1
|
Zhang C, Gilliard RJ, Cummins CC. Arene extrusion as an approach to reductive elimination at boron: implication of carbene-ligated haloborylene as a transient reactive intermediate. Chem Sci 2024:d4sc05524a. [PMID: 39416303 PMCID: PMC11472773 DOI: 10.1039/d4sc05524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Herein, we report boron-centered arene extrusion reactions to afford putative cyclic(alkyl)(amino) carbene (CAAC)-ligated chloroborylene and bromoborylene intermediates. The borylene precursors, chloro-boranorbornadiene (ClB(C6Me6), 2Cl) and bromo-boranorbornadiene (BrB(C6Me6), 2Br) were synthesized through the reaction of the corresponding 1-halo-2,3,4,5-tetramethylborole dimer (XBC4Me4)2 (X = Cl, 1Cl; X = Br, 1Br) with 2-butyne. Treatment of 2Cl with CAACs resulted in the release of di-coordinate chloro-borylene (CAAC)BCl from hexamethylbenzene (C6Me6) at room temperature. In contrast, the reaction of 2Br with CAAC led to the formation of a boronium species [(CAAC)BC6Me6]+Br- (7) at room temperature. Heating 7 in toluene promoted the release of di-coordinate bromo-borylene (CAAC)BBr as a transient species. Surprisingly, heating 7 in dichloromethane resulted in the C-H activation of hexamethylbenzene. The conversion of a CAAC-stabilized bromo-borepin to a borylene, a boron-centered retro Büchner reaction, was also investigated.
Collapse
Affiliation(s)
- Chonghe Zhang
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| |
Collapse
|
2
|
Li M, Mitchell AA, Zhang T, Patrick BO, Fryzuk MD, Gates DP. Enantiopure P-Chiral Secondary Phosphines (P*HRR') from the Catalytic Asymmetric Hydrogenation of P═C Bonds. J Am Chem Soc 2024; 146:25912-25917. [PMID: 39270209 DOI: 10.1021/jacs.4c09501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We report the first bottleable enantiopure P-chiral secondary phosphines from the rhodium-catalyzed asymmetric hydrogenation of phosphaalkenes. Catalytic asymmetric hydrogenation, a reaction of broad academic and industrial importance for C═C, N═C, and O═C bonds, has not previously been reported for the P═C bond. The hydrogenation of ArP═CR2 (Ar = Mes, m-Xyl and TMOP; R = Ph, 4-C6H4F) affords four unprecedented P-stereogenic secondary phosphines in 76%-90% isolated yields with 91%-97% enantiomeric excess (ee). These isolable P-chiral secondary phosphines are configurationally stable indefinitely in the solid state and show only modest loss in ee when kept in solution for over a month at room temperature.
Collapse
Affiliation(s)
- Ming Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Aaron A Mitchell
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Tian Zhang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Michael D Fryzuk
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Derek P Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| |
Collapse
|
3
|
Sarkar D, Vasko P, Roper AF, Crumpton AE, Roy MMD, Griffin LP, Bogle C, Aldridge S. Reversible [4 + 1] Cycloaddition of Arenes by a "Naked" Acyclic Aluminyl Compound. J Am Chem Soc 2024; 146:11792-11800. [PMID: 38626444 PMCID: PMC11066863 DOI: 10.1021/jacs.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
The large steric profile of the N-heterocyclic boryloxy ligand, -OB(NDippCH)2, and its ability to stabilize the metal-centered HOMO, are exploited in the synthesis of the first example of a "naked" acyclic aluminyl complex, [K(2.2.2-crypt)][Al{OB(NDippCH)2}2]. This system, which is formed by substitution at AlI (rather than reduction of AlIII), represents the first O-ligated aluminyl compound and is shown to be capable of hitherto unprecedented reversible single-site [4 + 1] cycloaddition of benzene. This chemistry and the unusual regioselectivity of the related cycloaddition of anthracene are shown to be highly dependent on the availability (or otherwise) of the K+ countercation.
