ValenciaC/ Catedrático José Beltrán, 246980PaternaSpain
| | - Mohanad D. Darawsheh
- Instituto de Ciencia Molecular (ICMol), Universidad de ValenciaC/ Catedrático José Beltrán, 246980PaternaSpain
| | - Víctor Fariña-Torres
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | | | - Eduardo Andres-Garcia
- Instituto de Ciencia Molecular (ICMol), Universidad de ValenciaC/ Catedrático José Beltrán, 246980PaternaSpain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | | |
Collapse
|
14
|
Wang X, Ma Q, Cheng J, He D, Zhang L, Lu P, Jin H, Choi J, Li Y. Crystallization-controlled defect minimization of a ZIF-67 membrane for the robust separation of propylene and propane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Copper-catalyzed Z-selective synthesis of acrylamides and polyacrylamides via alkylidene ketenimines. Nat Commun 2022; 13:4362. [PMID: 35896596 PMCID: PMC9329291 DOI: 10.1038/s41467-022-32082-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
It remains very important to discover and study new fundamental intermediates consisting of carbon and nitrogen as the abundant elements of organic molecules. The unique alkylidene ketenimine could be formed in situ under mild conditions by an unexpected copper-catalyzed three-component reaction of alkyne, azide and water involving a successive cycloaddition, N2 extrusion and carbene-assisted rearrangement. Only Z-α,β-unsaturated amides instead of E-α,β-unsaturated amides or triazoles were acquired from alkylidene ketenimines with excellent selectivities and stereospecificities. In addition, a series of “approximate” alternating copolymers (poly (triazole-alt-Z-acrylamides)) with high Mns and yields were efficiently afforded by multicomponent polymerization through a very simple operation basing on this multicomponent reaction. Alkylidene ketenimines are rarely reported, but synthetically useful, reactive intermediates. Here, the authors disclose a three-component reaction of alkyne, azide and water by cycloaddition, nitrogen extrusion, and carbene-assisted rearrangement, via in situ formation of alkylidene ketenimine.
Collapse
|
16
|
Ma M, Zhang J, Zhang X, Kan Z, Du Y. Zeolitic imidazolate framework‐67–modified open‐tubular column with cyclodextrin for enantioseparation in capillary electrochromatography. Electrophoresis 2022; 43:1415-1422. [DOI: 10.1002/elps.202100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/03/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing P. R. China
| | - Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing P. R. China
| | - Xicheng Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing P. R. China
| | - Zigui Kan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing P. R. China
| |
Collapse
|
17
|
Lee DT, Corkery P, Park S, Jeong HK, Tsapatsis M. Zeolitic Imidazolate Framework Membranes: Novel Synthesis Methods and Progress Toward Industrial Use. Annu Rev Chem Biomol Eng 2022; 13:529-555. [PMID: 35417198 DOI: 10.1146/annurev-chembioeng-092320-120148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dennis T Lee
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA;
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA;
| | - Sunghwan Park
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA;
| | - Hae-Kwon Jeong
- Artie McFerrin Department of Chemical Engineering and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA;
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA; .,Applied Physics Laboratory, Johns Hopkins University, Laurel, Texas, USA
| |
Collapse
|
18
|
López-Cabrelles J, Miguel-Casañ E, Esteve-Rochina M, Andres-Garcia E, Vitórica-Yrezábal IJ, Calbo J, Mínguez Espallargas G. Multivariate sodalite zeolitic imidazolate frameworks: a direct solvent-free synthesis. Chem Sci 2022; 13:842-847. [PMID: 35173949 PMCID: PMC8768878 DOI: 10.1039/d1sc04779e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Different mixed-ligand Zeolitic Imidazolate Frameworks (ZIFs) with sodalite topology, i.e. isoreticular to ZIF-8, unachievable by conventional synthetic routes, have been prepared using a solvent-free methodology. In particular, the versatility of this method is demonstrated with three different metal centres (Zn, Co and Fe) and binary combinations of three different ligands (2-methylimidazole, 2-ethylimidazole and 2-methylbenzimidazole). One combination of ligands, 2-ethylimidazole and 2-methylbenzimidazole, results in the formation of SOD frameworks for the three metal centres despite this topology not being obtained for the individual ligands. Theoretical calculations confirm that this topology is the lowest in energy upon ligand mixing.
