1
|
Sun Q, Xu B, Du J, Yu Y, Huang Y, Deng X. Interfacial electrostatic charges promoted chemistry: Reactions and mechanisms. Adv Colloid Interface Sci 2025; 339:103436. [PMID: 39938156 DOI: 10.1016/j.cis.2025.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Interfacial electrostatic charges are a universal phenomenon in nature. In recent years, interest in the chemical reactivity of electrostatic charges has grown. Interfacial electrostatic charge-driven chemical synthesis reduces the reliance on redox reagents, catalysts, and hazardous solvents, which promotes environmental sustainability and cost-effectiveness in the chemical industry. Electrostatic charges can be generated at the interfaces between solids, liquids, and gases. The chemical properties of electrostatic charges have been observed at interfaces between solids and liquids, and between liquids and gases. This review summarized the chemical reactivity of interfacial electrostatic charges and its mechanisms. Electrostatic charges play a fundamental role in providing electrons and creating electric fields, which in turn induce charge transfer, radical formation, and molecular orientation. We classified the role of interfacial charges in chemical reactions and provided new perspectives. Interfacial electrostatic charges can be generated with mechanical energy input, a power supply and interface transition from solid-liquid to liquid-gas. Redox and catalytic reactions involving inorganic, organic compounds and biomolecules are driven by interfacial electrostatic charges. Electrostatic chemistry mechanisms are currently a subject of debate because there is insufficient experimental evidence. Challenges and opportunities associated with interfacial electrostatic chemistry are discussed. Knowledge of the reactivity of interfacial electrostatic charges could be used to understand electrostatic phenomena in nature, advance green chemistry, and even study the origins of life. We expect this emerging topic will appeal to scientists in disciplines including interfacial chemistry and electrostatics.
Collapse
Affiliation(s)
- Qiangqiang Sun
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Boran Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinyan Du
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yunlong Yu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yujie Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| |
Collapse
|
2
|
Zheng J, Zhang L, Qi J, Zhang S, Zhang D, Zhang D, Zhang Y, Hu J. Strategy to relieve cellular oxidative stress based on ultra-small nanobubbles without exogenous antioxidants. J Colloid Interface Sci 2025; 683:250-255. [PMID: 39675239 DOI: 10.1016/j.jcis.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Reactive oxygen species (ROS) produced in living systems are essential to physiological processes. However, excess ROS in the organism (oxidative stress) damages crucial cell components, leading to many diseases. Although some commercial antioxidants can counteract ROS damage, their inadequate tissue penetration, disruption of normal ROS functions, and possible toxicity have led to disappointing results in clinical trials for ROS-induced chronic diseases. Thus, new antioxidant strategies are warranted. Herein, we report a novel "antioxidant" composed of pure nitrogen gas in an ultra-small nanobubble (UNB) form, which can relieve oxidative stress in cells. Our results indicate that UNBs can reduce cellular ROS levels under oxidative stress and increase survival and proliferation. Besides, UNBs can decrease the oxidative damage to cellular biomacromolecules (lipids, proteins, and nuclear acids). Thus, UNBs are a promising nonchemical antioxidative strategy with potential applications against oxidative stress-related diseases and without the natural defect of chemical antioxidants.
Collapse
Affiliation(s)
- Jin Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juncheng Qi
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiong Zhang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Donghua Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Dengsong Zhang
- College of Science, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; Xiangfu Laboratory, Jiashan 314102, China; Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Wang Y, Ju Y, He J, Zhao J, Zhou Z, Jiang J, Zhang H. Harnessing the Interface of Water Microdroplets to Accelerate Energy Substance Adenosine Triphosphate Formation. J Phys Chem Lett 2025:2621-2626. [PMID: 40035553 DOI: 10.1021/acs.jpclett.4c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Adenosine triphosphate (ATP) as an energy source plays a key role in providing and regulating energy for life activities in all organisms. Abiotic synthesis of ATP in vitro remains a challenge due to thermodynamic and kinetic constraints in water bulk solution. Here, we report that adenosine diphosphate (ADP) in the presence of potassium phosphate (K3PO4) spontaneously generates ATP in water microdroplets under ambient conditions and without catalysts. Dependence of conversion rate on microdroplet size and concentration was determined, which indicated phosphorylation of ADP to ATP occurred at or near the surface of the microdroplets. A weakly acidic environment and a certain concentration of metal ions favored the phosphorylation reaction in the microdroplets. Our results suggest that microdroplets with an energetically favorable microenvironment will be an avenue rich in opportunities for abiotic synthesis of biologically active compounds in the prebiotic era and enzyme-free synthesis.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jing Zhao
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Zhiquan Zhou
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
4
|
Zhang Z, Ding Y, Hua X, Song L, Liu S. Accelerated Synergistic Photo-Fenton/Photocatalysis Reactions at Aqueous Interfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12921-12929. [PMID: 39924772 DOI: 10.1021/acsami.4c21187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Photocatalysis and photo-Fenton oxidation are promising advanced oxidation technologies for water treatment. Nevertheless, their relatively slow kinetics largely limited their practical applications. Herein, we performed synergistic photocatalysis and photo-Fenton reactions in water microdroplets for the degradation of organic dyes. The efficiency of the microdroplet-based photoreactions was significantly improved with a degradation rate of 98.96% in microdroplets, while it was only 38.14% in the bulk solution. The enhanced degradation efficiency was due to the synergistic effect of the photocatalysis and photo-Fenton reactions in the microdroplets. First, the enrichment of both the dye (rhodamine B) and the catalyst (g-C3N4 nanosheets) at the aqueous interfaces enlarged the local surface concentration, playing a role in the reaction acceleration. Second, the spontaneously generated hydrogen peroxide (17.13 μM) at the aqueous interfaces triggered the photo-Fenton cycle and thus largely promoted the charge separation of g-C3N4 as well as the effective utilization of the photogenerated electrons and holes, leading to a significantly improved degradation efficiency of organic dyes. Further, we quantified the reaction kinetics of individual microdroplets in a real-time manner. The reaction constant in 10 μm microdroplets was 4.86 × 10-3 s-1, which was 22 times higher than that in the bulk phase (0.22 × 10-3 s-1). This study provided a better understanding of accelerated photoreactions at aqueous interfaces and a strategy for addressing the low efficiency of organic dye degradation.
Collapse
Affiliation(s)
- Ziyue Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Road, Nanjing 211189, PR China
| | - Yi Ding
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, 856 South Jinzhai Road, Hefei 230601, PR China
| | - Xin Hua
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Road, Nanjing 211189, PR China
| | - Lingli Song
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Road, Nanjing 211189, PR China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Road, Nanjing 211189, PR China
| |
Collapse
|
5
|
LaCour RA, Heindel JP, Zhao R, Head-Gordon T. The Role of Interfaces and Charge for Chemical Reactivity in Microdroplets. J Am Chem Soc 2025; 147:6299-6317. [PMID: 39960051 DOI: 10.1021/jacs.4c15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
A wide variety of reactions are reported to be dramatically accelerated in aqueous microdroplets, making them a promising platform for environmentally clean chemical synthesis. However, to fully utilize the microdroplets for accelerating chemical reactions requires a fundamental understanding of how microdroplet chemistry differs from that of a homogeneous phase. Here we provide our perspective on recent progress to this end, both experimentally and theoretically. We begin by reviewing the many ways in which microdroplets can be prepared, creating water/hydrophobic interfaces that have been frequently implicated in microdroplet reactivity due to preferential surface adsorption of solutes, persistent electric fields, and their acidity or basicity. These features of the interface interplay with specific mechanisms proposed for microdroplet reactivity, including partial solvation, possible gas phase channels, and the presence of highly reactive intermediates. We especially highlight the role of droplet charge and associated electric fields, which appears to be key to understanding how certain reactions, like the formation of hydrogen peroxide and reduced transition metal complexes, are thermodynamically possible in microdroplets. Lastly, we emphasize opportunities for theoretical advances and suggest experiments that would greatly enhance our understanding of this fascinating subject.