Collapse
Affiliation(s)
- Debotra Sarkar
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Petra Vasko
- Department
of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, P.O. Box 55, Helsinki FI-00014, Finland
| | - Aisling F. Roper
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Agamemnon E. Crumpton
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Matthew M. D. Roy
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Liam P. Griffin
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Charlotte Bogle
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Simon Aldridge
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| |
Collapse
|
4
|
Zhu H, Fujimori S, Kostenko A, Inoue S. Dearomatization of C 6 Aromatic Hydrocarbons by Main Group Complexes. Chemistry 2023; 29:e202301973. [PMID: 37535350 DOI: 10.1002/chem.202301973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
The dearomatization reaction is a powerful method for transformation of simple aromatic compounds to unique chemical architectures rapidly in synthetic chemistry. Over the past decades, the chemistry in this field has evolved significantly and various important organic compounds such as crucial bioactive molecules have been synthesized through dearomatization. In general, photochemical conditions or assistance by transition metals are required for dearomatization of rigid arenes. Recently, main-group elements, especially naturally abundant elements in the Earth's crust, have attracted attention as they have low toxicity and are cost-effective compared to the late transition metals. In recent decades, a variety of low-valent main-group molecules, which enable the activation of stable aromatic compounds under mild conditions, have been developed. This minireview highlights the developments in the chemistry of dearomatization of C6 aromatic hydrocarbons by main-group compounds leading to the formation of seven-membered EC6 (E=main-group elements) ring or cycloaddition products.
Collapse
Affiliation(s)
- Huaiyuan Zhu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Shiori Fujimori
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| |
Collapse
|
5
|
Cyraniak A, Freza S, Skurski P. An ab initio study on the stability of isolated phosphaalkene synthons. Phys Chem Chem Phys 2023; 25:27196-27203. [PMID: 37789824 DOI: 10.1039/d3cp03770c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Using ab initio methods and flexible basis sets, we examined the electronic, geometric, and thermodynamic stabilities of selected phosphaalkene synthons matching the (PCR2)- formula (R = H, CH3, C6H5, C6F5, and Mes). All isolated synthons considered were found to be electronically stable and susceptible to neither fragmentation nor isomerization processes. The structures corresponding to the most stable isomers of the studied phosphaalkene synthons contain a PC double-bond (whose presence was confirmed by natural bond orbital occupancies of σ(P-C) and π(P-C) approaching 2 electrons) and two R substituents connected to the carbon atom in either (PCR2)- (for R = H, CH3, C6H5, and Mes) or (PCF-R-R)- (for R = C6F5) manner. Vertical electron detachment energies (spanning the 0.924-3.118 eV range) characterizing the phosphaalkene synthons were predicted and discussed.
Collapse
Affiliation(s)
- Adrianna Cyraniak
- Laboratory of Quantum Chemistry, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Sylwia Freza
- Laboratory of Quantum Chemistry, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Piotr Skurski
- Laboratory of Quantum Chemistry, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
- QSAR Lab Ltd., Trzy Lipy 3, 80-172 Gdańsk, Poland
| |
Collapse
|
6
|
Luo H, Wang J, Tian R, Duan Z. 2H-Phosphindole-Enabled Dearomatization and [4+2] Cycloaddition of (Hetero)Arenes. Chemistry 2023; 29:e202301898. [PMID: 37501587 DOI: 10.1002/chem.202301898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The heavier main group multiple bonds offer an effective tool for small molecule activation. Transient 2H-phosphinidole working as a reactive phosphadiene system undergoes phospha-Diels-Alder reaction with a wide range of non-activated aromatic carbocycles and heterocycles, including naphthalene, anthracene, phenanthrene, furan, thiophene, pyrrole, pyridine, and benzo-fused heterocycles, affording concise access to a range of polycyclic fused rings feature with phosphorus at the bridgehead. These results demonstrate that non-activated (hetero)arenes are capable of acting as 2π systems in [4+2] cycloaddition with highly reactive 2H-phosphindole complex.
Collapse
Affiliation(s)
- Haotian Luo
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Junjian Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Loh YK, Melaimi M, Munz D, Bertrand G. An Air-Stable "Masked" Bis(imino)carbene: A Carbon-Based Dual Ambiphile. J Am Chem Soc 2023; 145:2064-2069. [PMID: 36649656 DOI: 10.1021/jacs.2c12847] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Carbenes, once considered laboratory curiosities, now serve as powerful tools in the chemical and material sciences. To date, all stable singlet carbenes are single-site ambiphiles. Here we describe the synthesis of a carbene which is a carbon-based dual ambiphile (both single-site and dual-site). The key is to employ imino substituents derived from a cyclic (alkyl)(amino)carbene (CAAC), which imparts a 1,3-dipolar character to the carbene. Its dual ambiphilic nature is consistent with the ability to activate simple organic molecules in both 1,1- and 1,3-fashion. Furthermore, its 1,3-ambiphilicity facilitates an unprecedented reversible intramolecular dearomative [3 + 2] cycloaddition with a proximal arene substituent, giving the carbene the ability to "mask" itself as an air-stable cycloadduct. We perceive that the concept of dual ambiphilicity opens a new dimension for future carbene chemistry, expanding the repertoire of applications beyond that known for classical single-site ambiphilic carbenes.