Collapse
Affiliation(s)
- Javier López-Cabrelles
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | - Eugenia Miguel-Casañ
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | - María Esteve-Rochina
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | - Eduardo Andres-Garcia
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | | | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Paterna 46980 Valencia Spain
| | | |
Collapse
|
19
|
López-Cabrelles J, Mañas-Valero S, Vitórica-Yrezábal IJ, Bereciartua PJ, Coronado E, Mínguez Espallargas G. A fluorinated 2D magnetic coordination polymer. Dalton Trans 2022; 51:1861-1865. [PMID: 35018913 DOI: 10.1039/d1dt03734j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we show the versatility of coordination chemistry to design and expand a family of 2D materials by incorporating F groups at the surface of the layers. Through the use of a prefuntionalized organic linker with F groups, it is possible to achieve a layered magnetic material based on Fe(II) centers that are chemically stable in open air, contrary to the known 2D inorganic magnetic materials. The high quality of the single crystals and their robustness allow to fabricate 2D molecular materials by micromechanical exfoliation, preserving the crystalline nature of these layers together with the desired functionalization.
Collapse
Affiliation(s)
- Javier López-Cabrelles
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain.
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain.
| | | | - Pablo J Bereciartua
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain.
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain.
| |
Collapse
|
20
|
Zhang J, Lei Q, Luan L, Zeng H, Zou G, Lin Z. N-Methylimidazolium containing metal phosphate–oxalates: solvent-free synthesis, crystal structure, and proton conduction. CrystEngComm 2022. [DOI: 10.1039/d1ce01659h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two new metal phosphate–oxalates were prepared under solvent-free conditions using N-methylimidazole as a proton carrier, and display interesting proton-conducting behaviours.
Collapse
Affiliation(s)
- Junfeng Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qing Lei
- Department of Criminal Investigation, Sichuan Police College, Luzhou 646000, China
| | - Lindong Luan
- Department of Criminal Investigation, Sichuan Police College, Luzhou 646000, China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
21
|
Minh Phuoc N, Anh Thu Tran N, Minh Khoi T, Bin Jung H, Ahn W, Jung E, Yoo CY, Kang HS, Cho Y. ZIF-67 metal-organic frameworks and CNTs-derived nanoporous carbon structures as novel electrodes for flow-electrode capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Mphuthi L, Erasmus E, Langner EHG. Metal Exchange of ZIF-8 and ZIF-67 Nanoparticles with Fe(II) for Enhanced Photocatalytic Performance. ACS OMEGA 2021; 6:31632-31645. [PMID: 34869987 PMCID: PMC8637596 DOI: 10.1021/acsomega.1c04142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/19/2021] [Indexed: 05/19/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs), such as ZIF-8 and ZIF-67, were found to be efficient catalysts. However, ZIFs are not used much in photocatalysis due to their low photocatalytic activity for most reactions. The photocatalytic activity can be improved by modifying the framework by exchanging the Zn(II) ions (ZIF-8) and Co(II) ions (ZIF-67) with a more photocatalytically active metal(II) ion to form an efficient bimetallic ZIF photocatalyst. Redox-active iron (Fe)-based materials are known to be highly potent photocatalysts. Thus, incorporating iron into ZIFs could significantly enhance their photocatalytic performance. In this study, we modified nanosized ZIF-8(Zn) and ZIF-67(Co) via metal (Fe2+) exchange to produce bimetallic frameworks that are photocatalytically more active than their parent ZIFs. Nanosized ZIF-8 and ZIF-67 were synthesized isothermally in either water or methanol under ambient conditions. From these, Fe-containing bimetallic ZIF-8 and ZIF-67 nanoparticles were synthesized via the metal exchange, and their performance on the photocatalytic degradation of dye was evaluated. The morphology and crystal structures of the pristine ZIF-8 and ZIF-67 nanoparticles were retained to a large extent during the iron exchange. Their Brunauer-Emmett-Teller (BET) surface areas decreased by less than 15% for nZIF-8 and less than 12% for nZIF-67. The binding energy values on X-ray photoelectron spectroscopy (XPS) confirmed the preservation of the oxidation state of Fe(II) during the exchange process. A remarkably higher catalytic activity was observed for the photocatalytic degradation of dye by the Fe-exchanged nZIF-8 and nZIF-67 compared to their parent ZIFs. This proved that the incorporation of Fe(II) centers into the ZIF framework enhanced the photocatalytic activity of the framework dramatically. In addition, these catalysts can be regenerated and reused without an appreciable loss in activity.