Collapse
|
6
|
Chen MW, Ren X, Song X, Qian N, Ma Y, Yu W, Yang L, Min W, Zare RN, Dai Y. Transition-State-Dependent Spontaneous Generation of Reactive Oxygen Species by Aβ Assemblies Encodes a Self-Regulated Positive Feedback Loop for Aggregate Formation. J Am Chem Soc 2025. [PMID: 39999421 DOI: 10.1021/jacs.4c15532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Amyloid-β (Aβ) peptides exhibit distinct biological activities across multiple physical length scales, including monomers, oligomers, and fibrils. The transition from Aβ monomers to pathological aggregates correlates with the emergence of chemical toxicity, which plays a critical role in the progression of neurodegenerative disorders. However, the relationship between the physical state of Aβ assemblies and their chemical toxicity remains poorly understood. Here, we show that Aβ assemblies can spontaneously generate reactive oxygen species (ROS) through transition-state-specific inherent nonenzymatic redox activity. During the transition from initial monomers to intermediate oligomers or condensates to final fibrils, interfacial electrochemical environments emerge and vary at the liquid-liquid and liquid-solid interfaces. Determined by the vibrational Stark effect using electronic pre-resonance stimulated Raman scattering microscopy, the interfacial field of such assemblies is on the order of 10 MV/cm. Interfacial activity, which depends on the Aβ transition state, can modulate the spontaneous oxidation of hydroxide anions, which leads to the formation of hydroxyl radicals. Interestingly, this redox activity modifies the chemical composition of Aβ and establishes a self-regulated positive feedback loop that accelerates aggregation and promotes fibril formation, which represents a new functioning mechanism of Aβ aggregation beyond physical cross-linking. Leveraging this mechanistic insight, we identified small molecules capable of disrupting the feedback loop by scavenging hydroxyl radicals or perturbing the interface, thereby inhibiting fibril formation. Our findings provide a nonenzymatic model of neurotoxicity and reveal the critical role of physical interfaces in modulating the chemical dynamics of biomolecular assemblies. These results offer a novel framework for therapeutic intervention in Alzheimer's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael W Chen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Xiaokang Ren
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yuefeng Ma
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Wen Yu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Leshan Yang
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yifan Dai
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|
7
|
Kalita S, Danovich D, Shaik S. Origins of the Superiority of Oscillating Electric Fields for Disrupting Senile Plaques: Insights from the 7-Residue Fragment and the Full-length Aβ-42 Peptide. J Am Chem Soc 2025; 147:2626-2641. [PMID: 39772489 PMCID: PMC11760182 DOI: 10.1021/jacs.4c14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Our recent molecular dynamics simulations of decomposing Alzheimer's disease plaques, under oscillating- and static external electric fields (Os-EEFs and St-EEFs), revealed the superiority of Os-EEF for decomposing plaques consisting of the 7-residue peptide segment. This conclusion is now reinforced by studying the dimers of the short peptides and trimers of the full-length Aβ-42 peptide. Thus, the dispersed peptides obtained following St-EEF applications reformed the plaques once the St-EEF subsided. In contrast, plaques originating from the application of Os-EEF remained dispersed for long time scales. The present study provides insights into these results by modeling the decomposition modes that transpire under both field types. Additionally, this study provides insights into the frequency effects on the decomposition processes within the THz-MHz regions. The simulation shows that the Os-EEF in the lower frequency range (≤GHz) decomposes the plaque on a time scale of ∼50 ns, whereas the higher frequency Os-EEFs (≥THz) are less effective. As such, Os-EEFs with moderate-to-low frequencies (≤GHz) lead to an "explosion," whereby the peptides fly distantly apart and inhibit plaque reformation. By contrast, St-EEFs form parallel peptide pairs, which are stabilized by the EEF due to the large dipole moment of the ensemble. Thus, St-EEF applications lead to sluggish and reversible plaque decomposition processes. We further conclude that the Os-EEF impact is maximal for short pulses, which prevents the EEF propensity to arrange the peptides in parallel pairs. The superiority of the Os-EEF over the St-EEF is maintained irrespective of the peptides' length. A model is formulated that predicts the dependence of the decomposition time scale on the EEF.
Collapse
Affiliation(s)
- Surajit Kalita
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
8
|
Grooms AJ, Huttner RT, Stockwell M, Tadese L, Marcelo IM, Kass A, Badu-Tawiah AK. Programmable C-N Bond Formation through Radical-Mediated Chemistry in Plasma-Microdroplet Fusion. Angew Chem Int Ed Engl 2025; 64:e202413122. [PMID: 39453314 DOI: 10.1002/anie.202413122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Non-thermal plasma discharge produced in the wake of charged microdroplets is found to facilitate catalyst-free radical mediated hydrazine cross-coupling reactions without the use of external light source, heat, precious metal complex, or trapping agents. A plasma-microdroplet fusion platform is utilized for introduction of hydrazine reagent that undergoes homolytic cleavage forming radical intermediate species. The non-thermal plasma discharge that causes the cleavage originates from a chemically etched silica capillary. The coupling of the radical intermediates gives various products. Plasma-microdroplet fusion occurs online in a programmable reaction platform allowing direct process optimization and product validation via mass spectrometry. The platform is applied herein with a variety of hydrazine substrates, enabling i) self-coupling to form secondary amines with identical N-substitutions, ii) cross-coupling to afford secondary amine with different N-substituents, iii) cross-coupling followed by in situ dehydrogenation to give the corresponding aryl-aldimines with two unique N-substitutions, and iv) cascade heterocyclic carbazole derivatives formation. These unique reactions were made possible in the charged microdroplet environment through our ability to program conditions such as reagent concentration (i. e., flow rate), microdroplet reactivity (i. e., presence or absence of plasma), and reaction timescale (i. e., operational mode of the source). The selected program is implemented in a co-axial spray format, which is found to be advantageous over the conventional one-pot single emitter electrospray-based microdroplet reactions.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Robert T Huttner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Mackenzie Stockwell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Leah Tadese
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Isabella M Marcelo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Anthony Kass
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
9
|
Majumder T, Eremin DB, Delibas B, Sarkar A, Fokin V, Dawlaty JM. Calibrating the Oxidative Capacity of Microdroplets. Angew Chem Int Ed Engl 2025; 64:e202414746. [PMID: 39218788 DOI: 10.1002/anie.202414746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
Recently, redox chemical transformations have been reported to occur spontaneously in microdroplets. The origins of such novel reactivity are still debated, and any systematic correlation of the oxidative/reductive yield with the reactivity of the reactant is yet to be established. Towards this end, we report the simple, outer-sphere, one-electron oxidation of a series of ferrocene derivatives spanning a range of oxidation potentials from -0.1 V to +0.8 V vs. Ag/AgCl in acetonitrile microdroplets generated via nebulization and measured by mass spectrometry of the corresponding ferrocenium ions. The reaction environments and dynamics in the droplets are complex, and it is still unclear whether such reactivity correlates with any bulk thermodynamic values. Our key finding is that the ion yields decrease monotonically with the oxidation potential of the ferrocenes, which is a thermodynamic quantity. The ion yields emphatically do not obey the Nernstian ratio, revealing the redox processes in the droplets do not follow the assumptions of bulk steady-state electrochemistry. Furthermore, oxidative competition in the mixture of several ferrocenes suggest a finite oxidative capacity or oxidant concentration. These results demonstrate that even though ion generation could be an out-of-equilibrium and kinetically limited process, the oxidative yield in microdroplets does correlate with thermodynamics, suggesting a possible free energy relationship between the kinetics and thermodynamics of the process.
Collapse
Affiliation(s)
- Tirthick Majumder
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Dmitry B Eremin
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Berk Delibas
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Archishman Sarkar
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - ValeryV Fokin
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Jahan M Dawlaty
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
10
|
Chen CJ, Williams ER. Are Hydroxyl Radicals Spontaneously Generated in Unactivated Water Droplets? Angew Chem Int Ed Engl 2024; 63:e202407433. [PMID: 39242353 DOI: 10.1002/anie.202407433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/04/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Spontaneous ionization/breakup of water at the surface of aqueous droplets has been reported with evidence ranging from formation of hydrogen peroxide and hydroxyl radicals, indicated by ions at m/z 36 attributed to OH⋅-H3O+ or (H2O-OH2)+⋅ as well as oxidation products of radical scavengers in mass spectra of water droplets formed by pneumatic nebulization. Here, aqueous droplets are formed both by nanoelectrospray, which produces highly charged nanodrops with initial diameters ~100 nm, and a vibrating mesh nebulizer, which produces 2-20 μm droplets that are initially less highly charged. The lifetimes of these droplets range from 10s of μs to 560 ms and the surface-to-volume ratios span ~100-fold range. No ions at m/z 36 are detected with pure water, nor are significant oxidation products for the two radical scavengers that were previously reported to be formed in high abundance. These and other results indicate that prior conclusions about spontaneous hydroxyl radical formation in unactivated water droplets are not supported by the evidence and that water appears to be stable at droplet surfaces over a wide range of droplet size, charge and lifetime.
Collapse
Affiliation(s)
- Casey J Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
11
|
Jia X, Wu J, Wang F. Water-Microdroplet-Driven Interface-Charged Chemistries. JACS AU 2024; 4:4141-4147. [PMID: 39610748 PMCID: PMC11600161 DOI: 10.1021/jacsau.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Water has made Earth a habitable planet by electrifying the troposphere. For example, the lightning caused by the electrification and discharge of cloudwater microdroplets is closely related to atmospheric chemistry. Recent work has revealed that a high electric field exists at the interface of water microdroplets, which is ∼3 orders of magnitude higher than the electric field that accounts for lightning. A surge of exotic redox reactions that were recently found over water microdroplets can be contributed by such an interfacial electric field. However, the role of net charge in microdroplet redox chemistry should not be ignored. In this Perspective, we show how redox reactions can be driven by electron transfer pathways in the electrification and discharge process of water microdroplets. Understanding and harnessing the origin and evolution of charged microdroplets are likely to lead to a paradigm shift of electrochemistry, which may play an overlooked role in geological and environmental chemistry.
Collapse
Affiliation(s)
- Xiuquan Jia
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jianhan Wu
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Wang
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Nandy A, T H, Kalita D, Koner D, Banerjee S. Stabilizing Highly Reactive Aryl Carbanions in Water Microdroplets: Electrophilic Ipso-Substitution at the Air-Water Interface. JACS AU 2024; 4:4488-4495. [PMID: 39610735 PMCID: PMC11600151 DOI: 10.1021/jacsau.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
The fleeting existence of aryl carbanion intermediates in the bulk phase prevents their direct observation and spectroscopic measurement. In sharp contrast, we report the direct interception of such unstable species at the air-water interface of microdroplets. We observed the transformation of three types of aryl acids (benzoic, phenylsulfinic, and phenylboronic acids) into phenyl carbanion (Ph-) in water microdroplets, as examined by mass spectrometry. Experimental and theoretical evidence suggests that the high intrinsic electric field at the microdroplet surface is likely responsible for cleaving the respective acid functional groups of these substrates, generating Ph-, which can subsequently be trapped by an electrophile, including a proton, to yield the corresponding ipso-substitution product. While catalyst-free decarboxylation at ambient temperature is challenging in the bulk phase, we report over 30% instantaneous conversion of benzoic acid to Ph- in sprayed aqueous microdroplets in less than a millisecond. Thus, this study lays the foundation of a green chemical pathway for the aromatic electrophilic ipso-substitution reaction by spraying an aqueous solution of aryl acids, eliminating the need for any catalyst or reagent.