Collapse
Affiliation(s)
- Ying Kai Loh
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Mohand Melaimi
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Dominik Munz
- Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
8
|
Cui M, Feng K, Tian R, Duan Z. Phosphorus-Involved Wagner-Meerwein Rearrangement of Phosphiranes: An Entry to Four-Membered Phosphacycles. Org Lett 2023; 25:205-209. [PMID: 36583566 DOI: 10.1021/acs.orglett.2c04052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphenium ions [R2P]+ are important and highly reactive dicoordinate phosphorus species. Herein, we report a rearrangement of the carbocation into the phosphenium cation driven by ring strain. This phosphorus-involved Wagner-Meerwein rearrangement pathway converted the 1-acylphosphirane complex into phosphetane and 1,2-dihydrophosphete derivatives depending on the reaction temperature. The generation of the intermediate phosphenium cation was identified by the intramolecular reaction with ether, which also disclosed its strong Lewis acidity. This work expands the boundary of the phosphorus-carbon analogy.
Collapse
Affiliation(s)
- Mingyue Cui
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ke Feng
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
9
|
Qiu S, Zhang X, Hu C, Chu H, Li Q, Ruiz DA, Liu LL, Tung C, Kong L. Unveiling Hetero‐Enyne Reactivity of Aryliminoboranes: Dearomative Hetero‐Diels–Alder‐Like Reactions. Angew Chem Int Ed Engl 2022; 61:e202205814. [DOI: 10.1002/anie.202205814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang Qiu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Xin Zhang
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Chaopeng Hu
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Hongxu Chu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Qianli Li
- School of Chemistry and Chemical Engineering Liaocheng University Liaocheng 252059 China
| | - David A. Ruiz
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Chen‐Ho Tung
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
10
|
Qiu S, Zhang X, Hu C, Chu H, Li Q, Ruiz DA, Liu LL, Tung CH, Kong L. Unveiling Hetero‐Enyne Reactivity of Aryliminoboranes: Dearomative Hetero‐Diels‐Alder‐Like Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuang Qiu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Xin Zhang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chaopeng Hu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Hongxu Chu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Qianli Li
- Liaocheng University School of Chemistry and Chemical Engineering CHINA
| | - David A Ruiz
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Liu Leo Liu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chen-Ho Tung
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Lingbing Kong
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
11
|
Ziółkowska A, Szynkiewicz N, Ponikiewski Ł. Activation of the C[double bond, length as m-dash]P bond in phosphanylphosphaalkenes (C[double bond, length as m-dash]P-P bond system) in the reaction with nucleophilic reagents: MeLi, nBuLi and tBuLi. RSC Adv 2022; 12:10989-10996. [PMID: 35425069 PMCID: PMC8988267 DOI: 10.1039/d1ra09215d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Three reactions of phosphanylphosphaalkene (1) with nucleophiles were performed to activate the diphosphorus monomer. We observed similar results in the reactions with MeLi and nBuLi, in which the P-P bond is cleavaged and triphosphorus systems [P(Me)2-CH(biph)-CH(biph)-P-(PtBu2)]- (1a'') and [P(nBu)2-CH(biph)-CH(biph)-P-(PtBu2)]- (1b''), respectively, are formed depending on the nucleophilic reagent (biph = biphenyl). In the case of tBuLi, the P-P bond remains intact; on the phosphorus atom, only one -tBu group is substituted, and as a result, [(biph)(H)C-P(tBu)-PtBu2]- (1c) is generated as a stable carbanion. We additionally investigated the effect of substitution in the phenyl ring in the course of these reactions by involving two other phosphanylphosphaalkenes (3 and 4). All initial reactions were conducted in tetrahydrofuran (THF) solution at ambient temperature.