Collapse
|
23
|
López-Cabrelles J, Mañas-Valero S, Vitórica-Yrezábal IJ, Šiškins M, Lee M, Steeneken PG, van der Zant HSJ, Mínguez Espallargas G, Coronado E. Chemical Design and Magnetic Ordering in Thin Layers of 2D Metal-Organic Frameworks (MOFs). J Am Chem Soc 2021; 143:18502-18510. [PMID: 34723487 PMCID: PMC8587609 DOI: 10.1021/jacs.1c07802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 11/28/2022]
Abstract
Through rational chemical design, and thanks to the hybrid nature of metal-organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic nodes and the ligands in a family of layered MOFs that allows the tuning of their magnetic properties. Specifically, the reaction of benzimidazole-type ligands with different metal centers (MII = Fe, Co, Mn, Zn) in a solvent-free synthesis produces a family of crystalline materials, denoted as MUV-1(M), which order antiferromagnetically with critical temperatures that depend on M. Furthermore, the incorporation of additional substituents in the ligand results in a novel system, denoted as MUV-8, formed by covalently bound magnetic double layers interconnected by van der Waals interactions, a topology that is very rare in the field of 2D materials and unprecedented for 2D magnets. These layered materials are robust enough to be mechanically exfoliated down to a few layers with large lateral dimensions. Finally, the robustness and crystallinity of these layered MOFs allow the fabrication of nanomechanical resonators that can be used to detect─through laser interferometry─the magnetic order in thin layers of these 2D molecule-based antiferromagnets.
Collapse
Affiliation(s)
- Javier López-Cabrelles
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| | - Samuel Mañas-Valero
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| | | | - Makars Šiškins
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Martin Lee
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Peter G. Steeneken
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Herre S. J. van der Zant
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Guillermo Mínguez Espallargas
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| | - Eugenio Coronado
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| |
Collapse
|
24
|
Sankar SS, Karthick K, Kumaravel S, Karmakar A, Ragunath M, Kundu S. Temperature-Controlled Structural Variations of Meticulous Fibrous Networks of NiFe-Polymeric Zeolite Imidazolate Frameworks for Enhanced Performance in Electrocatalytic Water-Splitting Reactions. Inorg Chem 2021; 60:12467-12480. [PMID: 34296864 DOI: 10.1021/acs.inorgchem.1c01698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing non-noble, earth-ample, and stable electrocatalysts are highly anticipated in oxygen-evolution reaction (OER) and hydrogen-evolution reaction (HER) at unique pH conditions. Herein, we have synthesized bimetallic (nickel and iron) zeolite imidazolate framework (ZIF)-based nanofibrous materials via a simple electrospinning (ES) process. The structural stability of the fibrous material is subjected to various calcination conditions. We have elaborated the structural importance of the one-dimensional (1D) fibrous materials in electrocatalytic water-splitting reactions. As a result, NiFe-ZIF-NFs (Nanofibers)-RT (Room Temperature) have delivered a small overpotential of 241 mV at 10 mA cm-2 current density in OER and 290 mV at a fixed current density of 50 mA cm-2 in HER at two different pH conditions with 1 M KOH and 0.5 M H2SO4, respectively. Furthermore, it exposes the actual surface area of 27.270 m2 g-1 and a high electrochemical active surface area (ECSA) of 50 μF in OER and 55 μF in HER, which is responsible for the electrochemical performance with better stability. This exceptional activity of the materials is mainly attributed to the structural dependency of the fibrous network through the polymeric architecture.
Collapse
Affiliation(s)
- Selvasundarasekar Sam Sankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Madhu Ragunath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| |
Collapse
|
25
|
Yi B, Zhao H, Zhang Y, Si X, Zhang G, An Y, Su L, Tsung CK, Chou LY, Xie J. A direct solvent-free conversion approach to prepare mixed-metal metal-organic frameworks from doped metal oxides. Chem Commun (Camb) 2021; 57:3587-3590. [PMID: 33710227 DOI: 10.1039/d1cc00671a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose a novel strategy to introduce platinum into the metal nodes of ZIF-8 by preloading Pt as a dopant in ZnO (Pt-ZnO) and then convert it to Pt doped ZIF-8 (Pt-ZIF-8) through a chemical vapor deposition (CVD) approach. The solvent-free conversion of Pt-ZnO to Pt-ZIF-8 allows the Pt dopant in ZnO to coordinate with organic linkers directly without the formation of Pt nanoparticles, which is a general issue of many methods. This general synthesis strategy may facilitate the discovery of MMOFs that have not been reported previously.