Collapse
Affiliation(s)
- Abhijit Nandy
- Department
of Chemistry, Indian Institute of Science
Education and Research Tirupati, Tirupati 517507, India
| | - Hariharan T
- Department
of Chemistry, Indian Institute of Science
Education and Research Tirupati, Tirupati 517507, India
| | - Deepsikha Kalita
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Kandi 502284, India
| | - Debasish Koner
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Kandi 502284, India
| | - Shibdas Banerjee
- Department
of Chemistry, Indian Institute of Science
Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
13
|
Nami-Ana SF, Mehrgardi MA, Mofidfar M, Zare RN. Sustained Regeneration of Hydrogen Peroxide at the Water-Gas Interface of Electrogenerated Microbubbles on an Electrode Surface. J Am Chem Soc 2024; 146:31945-31949. [PMID: 39497412 DOI: 10.1021/jacs.4c11422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Microbubbles, inside-out microdroplets, act as extraordinary microreactors to facilitate thermodynamically unfavorable reactions in bulk solutions of water. We explored the formation of hydrogen peroxide (H2O2) and its sustained regeneration at the interface of water-gas microbubbles. For this purpose, the chemiluminescence of luminol was recorded by a digital camera to map the intensity of blue light emission over the time of about 20 min. The formation and regeneration of hydrogen peroxide were also monitored by fluorescence microscopic imaging of a hydrogen peroxide probe. The microscopic images consistently show a stable glow around the microbubbles over time during which the formed hydrogen peroxide diffuses into the bulk solution. This observation confirms that the concentration of H2O2 at the interface is 30 times higher than that in the water solution bulk after several minutes, which can be attributed to its regeneration at the water-gas interface. These findings increase our understanding of why the chemistries of gas microbubbles in water and water microdroplets surrounded by gas are so distinct from those of bulk-phase water.
Collapse
Affiliation(s)
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan 81743, Iran
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Rana A, Clarke TB, Nguyen JH, Dick JE. Adsorbed microdroplets are mobile at the nanoscale. Proc Natl Acad Sci U S A 2024; 121:e2412148121. [PMID: 39531504 PMCID: PMC11588086 DOI: 10.1073/pnas.2412148121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024] Open
Abstract
The extraordinary chemistry of microdroplets has reshaped how we as a community think about reactivity near multiphase boundaries. Even though interesting physico-chemical properties of microdroplets have been reported, "sessile" droplets' inherent mobility, which has been implicated as a driving force for curious chemistry, has not been well established. This paper seeks to answer the question: Can adsorbed microdroplets be mobile at the nanoscale? This is a tantalizing question, as almost no measurement technique has the spatiotemporal resolution to answer it. Here, we demonstrate a highly sensitive technique to detect nanometric motions of insulating bodies adsorbed to electrified microinterfaces. We place an organic droplet atop a microelectrode and track its dissolution by driving a heterogeneous reaction in the aqueous continuous phase. As the droplet's contact radius approaches the size of the microelectrode, the current versus time curve remarkably displays abrupt changes in current. We used finite element modeling to demonstrate these abrupt steps are due to nanometric movements of the three-phase boundary, where the nonaqueous droplet meets the aqueous phase and the electrode. Furthermore, the velocity with which the liquid interface moves can be estimated to tens-to-hundreds of nanometers per second. Our results indicate that processes that are driven by contact electrification and the frictional movement of bodies on a surface may be at play even when a droplet seems quiescent.
Collapse
Affiliation(s)
- Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Thomas B. Clarke
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - James H. Nguyen
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Jeffrey E. Dick
- Department of Chemistry, Purdue University, West Lafayette, IN47907
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN47907
| |
Collapse
|
15
|
Naveen K, Rawat VS, Verma R, Gnanamani E. Catalyst-free ring opening of azlactones in water microdroplets. Chem Commun (Camb) 2024; 60:13263-13266. [PMID: 39445768 DOI: 10.1039/d4cc04487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A catalyst-free method was developed for the ring opening of azlactones (also known as oxazolones) in water microdroplets. Azlactone was dissolved in a water : acetonitrile (1 : 1) mixture, and the solution is sprayed by using nitrogen gas at a pressure of 120 psi to generate microdroplets. This method promoted selective cleavage of the lactone bond to afford the corresponding N-benzoyl derivatives in up to 94% isolated yield with no epimerization. Our method produces the ring-opening products in milliseconds (up to 94 μmol for 33.3 minutes), and may have utility for high-throughput synthesis applications.
Collapse
Affiliation(s)
- Kumar Naveen
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Vishesh Singh Rawat
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Rahul Verma
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Elumalai Gnanamani
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
16
|
Pritchard FG, Jordan CJC, Verlet JRR. Probing photochemical dynamics using electronic vs vibrational sum-frequency spectroscopy: The case of the hydrated electron at the water/air interface. J Chem Phys 2024; 161:170901. [PMID: 39484892 DOI: 10.1063/5.0235875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Photo-dynamics can proceed differently at the water/air interface compared to in the respective bulk phases. Second-order non-linear spectroscopy is capable of selectively probing the dynamics of species in such an environment. However, certain conclusions drawn from vibrational and electronic sum-frequency generation spectroscopies do not agree as is the case for the formation and structure of hydrated electrons at the interface. This Perspective aims to highlight these apparent discrepancies, how they can be reconciled, suggests how the two techniques complement one another, and outline the value of performing both techniques on the same system.
Collapse
Affiliation(s)
- Faith G Pritchard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Caleb J C Jordan
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
17
|
Dai Y, Wang ZG, Zare RN. Unlocking the electrochemical functions of biomolecular condensates. Nat Chem Biol 2024; 20:1420-1433. [PMID: 39327453 DOI: 10.1038/s41589-024-01717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/01/2024] [Indexed: 09/28/2024]
Abstract
Biomolecular condensation is a key mechanism for organizing cellular processes in a spatiotemporal manner. The phase-transition nature of this process defines a density transition of the whole solution system. However, the physicochemical features and the electrochemical functions brought about by condensate formation are largely unexplored. We here illustrate the fundamental principles of how the formation of condensates generates distinct electrochemical features in the dilute phase, the dense phase and the interfacial region. We discuss the principles by which these distinct chemical and electrochemical environments can modulate biomolecular functions through the effects brought about by water, ions and electric fields. We delineate the potential impacts on cellular behaviors due to the modulation of chemical and electrochemical environments through condensate formation. This Perspective is intended to serve as a general road map to conceptualize condensates as electrochemically active entities and to assess their functions from a physical chemistry aspect.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO, USA.
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Chen X, Xia Y, Yang Y, Xu Y, Jia X, N Zare R, Wang F. Microdroplet-Mediated Multiphase Cycling in a Cloud of Water Drives Chemoselective Electrolysis. J Am Chem Soc 2024; 146:29742-29750. [PMID: 39429220 DOI: 10.1021/jacs.4c11224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Electrification of water in clouds leads to fascinating redox reactions on Earth. However, little is known about cloud electrochemistry, except for lightning, a natural hazard that is nearly impossible to harness. We report a controllable electrochemistry that can be enabled in microclouds by fast phase switching of water between the microdroplet, vapor, and bulk phase. Due to the size-dependent charge transfer between droplets during atomization, this process generates an alternating voltage arising from the self-electrification and discharging of microdroplets, vapor, and bulk phase by electron and ion transfer. We show that the microclouds with alternating voltage cause 1,2-dichloroethane (ClH2C-CH2Cl) to be converted to vinyl chloride (H2C═CHCl) at ∼80% selectivity. These findings highlight the importance of controlled cloud electrochemistry in accelerating the removal of volatile organic compounds and treating contaminated water. We suggest that this work opens an avenue for harnessing cloud electrochemistry to solve challenging chemoselectivity problems in aqueous reactions of environmental and industrial importance.
Collapse
Affiliation(s)
- Xuke Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Yifan Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Yunpeng Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiuquan Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
19
|
Dai C, Huang C, Ye M, Liu J, Cheng H. Mild Catalyst- and Additive-Free Three-Component Synthesis of 3-Thioisoindolinones and Tricyclic γ-Lactams Accelerated by Microdroplet Chemistry. J Org Chem 2024; 89:14818-14830. [PMID: 39361508 DOI: 10.1021/acs.joc.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Isoindolinones, bearing both γ-lactam and aromatic rings, draw extensive interest in organic, pharmaceutical, and medicinal communities as they are important structural motifs in many natural products, bioactive compounds, and pharmaceuticals. As the main contributor to isoindolinone synthesis, metal catalysis is associated with many drawbacks including essential use of toxic/precious metals and excessive additives, high reaction temperatures, specially predesigned starting materials, and long reaction times (typically 8-30 h). In this study, we developed a catalyst- and additive-free, minute-scale, and high-yield microdroplet method for tricomponent isoindolinone synthesis at mild temperatures. By taking advantage of the astonishing reaction acceleration (1.9 × 102-9.4 × 103 acceleration factor range with a typical rate acceleration factor of 1.51 × 103 for the prototype reaction as the ratio of rate constants by microdroplet and bulk phase), 12 3-thioisoindolinones and two tricyclic γ-lactams were synthesized using various 2-acylbenzaldehydes, amines, and thiols with satisfactory yields ranging from 85% to 97% as well as a scale-up rate of 3.49 g h-1. Because of the advantages (no use of any catalysts or additives, mild temperature, rapid and satisfactory conversion, broad substrate scope, and gram scalability), the microdroplet method represents an attractive alternative to metal catalysis for laboratory synthesis of isoindolinones and their derivatives.