Collapse
Affiliation(s)
- Aleksandra Ziółkowska
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Technology Gabriela Narutowicza Str. 11/12 80-233 Gdansk Poland
| | - Natalia Szynkiewicz
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Technology Gabriela Narutowicza Str. 11/12 80-233 Gdansk Poland
| | - Łukasz Ponikiewski
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Technology Gabriela Narutowicza Str. 11/12 80-233 Gdansk Poland
| |
Collapse
|
12
|
Zhang X, Liu LL. Modulating the Frontier Orbitals of an Aluminylene for Facile Dearomatization of Inert Arenes**. Angew Chem Int Ed Engl 2022; 61:e202116658. [DOI: 10.1002/anie.202116658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
13
|
Zhang X, Liu LL. Modulating the Frontier Orbitals of an Aluminylene for Facile Dearomatization of Inert Arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Zhang
- SUSTech: Southern University of Science and Technology Chemistry CHINA
| | - Liu Leo Liu
- Southern University of Science and Technology Chemistry 1088 Xueyuandadao 518055 Shenzhen CHINA
| |
Collapse
|
14
|
Han Z, Röhner D, Samedov K, Gates DP. Isolable Phosphaalkenes Bearing 2,4,6-Trimethoxyphenyl and 2,6-Bis(trifluoromethyl)phenyl as P-Substituents. J Org Chem 2020; 85:14643-14652. [DOI: 10.1021/acs.joc.0c01514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zeyu Han
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - David Röhner
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Kerim Samedov
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Derek P. Gates
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| |
Collapse
|
15
|
Guo R, Jiang J, Hu C, Liu LL, Cui P, Zhao M, Ke Z, Tung CH, Kong L. BNN-1,3-dipoles: isolation and intramolecular cycloaddition with unactivated arenes. Chem Sci 2020; 11:7053-7059. [PMID: 34122998 PMCID: PMC8159347 DOI: 10.1039/d0sc02162h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mono-base-stabilized 1,2-diboranylidenehydrazine derivatives featuring a 1,3-dipolar BNN skeleton are obtained by dehydrobromination of [ArB(Br)NH]2 (Ar = 2,6-diphenylphenyl (Dpp), Ar = 2,6-bis(2,4,6-trimethylphenyl)phenyl (Dmp) or Ar = 2,4,6-tri-tert-butylphenyl (Mes*)) with N-heterocyclic carbenes (NHCs). Depending on the Ar substituents, such species can be isolated as a crystalline solid (Ar = Mes*) or generated as reactive intermediates undergoing spontaneous intramolecular aminoboration of the proximal arene rings via [3 + 2] cycloaddition (Ar = Dpp or Dmp). The latter reactions showcase the 1,3-dipolar reactivity toward unactivated arenes at ambient temperature. In addition, double cycloaddition of the isolable BNN species with two CO2 molecules affords a bicyclic species consisting of two fused five-membered BN2CO rings. The electronic structures of these BNN species and the mechanisms of these cascade reactions are interrogated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Rui Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Shandong University Jinan 250100 P. R. China
| | - Jingxing Jiang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Chenyang Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Shandong University Jinan 250100 P. R. China
| | - Meihua Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Shandong University Jinan 250100 P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Shandong University Jinan 250100 P. R. China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Shandong University Jinan 250100 P. R. China .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
16
|
Raiser D, Sindlinger CP, Schubert H, Wesemann L. Ge=B π-Bonding: Synthesis and Reversible [2+2] Cycloaddition of Germaborenes. Angew Chem Int Ed Engl 2020; 59:3151-3155. [PMID: 31804742 PMCID: PMC7028040 DOI: 10.1002/anie.201914608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 11/07/2022]
Abstract
Phosphine-stabilized germaborenes featuring an unprecedented Ge=B double bond with short B⋅⋅⋅Ge contacts of 1.886(2) (4) and 1.895(3) Å (5) were synthesized starting from an intramolecular germylene-phosphine Lewis pair (1). After oxidative addition of boron trihalides BX3 (X=Cl, Br), the addition products were reduced with magnesium and catalytic amounts of anthracene to give the borylene derivatives in yields of 78 % (4) and 57 % (5). These halide-substituted germaborenes were characterized by single-crystal structure analysis, and the electronic structures were studied by quantum-chemical calculations. According to an NBO NRT analysis, the dominating Lewis structure contains a Ge=B double bond. The germaborenes undergo a reversible, photochemically initiated [2+2] cycloaddition with the phenyl moiety of a terphenyl substituent at room temperature, forming a complex heterocyclic structure with GeIV in a strongly distorted coordination environment.