Collapse
Affiliation(s)
- Beili Yi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu X, Li J, Li N, Li B, Bu X. Recent Advances on Metal‐Organic Frameworks in the Conversion of Carbon Dioxide. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000357] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 China
| | - Na Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 China
| | - Xian‐He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 China
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
27
|
Huang L, Xu H, Zhao Y, Huang L, Bi J, Zeng H, Zou G, Gao D, Lin Z. Isonicotinic acid-templated metal phosphate–oxalates: solvent-free synthesis, luminescence, and proton conduction. CrystEngComm 2021. [DOI: 10.1039/d1ce00873k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new layered metal phosphate–oxalates were prepared under solvent-free conditions using isonicotinic acid as a structure-directing agent, which show interesting photoluminescence and proton-conducting properties.
Collapse
Affiliation(s)
- Lijuan Huang
- College of Chemistry, Sichuan University, Chengdu 610064, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Haiping Xu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Darawsheh MD, Mazarío J, Lopes CW, Giménez-Marqués M, Domine ME, Meira DM, Martínez J, Mínguez Espallargas G, Oña-Burgos P. MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis*. Chemistry 2020; 26:13659-13667. [PMID: 32521073 DOI: 10.1002/chem.202001895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 11/09/2022]
Abstract
Metal-organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous catalyst for hydrogenation of nitroarenes and nitrobenzene coupling with benzaldehyde has been evaluated, proving it to be an efficient and reusable catalyst.
Collapse
Affiliation(s)
- Mohanad D Darawsheh
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Jaime Mazarío
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Christian W Lopes
- Laboratory of Reactivity and Catalysis-Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501970, Porto Alegre, Brazil
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Marcelo E Domine
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Debora M Meira
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA.,Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Jordan Martínez
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/ Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Pascual Oña-Burgos
- Instituto de Tecnología Química, Universitat Politècnica de, València, Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, Valencia, Spain.,Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almería, 04120, Spain
| |
Collapse
|
29
|
Enhanced Desalination Performance of Capacitive Deionization Using Nanoporous Carbon Derived from ZIF-67 Metal Organic Frameworks and CNTs. NANOMATERIALS 2020; 10:nano10112091. [PMID: 33105663 PMCID: PMC7690409 DOI: 10.3390/nano10112091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Capacitive deionization (CDI) based on ion electrosorption has recently emerged as a promising desalination technology due to its low energy consumption and environmental friendliness compared to conventional purification technologies. Carbon-based materials, including activated carbon (AC), carbon aerogel, carbon cloth, and carbon fiber, have been mostly used in CDI electrodes due their high surface area, electrochemical stability, and abundance. However, the low electrical conductivity and non-regular pore shape and size distribution of carbon-based electrodes limits the maximization of the salt removal performance of a CDI desalination system using such electrodes. Metal-organic frameworks (MOFs) are novel porous materials with periodic three-dimensional structures consisting of metal center and organic ligands. MOFs have received substantial attention due to their high surface area, adjustable pore size, periodical unsaturated pores of metal center, and high thermal and chemical stabilities. In this study, we have synthesized ZIF-67 using CNTs as a substrate to fully utilize the unique advantages of both MOF and nanocarbon materials. Such synthesis of ZIF-67 carbon nanostructures was confirmed by TEM, SEM, and XRD. The results showed that the 3D-connected ZIF-67 nanostructures bridging by CNTs were successfully prepared. We applied this nanostructured ZIF-67@CNT to CDI electrodes for desalination. We found that the salt removal performance was significantly enhanced by 88% for 30% ZIF-67@CNTs-included electrodes as compared with pristine AC electrodes. This increase in salt removal behavior was analyzed by electrochemical analysis such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements, and the results indicate reduced electrical impedance and enhanced electrode capacitance in the presence of ZIF-67@CNTs.