Collapse
Affiliation(s)
- Chengbiao Dai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Chengkai Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Meiying Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
20
|
Mehrgardi MA, Mofidfar M, Li J, Chamberlayne CF, Lynch SR, Zare RN. Catalyst-Free Transformation of Carbon Dioxide to Small Organic Compounds in Water Microdroplets Nebulized by Different Gases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406785. [PMID: 39129358 PMCID: PMC11481208 DOI: 10.1002/advs.202406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 08/13/2024]
Abstract
A straightforward nebulized spray system is designed to explore the hydrogenation of carbon dioxide (CO2) within water microdroplets surrounded by different gases such as carbon dioxide, nitrogen, oxygen, and compressed air. The collected droplets are analyzed using water-suppressed nuclear magnetic resonance (NMR). Formate anion (HCOO-), acetate anion (CH3COO-), ethylene glycol (HOCH2CH2OH), and methane (CH4) are detected when water is nebulized. This pattern persisted when the water is saturated with CO2, indicating that CO2 in the nebulizing gas triggers the formation of these small organics. In a pure CO2 atmosphere, the formate anion concentration is determined to be ≈70 µm, referenced to dimethyl sulfoxide, which has been introduced as an internal standard in the collected water droplets. This study highlights the power of water microdroplets to initiate unexpected chemistry for the transformation of CO2 to small organic compounds.
Collapse
Affiliation(s)
- Masoud A. Mehrgardi
- Department of ChemistryStanford UniversityStanfordCalifornia94305USA
- Department of ChemistryUniversity of IsfahanIsfahan81746Iran
| | - Mohammad Mofidfar
- Department of ChemistryStanford UniversityStanfordCalifornia94305USA
| | - Jia Li
- College of Chemical EngineeringShijiazhuang UniversityShijiazhuang050037China
| | | | - Stephen R. Lynch
- Department of ChemistryStanford UniversityStanfordCalifornia94305USA
| | - Richard N. Zare
- Department of ChemistryStanford UniversityStanfordCalifornia94305USA
| |
Collapse
|
21
|
Zhou C, Zhao C, Nie Z, Zhou T, Kong S, Sun Y, Qian C, Zhao T, Liu M. Large-Area Layered Membranes with Precisely Controlled Nano-Confined Channels. Angew Chem Int Ed Engl 2024; 63:e202410441. [PMID: 38949087 DOI: 10.1002/anie.202410441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) nanosheets-based membranes, which have controlled 2D nano-confined channels, are highly desirable for molecular/ionic sieving and confined reactions. However, it is still difficult to develop an efficient method to prepare large-area membranes with high stability, high orientation, and accurately adjustable interlayer spacing. Here, we present a strategy to produce metal ion cross-linked membranes with precisely controlled 2D nano-confined channels and high stability in different solutions using superspreading shear-flow-induced assembly strategy. For example, membranes based on graphene oxide (GO) exhibit interlayer spacing ranging from 8.0±0.1 Å to 10.3±0.2 Å, with a precision of down to 1 Å. At the same time, the value of the orientation order parameter (f) of GO membranes is up to 0.95 and GO membranes exhibit superb stability in different solutions. The strategy we present, which can be generalized to the preparation of 2D nano-confined channels based on a variety of 2D materials, will expand the application scope and provide better performances of membranes.
Collapse
Affiliation(s)
- Can Zhou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chuangqi Zhao
- University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhidong Nie
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianxu Zhou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shengwen Kong
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yingzhi Sun
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Cheng Qian
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Tianyi Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
22
|
Chao S, Valsecchi C, Sun J, Shao H, Li X, Tang C, Fan M. Highly Sensitive Surface-Enhanced Raman Scattering Detection of Hydroxyl Radicals in Water Microdroplets Using Phthalhydrazide/Ag Nanoparticles Nanosensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16497-16506. [PMID: 39114886 DOI: 10.1021/acs.est.4c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The spontaneous generation of hydrogen peroxide (H2O2) within atmospheric microdroplets, such as raindrops and aerosols, plays a crucial role in various environmental processes including pollutant degradation and oxidative stress. However, quantifying hydroxyl radicals (•OH), essential for H2O2 formation, remains challenging due to their short lifespan and low concentration. This study addresses this gap by presenting a highly sensitive and selective surface-enhanced Raman scattering (SERS) nanosensor specifically designed for quantifying •OH within water microdroplets. Utilizing a phthalhydrazide (Phth) probe, the SERS technique enables rapid, interference-free detection of •OH at nanomolar concentrations. It achieves a linear detection range from 2 nM to 2 μM and a limit of detection as low as 0.34 nM. Importantly, the SERS sensor demonstrates robustness and accuracy within water microdroplets, paving the way for comprehensive mechanistic studies of H2O2 generation in the atmosphere. This innovative approach not only offers a powerful tool for environmental research but also holds potential for advancing our understanding of atmospheric H2O2 formation and its impact on air quality and pollutant degradation.
Collapse
Affiliation(s)
- Shengmao Chao
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Chiara Valsecchi
- Federal University of Pampa, Campus Alegrete, 97542-160 Alegrete, Rio Grande do Sul, Brazil
| | - Ji Sun
- Department of Student Affairs, Henan University of Technology, 450001 Zhengzhou, China
| | - Hong Shao
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Xinxia Li
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
23
|
Heitland J, Lee JC, Ban L, Abma GL, Fortune WG, Fielding HH, Yoder BL, Signorell R. Valence Electronic Structure of Interfacial Phenol in Water Droplets. J Phys Chem A 2024; 128:7396-7406. [PMID: 39182189 PMCID: PMC11382284 DOI: 10.1021/acs.jpca.4c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and "on" water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck-Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1-0.2 eV.
Collapse
Affiliation(s)
- Jonas Heitland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jong Chan Lee
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Grite L Abma
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - William G Fortune
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
| | - Helen H Fielding
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
24
|
Li M, Yang S, Rathi M, Kumar S, Dutcher CS, Grassian VH. Enhanced condensation kinetics in aqueous microdroplets driven by coupled surface reactions and gas-phase partitioning. Chem Sci 2024; 15:13429-13441. [PMID: 39183898 PMCID: PMC11339779 DOI: 10.1039/d4sc03014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Although aqueous microdroplets have been shown to exhibit enhanced chemical reactivity compared to bulk solutions, mechanisms for these enhancements are not completely understood. Here we combine experimental measurements and kinetic modeling to show the strong coupling of interfacial reactions and gas/droplet partitioning in the condensation reaction of pyruvic acid (PA) to yield zymonic acid (ZA) in acidic aqueous microdroplets. Experimental analysis of single microdroplets reveals the substantial influence of evaporation of PA and partitioning of water on the size-, relative humidity (RH)- and temperature-dependent sigmoidal reaction kinetics for the condensation reaction. A newly developed diffusion-reaction-partitioning model is used to simulate the complex kinetics observed in the microdroplets. The model can quantitatively predict the size and compositional changes as the reaction proceeds under different environmental conditions, and provides insights into how microdroplet reactivity is controlled by coupled interfacial reactions and the gas-phase partitioning of PA and water. Importantly, the kinetic model best fits the data when an autocatalytic step is included in the mechanism, i.e. a reaction step where the product, ZA, catalyzes the interfacial condensation reaction. Overall, the dynamic nature of aqueous microdroplet chemistry and the coupling of interfacial chemistry with gas-phase partitioning are demonstrated. Furthermore, autocatalysis of small organic molecules at the air-water interface for aqueous microdroplets, shown here for the first time, has implications for several fields including prebiotic chemistry, atmospheric chemistry and chemical synthesis.
Collapse
Affiliation(s)
- Meng Li
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Shu Yang
- Department of Mechanical Engineering, University of Minnesota Minneapolis MN 55455 USA
| | - Meenal Rathi
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis MN 55455 USA
| | - Satish Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis MN 55455 USA
| | - Cari S Dutcher
- Department of Mechanical Engineering, University of Minnesota Minneapolis MN 55455 USA
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis MN 55455 USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
25
|
Sano M, Kamei K, Yatsuhashi T, Sakota K. Localization and Orientation of Dye Molecules at the Surface of a Levitated Microdroplet in Air Revealed by Whispering Gallery Mode Resonances. J Phys Chem Lett 2024; 15:8133-8141. [PMID: 39087939 DOI: 10.1021/acs.jpclett.4c01819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Microdroplets offer unique environments that accelerate chemical reactions; however, the mechanisms behind these processes remain debated. The localization and orientation of solute molecules near the droplet surface have been proposed as factors for this acceleration. Since significant reaction acceleration has been observed for electrospray- and sonic-spray-generated aerosol droplets, the analysis of microdroplets in air has become essential. Here, we utilized whispering gallery mode (WGM) resonances to investigate the localization and orientation of dissolved rhodamine B (RhB) in a levitated microdroplet (∼3 μm in diameter) in air. Fluorescence enhancement upon resonance with the WGMs revealed the localization and orientation of RhB near the droplet surface. Numerical modeling using Mie theory quantified the RhB orientation at 68° to the surface normal, with a small fraction randomly oriented inside the droplet. Additionally, low RhB concentrations increased surface localization. These results support the significance of surface reactions in the acceleration of microdroplet reactions.