Collapse
|
30
|
Cao J, Guo C, Guo X, Chen Z. Inhibition behavior of synthesized ZIF-8 derivative for copper in sodium chloride solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Ko JS, Johnson JK, Johnson PI, Xia Z. Decoupling Oxygen and Chlorine Evolution Reactions in Seawater using Iridium‐based Electrocatalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202000653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jesse S. Ko
- Research and Exploratory Development Department Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 USA
| | - James K. Johnson
- Research and Exploratory Development Department Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 USA
| | - Phillip I. Johnson
- Research and Exploratory Development Department Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 USA
| | - Zhiyong Xia
- Research and Exploratory Development Department Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 USA
| |
Collapse
|
32
|
Speight IR, Huskić I, Arhangelskis M, Titi HM, Stein RS, Hanusa TP, Friščić T. Disappearing Polymorphs in Metal-Organic Framework Chemistry: Unexpected Stabilization of a Layered Polymorph over an Interpenetrated Three-Dimensional Structure in Mercury Imidazolate. Chemistry 2020; 26:1811-1818. [PMID: 31756261 DOI: 10.1002/chem.201905280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 01/06/2023]
Abstract
The "disappearing polymorph" phenomenon is well established in organic solids, and has had a profound effect in pharmaceutical materials science. The first example of this effect in metal-containing systems in general, and in coordination-network solids in particular, is here reported. Specifically, attempts to mechanochemically synthesize a known interpenetrated diamondoid (dia) mercury(II) imidazolate metal-organic framework (MOF) yielded a novel, more stable polymorph based on square-grid (sql) layers. Simultaneously, the dia-form was found to be highly elusive, observed only as a short-lived intermediate in monitoring solvent-free synthesis and not at all from solution. The destabilization of a dense dia-framework relative to a lower dimensionality one is in contrast to the behavior of other imidazolate MOFs, with periodic density functional theory (DFT) calculations showing that it arises from weak interactions, including structure-stabilizing agostic C-H⋅⋅⋅Hg contacts. While providing a new link between MOFs and crystal engineering of organic solids, these findings highlight a possible role for agostic interactions in directing topology and stability of MOF polymorphs.
Collapse
Affiliation(s)
- Isaiah R Speight
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Igor Huskić
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Mihails Arhangelskis
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada.,Faculty of Chemistry, University of Warsaw, Warsaw, 02-093, Poland
| | - Hatem M Titi
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Robin S Stein
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Timothy P Hanusa
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Tomislav Friščić
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| |
Collapse
|
33
|
Guo L, Liang M, Wang X, Kong R, Chen G, Xia L, Qu F. The role of l-histidine as molecular tongs: a strategy of grasping Tb 3+ using ZIF-8 to design sensors for monitoring an anthrax biomarker on-the-spot. Chem Sci 2020; 11:2407-2413. [PMID: 34084404 PMCID: PMC8157567 DOI: 10.1039/d0sc00030b] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023] Open
Abstract
In this study, a novel lanthanide-doped nanoprobe for monitoring dipicolinic acid (DPA), a unique biomarker of Bacillus anthracis, was constructed by coordination of Tb3+ with l-histidine (His) functionalized ZIF-8 (His@ZIF-8). After being functionalized with His, the resultant His@ZIF-8 had abundant carboxyl and amino groups, which like tongs help His@ZIF-8 "grasp" Tb3+ firmly to form a stable lanthanide-doped nanoparticle (His@ZIF-8/Tb3+). Owing to the unsaturated coordination of Tb3+ with the amino acid group, the resultant His@ZIF-8/Tb3+ showed reserved response sites of Tb3+ to DPA because of its unique molecular structure. After the His@ZIF-8/Tb3+ coordination with DPA, the intrinsic fluorescence emission of the Tb3+ ions was triggered through energy transfer, leading to bright yellow green luminescence owing to the antenna role of DPA. Benefitting from the His functionalization and the characteristics of ZIF-8, especially the high porosity and large surface area, the developed His@ZIF-8/Tb3+ sensing platform exhibited attractive features as a fluorescent sensor for monitoring DPA such as fast response kinetics (10 s), high sensitivity and selectivity, and being portable, easy to operate, economical and secure. This sensor platform showed a satisfactory linear relationship (R 2 = 0.999) ranging from 0.08 to 10 μmol L-1 and an ultralow limit of detection (LOD) of 0.02 μmol L-1. This strategy for the design of functionalized MOFs to construct sensing probes and the resultant His@ZIF-8/Tb3+ would provide a potential strategy for the exploitation of other functionalized materials used in other research fields and promising fluorescence platforms for the detection of other targets.
Collapse
Affiliation(s)
- Lan Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Maosheng Liang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Xiuli Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Rongmei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Guang Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Lian Xia
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| |
Collapse
|
34
|
Tian D, Song N, Zhong M, Lu X, Wang C. Bimetallic MOF Nanosheets Decorated on Electrospun Nanofibers for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1280-1291. [PMID: 31834776 DOI: 10.1021/acsami.9b16420] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rational design of metal-organic framework (MOF)-based materials with a huge specific surface area, high redox activity, and favorable conductivity is currently a hot subject for their potential usage in supercapacitor electrodes. Herein, novel bimetallic MOFs with a flowerlike nanosheet structure grown on the electrospun nanofibers (PPNF@M-Ni MOF, M = Co, Zn, Cu, Fe) have been prepared by controlling the incorporation of various types of metal ions, which display superior electrochemical performance. For example, PPNF@Co-Ni MOF possesses a large specific capacitance of 1096.2 F g-1 (specific capacity of 548.1 C g-1) at 1 A g-1 and excellent rate performance. In addition, an asymmetric solid-state device composed of PPNF@Co-Ni MOF (positive materials) and KOH-activated carbon nanofibers embedded with reduced graphene oxide (negative materials) reaches a maximum energy density of 93.6 Wh kg-1 at the power density of 1600.0 W kg-1 and long cycling life. This work may greatly advance the research toward the design of supported MOF-based electrode materials for a promising prospect in energy conversion and storage.
Collapse
Affiliation(s)
- Di Tian
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Na Song
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| |
Collapse
|
35
|
León-Alcaide L, López-Cabrelles J, Mínguez Espallargas G, Coronado E. 2D magnetic MOFs with micron-lateral size by liquid exfoliation. Chem Commun (Camb) 2020; 56:7657-7660. [DOI: 10.1039/d0cc02982c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we obtained high-quality nanosheets for a whole family of Fe-based magnetic MOFs, MUV-1-X, through a liquid exfoliation procedure.
Collapse
Affiliation(s)
- Luis León-Alcaide
- Instituto de Ciencia Molecular (ICMol)
- Universidad de Valencia
- 46980 Paterna
- Spain
| | | | | | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol)
- Universidad de Valencia
- 46980 Paterna
- Spain
| |
Collapse
|
36
|
Xiao Y, Hong AN, Hu D, Wang Y, Bu X, Feng P. Solvent-Free Synthesis of Zeolitic Imidazolate Frameworks and the Catalytic Properties of Their Carbon Materials. Chemistry 2019; 25:16358-16365. [PMID: 31750594 DOI: 10.1002/chem.201903888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized solvothermally by using cost- and waste-incurring organic solvents. Here, a direct synthesis method is reported for ZIF-8, ZIF-67, and their heterometallic versions from solid precursors only. This solvent-free crystallization method not only completely avoids organic solvents, but also provides an effective path for the synthesis of homogeneous mixed-metal ZIFs. Furthermore, under templating by NaCl/ZnCl2 eutectic salt, carbonization of the ZIF materials gives rise to a series of N-containing high-surface-area carbon materials with impressive catalytic properties for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Yuchen Xiao
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Anh N Hong
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Dandan Hu
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Yanxiang Wang
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| |
Collapse
|
37
|
Stassin T, Stassen I, Wauteraerts N, Cruz AJ, Kräuter M, Coclite AM, De Vos D, Ameloot R. Solvent-Free Powder Synthesis and Thin Film Chemical Vapor Deposition of a Zinc Bipyridyl-Triazolate Framework. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Timothée Stassin
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS); KU Leuven; Celestijnenlaan 200F box 2454 3000 Leuven Belgium
| | - Ivo Stassen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS); KU Leuven; Celestijnenlaan 200F box 2454 3000 Leuven Belgium
| | - Nathalie Wauteraerts
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS); KU Leuven; Celestijnenlaan 200F box 2454 3000 Leuven Belgium
| | - Alexander John Cruz
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS); KU Leuven; Celestijnenlaan 200F box 2454 3000 Leuven Belgium
| | - Marianne Kräuter
- Institute of Solid State Physics; Graz University of Technology; Petersgasse 16 8010 Graz Austria
| | - Anna Maria Coclite
- Institute of Solid State Physics; Graz University of Technology; Petersgasse 16 8010 Graz Austria
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS); KU Leuven; Celestijnenlaan 200F box 2454 3000 Leuven Belgium
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS); KU Leuven; Celestijnenlaan 200F box 2454 3000 Leuven Belgium
| |
Collapse
|
38
|
Luan L, Zhang Y, Zeng H, Zou G, Dai Y, Zhou X, Lin Z. Cluster–oxalate frameworks with extra-large channels: solvent-free synthesis, chemical stability, and proton conduction. Dalton Trans 2019; 48:13130-13134. [DOI: 10.1039/c9dt02703c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two cluster–oxalate frameworks (denoted as SCU-62 and SCU-65) were prepared under solvent-free conditions.