Collapse
Affiliation(s)
- Motoya Sano
- Division of Molecular Material Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kota Kamei
- Division of Molecular Material Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tomoyuki Yatsuhashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kenji Sakota
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
26
|
Knežević S, Totoricaguena-Gorriño J, Gajjala RKR, Hermenegildo B, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Méndez S, Sojic N, Del Campo FJ. Enhanced Electrochemiluminescence at the Gas/Liquid Interface of Bubbles Propelled into Solution. J Am Chem Soc 2024; 146:22724-22735. [PMID: 39090816 DOI: 10.1021/jacs.4c07566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Electrochemiluminescence (ECL) is typically confined to a micrometric region from the electrode surface. This study demonstrates that ECL emission can extend up to several millimeters away from the electrode employing electrogenerated chlorine bubbles. The mechanism behind this bubble-enhanced ECL was investigated using an Au microelectrode in chloride-containing and chloride-free electrolyte solutions. We discovered that ECL emission at the gas/solution interface is driven by two parallel effects. First, the bubble corona effect facilitates the generation of hydroxyl radicals capable of oxidizing luminol while the bubble is attached to the surface. Second, hypochlorite generated from chlorine sustains luminol emission for over 200 s and extends the emission range up to 5 mm into the solution, following bubble detachment. The new approach can increase the emission intensity of luminol-based assays 5-fold compared to the conventional method. This is demonstrated through a glucose bioassay, using a midrange mobile phone camera for detection. These findings significantly expand the potential applications of ECL by extending its effective range in time and space.
Collapse
Affiliation(s)
- Sara Knežević
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| | - Joseba Totoricaguena-Gorriño
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
| | - Rajendra Kumar Reddy Gajjala
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
| | - Bruno Hermenegildo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
| | - Leire Ruiz-Rubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- Grupo de Química Macromolecular, Universidad del País Vasco, UPV-EHU, Campus de Leioa, Vizcaya 48940, Spain
| | - José Luis Vilas-Vilela
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- Grupo de Química Macromolecular, Universidad del País Vasco, UPV-EHU, Campus de Leioa, Vizcaya 48940, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, Pessac 33607, France
| | - Francisco Javier Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
27
|
Guo S, Ji Y, Liao G, Wang J, Shen ZH, Qi X, Liebscher C, Cheng N, Ren L, Ge B. Tailoring Heterostructure Growth on Liquid Metal Nanodroplets through Interface Engineering. J Am Chem Soc 2024; 146:19800-19808. [PMID: 38976349 DOI: 10.1021/jacs.4c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Liquid metal (LM) nanodroplets possess intriguing surface properties, thus offering promising potential in chemical synthesis, catalysis, and biomedicine. However, the reaction kinetics and product growth at the surface of LM nanodroplets are significantly influenced by the interface involved, which has not been thoroughly explored and understood. Here, we propose an interface engineering strategy, taking a spontaneous galvanic reaction between Ga0 and AuCl4- ions as a representative example, to successfully modulate the growth of heterostructures on the surface of Ga-based LM nanodroplets by establishing a dielectric interface with a controllable thickness between LM and reactive surroundings. Combining high-resolution electron energy-loss spectroscopy (EELS) analysis and theoretical simulation, it was found that the induced charge distribution at the interface dominates the spatiotemporal distribution of the reaction sites. Employing tungsten oxide (WOx) with varying thicknesses as the demonstrated dielectric interface of LM, Ga@WOx@Au with distinct core-shell-satellite or dimer-like heterostructures has been achieved and exhibited different photoresponsive capabilities for photodetection. Understanding the kinetics of product growth and the regulatory strategy of the dielectric interface provides an experimental approach to controlling the structure and properties of products in LM nanodroplet-involved chemical processes.
Collapse
Affiliation(s)
- Siqi Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yuan Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | | | - Jian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zhong-Hui Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xiang Qi
- Xiangtan University, Xiangtan 411105, P. R. China
| | | | - Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Long Ren
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
28
|
Rana A, Renault C, Dick JE. Understanding dynamic voltammetry in a dissolving microdroplet. Analyst 2024; 149:3939-3950. [PMID: 38916245 PMCID: PMC11262062 DOI: 10.1039/d4an00299g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 06/26/2024]
Abstract
Droplet evaporation and dissolution phenomena are pervasive in both natural and artificial systems, playing crucial roles in various applications. Understanding the intricate processes involved in the evaporation and dissolution of sessile droplets is of paramount importance for applications such as inkjet printing, surface coating, and nanoparticle deposition, etc. In this study, we present a demonstration of electrochemical investigation of the dissolution behaviour in sub-nL droplets down to sub-pL volume. Droplets on an electrode have been studied for decades in the field of electrochemistry to understand the phase transfer of ions at the oil-water interface, accelerated reaction rates in microdroplets, etc. However, the impact of microdroplet dissolution on the redox activity of confined molecules within the droplet has not been explored previously. As a proof-of-principle, we examine the dissolution kinetics of 1,2-dichloroethane droplets (DCE) spiked with 155 μM decamethylferrocene within an aqueous phase on an ultramicroelectrode (r = 6.3 μm). The aqueous phase serves as an infinite sink, enabling the dissolution of DCE droplets while also facilitating convenient electrical contact with the reference/counter electrode (Ag/AgCl 1 M KCl). Through comprehensive voltammetric analysis, we unravel the impact of droplet dissolution on electrochemical response as the droplet reaches minuscule volumes. We validate our experimental findings by finite element modelling, which shows deviations from the experimental results as the droplet accesses negligible volumes, suggesting the presence of complex dissolution modes.
Collapse
Affiliation(s)
- Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Christophe Renault
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
29
|
Lee K, Cho Y, Kim JC, Choi C, Kim J, Lee JK, Li S, Kwak SK, Choi SQ. Catalyst-free selective oxidation of C(sp 3)-H bonds in toluene on water. Nat Commun 2024; 15:6127. [PMID: 39033208 PMCID: PMC11271591 DOI: 10.1038/s41467-024-50352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
The anisotropic water interfaces provide an environment to drive various chemical reactions not seen in bulk solutions. However, catalytic reactions by the aqueous interfaces are still in their infancy, with the emphasis being on the reaction rate acceleration on water. Here, we report that the oil-water interface activates and oxidizes C(sp3)-H bonds in toluene, yielding benzaldehyde with high selectivity (>99%) and conversion (>99%) under mild, catalyst-free conditions. Collision at the interface between oil-dissolved toluene and hydroxyl radicals spontaneously generated near the water-side interfaces is responsible for the unexpectedly high selectivity. Protrusion of free OH groups from interfacial water destabilizes the transition state of the OH-addition by forming π-hydrogen bonds with toluene, while the H-abstraction remains unchanged to effectively activate C(sp3)-H bonds. Moreover, the exposed free OH groups form hydrogen bonds with the produced benzaldehyde, suppressing it from being overoxidized. Our investigation shows that the oil-water interface has considerable promise for chemoselective redox reactions on water without any catalysts.
Collapse
Affiliation(s)
- Kyoungmun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumi Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulju-gun, Ulsan, Republic of Korea
| | - Jin Chul Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulju-gun, Ulsan, Republic of Korea
| | - Chiyoung Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jiwon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jae Kyoo Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for the Nanocentury, KAIST, Daejeon, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for the Nanocentury, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
30
|
Torre MF, Amadeo A, Cassone G, Tommasini M, Mráziková K, Saija F. Water Dimer under Electric Fields: An Ab Initio Investigation up to Quantum Accuracy. J Phys Chem A 2024; 128:5490-5499. [PMID: 38976361 DOI: 10.1021/acs.jpca.4c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
It is well-established that strong electric fields (EFs) can align water dipoles, partially order the H-bond network of liquid water, and induce water splitting and proton transfers. To illuminate the fundamental behavior of water under external EFs, we present the first benchmark, to the best of our knowledge, of DFT calculations of the water dimer exposed to intense EFs against coupled cluster calculations. The analyses of the vibrational Stark effect and electron density provide a consistent picture of the intermolecular charge transfer effects driven along the H-bond by the increasing applied field at all theory levels. However, our findings prove that at extreme field regimes (∼1-2 V/Å) DFT calculations significantly exaggerate by ∼10-30% the field-induced strengthening of the H-bond, both within the GGA, hybrid GGA, and hybrid meta-GGA approximations. Notably, a linear correlation emerges between the vibrational Stark effect on OH stretching and H-bond strengthening: a 1 kcal mol-1 increase corresponds to an 80 cm-1 red-shift in OH stretching frequency.
Collapse
Affiliation(s)
- Marco Francesco Torre
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Alessandro Amadeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ing. Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Klaudia Mráziková
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| |
Collapse
|
31
|
Xia Y, Xu J, Li J, Chen B, Dai Y, Zare RN. Visualization of the Charging of Water Droplets Sprayed into Air. J Phys Chem A 2024; 128:5684-5690. [PMID: 38968601 DOI: 10.1021/acs.jpca.4c02981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Water droplets are spraying into air using air as a nebulizing gas, and the droplets pass between two parallel metal plates with opposite charges. A high-speed camera records droplet trajectories in the uniform electric field, providing visual evidence for the Lenard effect, that is, smaller droplets are negatively charged whereas larger droplets are positively charged. By analyzing the velocities of the droplets between the metal plates, the charges on the droplets can be estimated. Some key observations include: (1) localized electric fields with intensities on the order of 109 V/m are generated, and charges are expected to jump (micro-lightening) between a positively charged larger droplet and the negatively charged smaller droplet as they separate; (2) the strength of the electric field is sufficiently powerful to ionize gases surrounding the droplets; and (3) observations in an open-air mass spectrometer reveal the presence of ions such as N2+, O2+, NO+, and NO2+. These findings provide new insight into the origins of some atmospheric ions and have implications for understanding ionization processes in the atmosphere and chemical transformations in water droplets, advancing knowledge in the field of aerosol science and water microdroplet chemistry.
Collapse
Affiliation(s)
- Yu Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Jinheng Xu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Juan Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
32
|
Guo X, Farag M, Qian N, Yu X, Ni A, Ma Y, Yu W, King MR, Liu V, Lee J, Zare RN, Min W, Pappu RV, Dai Y. Biomolecular condensates can function as inherent catalysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602359. [PMID: 39026887 PMCID: PMC11257451 DOI: 10.1101/2024.07.06.602359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We report the discovery that chemical reactions such as ATP hydrolysis can be catalyzed by condensates formed by intrinsically disordered proteins (IDPs), which themselves lack any intrinsic ability to function as enzymes. This inherent catalytic feature of condensates derives from the electrochemical environments and the electric fields at interfaces that are direct consequences of phase separation. The condensates we studied were capable of catalyzing diverse hydrolysis reactions, including hydrolysis and radical-dependent breakdown of ATP whereby ATP fully decomposes to adenine and multiple carbohydrates. This distinguishes condensates from naturally occurring ATPases, which can only catalyze the dephosphorylation of ATP. Interphase and interfacial properties of condensates can be tuned via sequence design, thus enabling control over catalysis through sequence-dependent electrochemical features of condensates. Incorporation of hydrolase-like synthetic condensates into live cells enables activation of transcriptional circuits that depend on products of hydrolysis reactions. Inherent catalytic functions of condensates, which are emergent consequences of phase separation, are likely to affect metabolic regulation in cells.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Xia Yu
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Anton Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Yuefeng Ma
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Wen Yu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Matthew R. King
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Vicky Liu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Joonho Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
33
|
Kumar A, Avadhani VS, Nandy A, Mondal S, Pathak B, Pavuluri VKN, Avulapati MM, Banerjee S. Water Microdroplets in Air: A Hitherto Unnoticed Natural Source of Nitrogen Oxides. Anal Chem 2024; 96:10515-10523. [PMID: 38829716 DOI: 10.1021/acs.analchem.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Water microdroplets are widespread in the atmosphere. We report a striking observation that micron-sized water droplets obtained from zero-volt spray sources (sonic spray, humidifier, spray bottle, steamer, etc.) spontaneously generate nitrogen oxides. The mechanistic investigation through the development of custom-designed sampling sources combined with mass spectrometry and isotope labeling experiments confirmed that air nitrogen reacts with the water at the air-water interface, fixing molecular nitrogen to its oxides (NO, NO2, and N2O) and acids (HNO2 and HNO3) at trace levels without any catalyst. These reactions are attributed to the consequence of an experimentally detected feeble corona discharge (breakdown of air) at the air-water interface, likely driven by the high intrinsic electric field at the surface of water microdroplets. The extent of this corona discharge effect varies depending on the pH, salinity/impurity, size, speed, and lifetime of microdroplets in the air. Thus, this study discloses that the air-water interface of microdroplets breaks the strong chemical bond of nitrogen (N2), producing nitrogen oxides in the environment, while lightning strikes and microbial processes in soil are considered their dominant natural sources. As nitrogen oxides are toxic air pollutants, their spontaneous formation at the air-water interface should have important implications in atmospheric reactions, requiring further investigations.
Collapse
Affiliation(s)
- Anubhav Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Veena Shankar Avadhani
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Barsha Pathak
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | | | - Madan Mohan Avulapati
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Tirupati 517619, India
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
34
|
Vannoy KJ, Edwards MQ, Renault C, Dick JE. An Electrochemical Perspective on Reaction Acceleration in Microdroplets. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:149-171. [PMID: 38594942 DOI: 10.1146/annurev-anchem-061622-030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Analytical techniques operating at the nanoscale introduce confinement as a tool at our disposal. This review delves into the phenomenon of accelerated reactivity within micro- and nanodroplets. A decade of accelerated reactivity observations was succeeded by several years of fundamental studies aimed at mechanistic enlightenment. Herein, we provide a brief historical context for rate enhancement in and around micro- and nanodroplets and summarize the mechanisms that have been proposed to contribute to such extraordinary reactivity. We highlight recent electrochemical reports that make use of restricted mass transfer to enhance electrochemical reactions and/or quantitatively measure reaction rates within droplet-confined electrochemical cells. A comprehensive approach to nanodroplet reactivity is paramount to understanding how nature takes advantage of these systems to provide life on Earth and, in turn, how to harness the full potential of such systems.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | | | - Christophe Renault
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 2Current Address: Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Jeffrey E Dick
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 3Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
35
|
Basuri P, Mukhopadhyay S, Reddy KSSVP, Unni K, Spoorthi BK, Shantha Kumar J, Yamijala SSRKC, Pradeep T. Spontaneous α-C-H Carboxylation of Ketones by Gaseous CO 2 at the Air-water Interface of Aqueous Microdroplets. Angew Chem Int Ed Engl 2024; 63:e202403229. [PMID: 38577991 DOI: 10.1002/anie.202403229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
We present a catalyst-free route for the reduction of carbon dioxide integrated with the formation of a carbon-carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α-carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α-ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products.
Collapse
Affiliation(s)
- Pallab Basuri
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Sinchan Mukhopadhyay
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - K S S V Prasad Reddy
- Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Keerthana Unni
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - B K Spoorthi
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Jenifer Shantha Kumar
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Sharma S R K C Yamijala
- Centre for Atomistic Modelling and Materials Design, Centre for Molecular Materials and Functions, Centre for Quantum Information, Communication, and Computing, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| |
Collapse
|
36
|
Herchenbach PJ, Layman BR, Dick JE. Quantifying the interfacial tension of adsorbed droplets on electrified interfaces. J Colloid Interface Sci 2024; 674:474-481. [PMID: 38941939 DOI: 10.1016/j.jcis.2024.06.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
HYPOTHESIS This paper develops a new measurement method to answer the question: How does one measure the interfacial tension of adsorbed droplets? EXPERIMENTS This measurement is based on the placement of a bubble at a water|organic interface. To prove the concept, a bubble was formed by pipetting gas below the water|1,2-dichloroethane interface. Our values agree well with previous reports. We then extended the measurement modality to a more difficult system: quantifying interfacial tension of 1,2-dichloroethane droplets adsorbed onto conductors. Carbon dioxide was generated in the aqueous phase from the electro-oxidation of oxalate. Given carbon dioxide's solubility in 1,2-dichloroethane, it partitions, a bubble nucleates, and the bubble can be seen by microscopy when driving the simultaneous oxidation of tris(bipyridine)ruthenium (II), a molecule that will interact with CO2.-. and provide light through electrochemiluminescence. We can quantify the interfacial tension of adsorbed droplets, a measurement very difficult performed with more usual techniques, by tracking the growth of the bubble and quantifying the bubble size at the time the bubble breaks through the aqueous|1,2-dichloroethane interface. FINDINGS We found that the interfacial tension of nanoliter 1,2-dichloroethane droplets adsorbed to an electrified interface in water, which was previously immeasurable with current techniques, was one order of magnitude less than the bulk system.
Collapse
Affiliation(s)
- Patrick J Herchenbach
- James Tarpo Jr. & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Brady R Layman
- James Tarpo Jr. & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jeffrey E Dick
- James Tarpo Jr. & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
37
|
Shaik S. My Vision of Electric-Field-Aided Chemistry in 2050. ACS PHYSICAL CHEMISTRY AU 2024; 4:191-201. [PMID: 38800723 PMCID: PMC11117677 DOI: 10.1021/acsphyschemau.3c00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 05/29/2024]
Abstract
This manuscript outlines my outlook on the development of electric-field (EF)-mediated-chemistry and the vision of its state by 2050. I discuss applications of oriented-external electric-fields (OEEFs) on chemical reactions and proceed with relevant experimental verifications. Subsequently, the Perspective outlines other ways of generating EFs, e.g., by use of pH-switchable charges, ionic additives, water droplets, and so on. A special section summarizes conceptual principles for understanding and predicting OEEF effects, e.g., the "reaction-axis rule", the capability of OEEFs to act as tweezers that orient reactants and accelerate their reaction, etc. Finally, I discuss applications of OEEFs in continuous-flow setups, which may, in principle, scale-up to molar concentrations. The Perspective ends with the vision that by 2050, OEEF usage will change chemical education, if not also the art of making new molecules.
Collapse
Affiliation(s)
- Sason Shaik
- Institute of Chemistry, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
38
|
Heindel JP, LaCour RA, Head-Gordon T. The role of charge in microdroplet redox chemistry. Nat Commun 2024; 15:3670. [PMID: 38693110 PMCID: PMC11519639 DOI: 10.1038/s41467-024-47879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
In charged water microdroplets, which occur in nature or in the lab upon ultrasonication or in electrospray processes, the thermodynamics for reactive chemistry can be dramatically altered relative to the bulk phase. Here, we provide a theoretical basis for the observation of accelerated chemistry by simulating water droplets of increasing charge imbalance to create redox agents such as hydroxyl and hydrogen radicals and solvated electrons. We compute the hydration enthalpy of OH- and H+ that controls the electron transfer process, and the corresponding changes in vertical ionization energy and vertical electron affinity of the ions, to create OH• and H• reactive species. We find that at ~ 20 - 50% of the Rayleigh limit of droplet charge the hydration enthalpy of both OH- and H+ have decreased by >50 kcal/mol such that electron transfer becomes thermodynamically favorable, in correspondence with the more favorable vertical electron affinity of H+ and the lowered vertical ionization energy of OH-. We provide scaling arguments that show that the nanoscale calculations and conclusions extend to the experimental microdroplet length scale. The relevance of the droplet charge for chemical reactivity is illustrated for the formation of H2O2, and has clear implications for other redox reactions observed to occur with enhanced rates in microdroplets.