Collapse
Affiliation(s)
- Lindong Luan
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
- Department of Criminal Science and Technology
| | - Ying Zhang
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Hongmei Zeng
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Guohong Zou
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yong Dai
- Department of Criminal Science and Technology
- Sichuan Police College
- Luzhou 646000
- P. R. China
| | - Xiaoying Zhou
- Department of Criminal Science and Technology
- Sichuan Police College
- Luzhou 646000
- P. R. China
| | - Zhien Lin
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
39
|
Zhu J, Shen X, Kong L, Zhu G, Ji Z, Xu K, Li B, Zhou H, Yue X. MOF derived CoP-decorated nitrogen-doped carbon polyhedrons/reduced graphene oxide composites for high performance supercapacitors. Dalton Trans 2019; 48:10661-10668. [DOI: 10.1039/c9dt01629e] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A CoP-NPC/RGO composite prepared through an efficient pyrolysis–phosphidation–assembly strategy exhibits an enhanced electrochemical performance.
Collapse
Affiliation(s)
- Jun Zhu
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Xiaoping Shen
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Lirong Kong
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Guoxing Zhu
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Zhenyuan Ji
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Keqiang Xu
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Baolong Li
- State and Local Joint Engineering Laboratory for Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hu Zhou
- School of Material Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Xiaoyang Yue
- School of Material Science and Engineering
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
40
|
Wang Q, Wei F, Manoj D, Zhang Z, Xiao J, Zhao X, Xiao F, Wang H, Wang S. In situ growth of Fe(ii)-MOF-74 nanoarrays on nickel foam as an efficient electrocatalytic electrode for water oxidation: a mechanistic study on valence engineering. Chem Commun (Camb) 2019; 55:11307-11310. [DOI: 10.1039/c9cc05087f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT results first demonstrate that varying the metal valence can tune the stable intrinsic electronic structure of MOF, different valence Fe(ii) and Fe(iii)-MOF-74 nanoarrrays on nickel foam are further synthesized as electrode for water oxidation.
Collapse
Affiliation(s)
- Qijun Wang
- School of Chemistry and Chemical Engineering
- Huazhong University of Science & Technology
- Wuhan
- P. R. China
| | - Feifei Wei
- School of Materials Science and Engineering
- Hubei University
- Wuhan
- P. R. China
| | - Devaraj Manoj
- School of Chemistry and Chemical Engineering
- Huazhong University of Science & Technology
- Wuhan
- P. R. China
| | - Zheye Zhang
- School of Chemistry and Chemical Engineering
- Huazhong University of Science & Technology
- Wuhan
- P. R. China
| | - Junwu Xiao
- School of Chemistry and Chemical Engineering
- Huazhong University of Science & Technology
- Wuhan
- P. R. China
| | - Xuezhu Zhao
- School of Chemistry and Chemical Engineering
- Huazhong University of Science & Technology
- Wuhan
- P. R. China
| | - Fei Xiao
- School of Chemistry and Chemical Engineering
- Huazhong University of Science & Technology
- Wuhan
- P. R. China
| | - Hairen Wang
- School of Materials Science and Engineering
- Hubei University
- Wuhan
- P. R. China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering
- Huazhong University of Science & Technology
- Wuhan
- P. R. China
| |
Collapse
|