Collapse
Affiliation(s)
- Joseph P Heindel
- Kenneth S. Pitzer Theory Center and Department of Chemistry, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R Allen LaCour
- Kenneth S. Pitzer Theory Center and Department of Chemistry, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering University of CAlifornia, Berkeley, CA, USA.
| |
Collapse
|
39
|
Singh N, Ghatak A. Enhancement of the Rate of Surface Reactions by the Elastocapillary Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8771-8780. [PMID: 38621254 DOI: 10.1021/acs.langmuir.3c02381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
We examined the effect of deformability of a solid substrate on the kinetics of a surface reaction that occurs between chemical species present in it and a liquid dispensed on it. In particular, we have dispensed aqueous solutions of gold and silver salt as sessile drops or as a liquid pool on a cross-linked film of poly(dimethylsiloxane) (PDMS). The PDMS surface contains organosilane (SiH), which reduces the salt, producing metallic nanoparticles at the solid-liquid interface. These experiments reveal that, for a sufficiently soft solid, the reaction proceeds about three times faster in the drop mode than in the pool mode. The reaction conditions in both cases remain exactly identical except that, for the drop, the vertical component of the liquid surface tension deforms the solid substrate at the three-phase contact line. We have estimated the solid-liquid and solid-air interfacial energy, which along with the surface energy of the liquid gives an estimate of excess free energy. This energy is found to be different for the drop and pool modes. By considering that this excess free energy decreases the activation energy barrier for the reaction, we have shown that the reaction rate constant in the drop mode should indeed exceed that in the pool mode by about three times.
Collapse
Affiliation(s)
- Nitish Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Animangsu Ghatak
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| |
Collapse
|
40
|
Qiu L, Cooks RG. Spontaneous Oxidation in Aqueous Microdroplets: Water Radical Cation as Primary Oxidizing Agent. Angew Chem Int Ed Engl 2024; 63:e202400118. [PMID: 38302696 DOI: 10.1002/anie.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Exploration of the unique chemical properties of interfaces can unlock new understanding. A striking example is the finding of accelerated reactions, particularly spontaneous oxidation reactions, that occur without assistance of catalysts or external oxidants at the air interface of both aqueous and organic solutions (provided they contain some water). This finding opened a new area of interfacial chemistry but also caused heated debate regarding the primary chemical species responsible for the observed oxidation. An overview of the literature covering oxidation in microdroplets with air interfaces is provided, together with a critical examination of previous findings and hypotheses. The water radical cation/radical anion pair, formed spontaneously and responsible for the electric field at or near the droplet/air interface, is suggested to constitute the primary redox species. Mechanisms of accelerated microdroplet reactions are critically discussed and it is shown that hydroxyl radical/hydrogen peroxide formation in microdroplets does not require that these species be the primary oxidant. Instead, we suggest that hydroxyl radical and hydrogen peroxide are the products of water radical cation decay in water. The importance of microdroplet chemistry in the prebiotic environment is sketched briefly and the role of partial solvation in reaction acceleration is noted.
Collapse
Affiliation(s)
- Lingqi Qiu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S
| |
Collapse
|
41
|
Chen X, Xia Y, Wu Y, Xu Y, Jia X, Zare RN, Wang F. Sprayed Oil-Water Microdroplets as a Hydrogen Source. J Am Chem Soc 2024; 146:10868-10874. [PMID: 38573037 DOI: 10.1021/jacs.4c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Liquid water provides the largest hydrogen reservoir on the earth's surface. Direct utilization of water as a source of hydrogen atoms and molecules is fundamental to the evolution of the ecosystem and industry. However, liquid water is an unfavorable electron donor for forming these hydrogen species owing to its redox inertness. We report oil-mediated electron extraction from water microdroplets, which is easily achieved by ultrasonically spraying an oil-water emulsion. Based on charge measurement and electron paramagnetic resonance spectroscopy, contact electrification between oil and a water microdroplet is demonstrated to be the origin of electron extraction from water molecules. This contact electrification results in enhanced charge separation and subsequent mutual neutralization, which enables a ∼13-fold increase of charge carriers in comparison with an ultrapure water spray, leading to a ∼16-fold increase of spray-sourced hydrogen that can hydrogenate CO2 to selectively produce CO. These findings emphasize the potential of charge separation enabled by spraying an emulsion of liquid water and a hydrophobic liquid in driving hydrogenation reactions.
Collapse
Affiliation(s)
- Xuke Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yingfeng Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Yunpeng Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiuquan Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
42
|
Rodriguez HM, Martyniuk M, Iyer KS, Ciampi S. Insulator-on-Conductor Fouling Amplifies Aqueous Electrolysis Rates. J Am Chem Soc 2024; 146:10299-10311. [PMID: 38591156 DOI: 10.1021/jacs.3c11238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The chemical industry is a major consumer of fossil fuels. Several chemical reactions of practical value proceed with the gain or loss of electrons, opening a path to integrate renewable electricity into chemical manufacturing. However, most organic molecules have low aqueous solubility, causing green and cheap electricity-driven reactions to suffer from intrinsically low reaction rates in industry's solvent of choice: water. Here, we show that a strategic, partial electrode fouling with hydrophobic insulators (oils and plastics) offsets kinetic limitations caused by poor reactant solubility, opening a new path for the direct integration of renewable electricity into the production of commodity chemicals. Through electrochemiluminescence microscopy, we reveal for the oxidation of organic reactants up to 6-fold reaction rate increase at the "fouled" oil-electrolyte-electrode interface relative to clean electrolyte-electrode areas. Analogously, electrodes partially masked (fouled) with plastic patterns, deposited either photolithographically (photoresists) or manually (inexpensive household glues and sealants), outperform clean electrodes. The effect is not limited to reactants of limited water solubility, and, for example, net gold electrodeposition rates are up to 22% larger at fouled than clean electrodes. In a system involving a surface-active reactant, rate augmentation is driven by the synergy between insulator-confined reactant enrichment and insulator-induced current crowding, whereas only the latter and possibly localized decrease in iR drop near the insulator are relevant in a system composed of non-surface-active species. Our counterintuitive electrode design enhances electrolysis rates despite the diminished area of intimate electrolyte-electrode contact and introduces a new path for upscaling aqueous electrochemical processes.
Collapse
Affiliation(s)
- Harry Morris Rodriguez
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mariusz Martyniuk
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Killugudi Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
43
|
Song X, Yan H, Zhang Y, Zhou W, Li S, Zhang J, Ciampi S, Zhang L. Hydroxylation of the indium tin oxide electrode promoted by surface bubbles. Chem Commun (Camb) 2024; 60:4186-4189. [PMID: 38530669 DOI: 10.1039/d4cc00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Adherent bubbles at electrodes are generally treated as reaction penalties. Herein, in situ hydroxylation of indium tin oxide surfaces can be easily achieved by applying a constant potential of +1.0 V in the presence of bubbles. Its successful hydroxylation is further demonstrated by preparing a ferrocene-terminated film, which is confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Xiaoxue Song
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Hui Yan
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Yuqiao Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Weiqiang Zhou
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Shun Li
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Jianming Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia.
| | - Long Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| |
Collapse
|
44
|
Xia D, Zhang H, Ju Y, Xie HB, Su L, Ma F, Jiang J, Chen J, Francisco JS. Spontaneous Degradation of the "Forever Chemicals" Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) on Water Droplet Surfaces. J Am Chem Soc 2024. [PMID: 38584396 DOI: 10.1021/jacs.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Because of their innate chemical stability, the ubiquitous perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been dubbed "forever chemicals" and have attracted considerable attention. However, their stability under environmental conditions has not been widely verified. Herein, perfluorooctanoic acid (PFOA), a widely used and detected PFAS, was found to be spontaneously degraded in aqueous microdroplets under room temperature and atmospheric pressure conditions. This unexpected fast degradation occurred via a unique multicycle redox reaction of PFOA with interfacial reactive species on the droplet surface. Similar degradation was observed for other PFASs. This study extends the current understanding of the environmental fate and chemistry of PFASs and provides insight into aid in the development of effective methods for removing PFASs.
Collapse
Affiliation(s)
- Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Hong Zhang
- School of Marin Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yun Ju
- School of Marin Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jie Jiang
- School of Marin Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| |
Collapse
|
45
|
Zhang W, Yuan K, Zheng J, Wang X, Wang X, Song Z, Zhang L, Hu J. Effects of Nanobubbles on Photochemical Processes of Levofloxacin Photosensitizer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7021-7028. [PMID: 38501919 DOI: 10.1021/acs.langmuir.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photodynamic therapy (PDT) stands as an efficacious modality for the treatment of cancer and various diseases, in which optimization of the electron transfer and augmentation of the production of lethal reactive oxygen species (ROS) represent pivotal challenges to enhance its therapeutic efficacy. Empirical investigations have established that the spontaneous initiation of redox reactions associated with electron transfer is feasible and is located in the gas-liquid interfaces. Meanwhile, nanobubbles (NBs) are emerging as entities capable of furnishing a plethora of such interfaces, attributed to their stability and large surface/volume ratio in bulk water. Thus, NBs provide a chance to expedite the electron-transfer kinetics within the context of PDT in an ambient environment. In this paper, we present a pioneering exploration into the impact of nitrogen nanobubbles (N2-NBs) on the electron transfer of the photosensitizer levofloxacin (LEV). Transient absorption spectra and time-resolved decay spectra, as determined through laser flash photolysis, unequivocally reveal that N2-NBs exhibit a mitigating effect on the decay of the LEV excitation triplet state, thereby facilitating subsequent processes. Of paramount significance is the observation that the presence of N2-NBs markedly accelerates the electron transfer of LEV, albeit with a marginal inhibitory influence on its energy-transfer reaction. This observation is corroborated through absorbance measurements and offers compelling evidence substantiating the role of NBs in expediting electron transfer within the ambit of PDT. The mechanism elucidated herein sheds light on how N2-NBs intricately influence both electron-transfer and energy-transfer reactions in the photosensitizer LEV. These findings not only contribute to a nuanced understanding of the underlying processes but also furnish novel insights that may inform the application of NBs in the realm of photodynamic therapy.
Collapse
Affiliation(s)
- Wenpan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwei Yuan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingya Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiaotian Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Song
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Xiangfu Laboratory, Jiashan 314102, China
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
46
|
Zhang R, Zhang Z, Chen X, Jiang J, Hua L, Jia X, Bao R, Wang F. Pyrogenic Carbon Degradation by Galvanic Coupling with Sprayed Seawater Microdroplets. J Am Chem Soc 2024; 146:8528-8535. [PMID: 38497738 DOI: 10.1021/jacs.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Surface waves are known for their mechanical role in coastal processes that influence the weather and climate. However, their chemical impact, particularly on the transformation of pyrogenic carbon, is poorly understood. Pyrogenic carbon is generally assumed to show negligible postformational alteration of its stable carbon isotope composition. Here we present an electrochemical interaction of pyrogenic carbon with the sprayed seawater microdroplets resulting from wave breaking, driven by the galvanic coupling between the microdroplet water-carbon interfaces and the microdroplet water-vapor interfaces. This enables refractory pyrogenic carbon to rapidly degrade via the oxygenation and mineralization reaction, which makes it ∼2.6‰ enriched in 13C, far exceeding the generally assumed postformation alteration values (<0.5‰) of pyrogenic carbon. The unique chemical dynamics of seawater microdroplets provide new insights into the discrepancy in carbon isotope signatures between riverine and marine black carbon, emphasizing the potential of coastal oceans for carbon sequestration in the global carbon cycle.
Collapse
Affiliation(s)
- Ruolan Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450000, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhenyuan Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuke Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jichun Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lei Hua
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiuquan Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Rui Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao 266100, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
47
|
Angelaki M, Carreira Mendes Da Silva Y, Perrier S, George C. Quantification and Mechanistic Investigation of the Spontaneous H 2O 2 Generation at the Interfaces of Salt-Containing Aqueous Droplets. J Am Chem Soc 2024; 146:8327-8334. [PMID: 38488457 PMCID: PMC10979748 DOI: 10.1021/jacs.3c14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
There is now much evidence that OH radicals and H2O2 are spontaneously generated at the air-water interface of atmospheric aerosols. Here, we investigated the effect of halide anions (Cl-, Br-, I-), which are abundant in marine aerosols, on this H2O2 production. Droplets were generated via nebulization of water solutions containing Na2SO4, NaCl, NaBr, and NaI containing solutions, and H2O2 was monitored as a function of the salt concentration under atmospheric relevant conditions. The interfacial OH radical formation was also investigated by adding terephthalic acid (TA) to our salt solutions, and the product of its reaction with OH, hydroxy terephthalic acid (TAOH), was monitored. Finally, a mechanistic investigation was performed to examine the reactions participating in H2O2 production, and their respective contributions were quantified. Our results showed that only Br- contributes to the interfacial H2O2 formation, promoting the production by acting as an electron donor, while Na2SO4 and NaCl stabilized the droplets by only reducing their evaporation. TAOH was observed in the collected droplets and, for the first time, directly in the particle phase by means of online fluorescence spectroscopy, confirming the interfacial OH production. A mechanistic study suggests that H2O2 is formed by both OH and HO2 self-recombination, as well as HO2 reaction with H atoms. This work is expected to enhance our understanding of interfacial processes and assess their impact on climate, air quality, and health.
Collapse
Affiliation(s)
- Maria Angelaki
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626, Villeurbanne, France
| | | | - Sébastien Perrier
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626, Villeurbanne, France
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626, Villeurbanne, France
| |
Collapse
|
48
|
Cazorla A, Martín-Martín S, Delgado ÁV, Jiménez ML. Electro-optics of confined systems. J Colloid Interface Sci 2024; 658:52-60. [PMID: 38096679 DOI: 10.1016/j.jcis.2023.11.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Confinement in microenvironments occurs in many natural systems and technological applications. However, little is known about the behaviour of the immersed nanoparticles. In this work we show that their diffusion, electro-orientation and electric field induced polarization can be determined through electric birefringence experiments. We analyze aqueous dispersions of silver nanowires and clay particles confined inside microdroplets. We have observed that confinement reduces the amount of particles that can be oriented by the external electric field. However, the polarizability of the oriented particles is not affected by the presence of the oil/water boundary, and it is the same as in unbounded media, which agrees with the fact that the electric polarization and related phenomena are short-ranged.
Collapse
Affiliation(s)
- Ana Cazorla
- Department of Applied Physics, University of Granada, Avda. de Fuente Nueva sn, 18071, Granada, Spain.
| | - Sergio Martín-Martín
- Department of Applied Physics, University of Granada, Avda. de Fuente Nueva sn, 18071, Granada, Spain.
| | - Ángel V Delgado
- Department of Applied Physics, University of Granada, Avda. de Fuente Nueva sn, 18071, Granada, Spain.
| | - María L Jiménez
- Department of Applied Physics, University of Granada, Avda. de Fuente Nueva sn, 18071, Granada, Spain.
| |
Collapse
|
49
|
Galembeck F, Santos LP, Burgo TAL, Galembeck A. The emerging chemistry of self-electrified water interfaces. Chem Soc Rev 2024; 53:2578-2602. [PMID: 38305696 DOI: 10.1039/d3cs00763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Water is known for dissipating electrostatic charges, but it is also a universal agent of matter electrification, creating charged domains in any material contacting or containing it. This new role of water was discovered during the current century. It is proven in a fast-growing number of publications reporting direct experimental measurements of excess charge and electric potential. It is indirectly verified by its success in explaining surprising phenomena in chemical synthesis, electric power generation, metastability, and phase transition kinetics. Additionally, electrification by water is opening the way for developing green technologies that are fully compatible with the environment and have great potential to contribute to sustainability. Electrification by water shows that polyphasic matter is a charge mosaic, converging with the Maxwell-Wagner-Sillars effect, which was discovered one century ago but is still often ignored. Electrified sites in a real system are niches showing various local electrochemical potentials for the charged species. Thus, the electrified mosaics display variable chemical reactivity and mass transfer patterns. Water contributes to interfacial electrification from its singular structural, electric, mixing, adsorption, and absorption properties. A long list of previously unexpected consequences of interfacial electrification includes: "on-water" reactions of chemicals dispersed in water that defy current chemical wisdom; reactions in electrified water microdroplets that do not occur in bulk water, transforming the droplets in microreactors; and lowered surface tension of water, modifying wetting, spreading, adhesion, cohesion, and other properties of matter. Asymmetric capacitors charged by moisture and water are now promising alternative equipment for simultaneously producing electric power and green hydrogen, requiring only ambient thermal energy. Changing surface tension by interfacial electrification also modifies phase-change kinetics, eliminating metastability that is the root of catastrophic electric discharges and destructive explosions. It also changes crystal habits, producing needles and dendrites that shorten battery life. These recent findings derive from a single factor, water's ability to electrify matter, touching on the most relevant aspects of chemistry. They create tremendous scientific opportunities to understand the matter better, and a new chemistry based on electrified interfaces is now emerging.
Collapse
Affiliation(s)
- Fernando Galembeck
- Department of Physical Chemistry, University of Campinas, Institute of Chemistry, 13083-872, Campinas, Brazil.
- Galembetech Consultores e Tecnologia, 13080-661, Campinas, Brazil
| | - Leandra P Santos
- Galembetech Consultores e Tecnologia, 13080-661, Campinas, Brazil
| | - Thiago A L Burgo
- Department of Chemistry and Environmental Sciences, São Paulo State University (Unesp), 15054-000, São José do Rio Preto, Brazil
| | - Andre Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco, 50740-560, Recife, Brazil
| |
Collapse
|
50
|
Cassone G, Martelli F. Electrofreezing of liquid water at ambient conditions. Nat Commun 2024; 15:1856. [PMID: 38424051 PMCID: PMC10904787 DOI: 10.1038/s41467-024-46131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Water is routinely exposed to external electric fields. Whether, for example, at physiological conditions, in contact with biological systems, or at the interface of polar surfaces in countless technological settings, water responds to fields on the order of a few V Å-1 in a manner that is under intense investigation. Dating back to the 19th century, the possibility of solidifying water upon applying electric fields - a process known as electrofreezing - is an alluring promise that has canalized major efforts since, with uncertain outcomes. Here, we perform long (up to 500 ps per field strength) ab initio molecular dynamics simulations of water at ambient conditions under external electric fields. We show that fields of 0.10 - 0.15 V Å-1 induce electrofreezing to a ferroelectric amorphous phase which we term f-GW (ferroelectric glassy water). The transition occurs after ~ 150 ps for a field of 0.15 V Å-1 and after ~ 200 ps for a field of 0.10 V Å-1 and is signaled by a structural and dynamic arrest and the suppression of the fluctuations of the hydrogen bond network. Our work reports evidence of electrofreezing of bulk liquid water at ambient conditions and therefore impacts several fields, from fundamental chemical physics to biology and catalysis.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council, Viale F. Stagno d'Alcontres 37, Messina, 98158, Italy.
| | - Fausto Martelli
- IBM Research Europe, Keckwik Lane, Daresbury, WA4 4AD, UK.
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|