Collapse
Affiliation(s)
- Dominik Raiser
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Christian P. Sindlinger
- Institut für Anorganische ChemieGeorg August Universität GöttingenTammannstr. 437077GöttingenGermany
| | - Hartmut Schubert
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Lars Wesemann
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
17
|
Zhao W, Huang X, Zhan Y, Zhang Q, Li D, Zhang Y, Kong L, Peng B. Dearomative Dual Functionalization of Aryl Iodanes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Weizhao Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Yaling Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Qifeng Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Dongyang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Yage Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| |
Collapse
|
18
|
Zhao W, Huang X, Zhan Y, Zhang Q, Li D, Zhang Y, Kong L, Peng B. Dearomative Dual Functionalization of Aryl Iodanes. Angew Chem Int Ed Engl 2019; 58:17210-17214. [DOI: 10.1002/anie.201909019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Weizhao Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Yaling Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Qifeng Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Dongyang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Yage Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| |
Collapse
|
19
|
Liu LL, Zhou J, Cao LL, Stephan DW. Phosphaaluminirenes: Synthons for Main Group Heterocycles. J Am Chem Soc 2019; 141:16971-16982. [DOI: 10.1021/jacs.9b09330] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liu Leo Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jiliang Zhou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Levy L. Cao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Douglas W. Stephan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
20
|
Su Y, Huan Do DC, Li Y, Kinjo R. Metal-Free Selective Borylation of Arenes by a Diazadiborinine via C–H/C–F Bond Activation and Dearomatization. J Am Chem Soc 2019; 141:13729-13733. [DOI: 10.1021/jacs.9b06022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanting Su
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Dinh Cao Huan Do
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
21
|
Wang Y, Karni M, Yao S, Kaushansky A, Apeloig Y, Driess M. Synthesis of an Isolable Bis(silylene)-Stabilized Silylone and Its Reactivity Toward Small Gaseous Molecules. J Am Chem Soc 2019; 141:12916-12927. [PMID: 31337219 DOI: 10.1021/jacs.9b06603] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first bis(N-heterocyclic silylene)-stabilized zero-valent silicon compound, [SiII(Xant)SiII]Si0 (4, Xant = 9,9-dimethyl-xanthene-4,5-diyl), has been synthesized via the reduction of the corresponding chlorosilyliumylidene chloride precursor {[SiII(Xant)SiII]SiCl}+Cl- (2). The electronic structure of silylone 4, whose molecular structure is confirmed spectroscopically and crystallographically, is investigated by DFT calculations and Natural Bond Orbital analysis, showing two perpendicular lone-pairs of electrons on the central Si0 atom, i.e., an sp0.41-type lone-pair and a delocalized p lone-pair. With the electron-rich and oxophilic Si0 center, silylone 4 exhibits a striking reactivity toward small gaseous molecules. Remarkably, the oxidation of silylone 4 by N2O can be controlled to generate distinct products by regulating the amount of added N2O. Exposing 4 to an excess or two molar equivalents of N2O yields the unexpected oxidation product 5, bearing a central six-membered Si4O2 ring. When 4 is mixed with one molar equivalent of N2O, the unique compound 6 is obtained, resulting from a rare 1,4-addition of two central silicon atoms to a phenyl ring of an amidinate ligand coordinated to the SiII atom. In addition, cleavage of the strong N-H bond in ammonia is also readily accomplished by silylone 4, representing the first example of NH3 activation in silylone chemistry. In the presence of the Lewis acid BPh3, silylone 4 achieves heterolytic dihydrogen cleavage and ethylene addition to form the corresponding hydridosilyliumylidene hydroborate salt 8 and the zwitterionic compound 9, respectively, which represent a new type of frustrated Lewis pair based on an electron-rich Si0 donor and a borane acceptor.
Collapse
Affiliation(s)
- Yuwen Wang
- Metalorganics and Inorganic Materials, Department of Chemistry , Technische Universität Berlin , Straße des 17, Juni 135, Sekr. C2 , 10623 Berlin , Germany
| | - Miriam Karni
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Shenglai Yao
- Metalorganics and Inorganic Materials, Department of Chemistry , Technische Universität Berlin , Straße des 17, Juni 135, Sekr. C2 , 10623 Berlin , Germany
| | - Alexander Kaushansky
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Yitzhak Apeloig
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Matthias Driess
- Metalorganics and Inorganic Materials, Department of Chemistry , Technische Universität Berlin , Straße des 17, Juni 135, Sekr. C2 , 10623 Berlin , Germany
| |
Collapse
|
22
|
Liu LL, Zhou J, Kim Y, Cao LL, Stephan DW. Oligomerization of phosphaalkynes mediated by bulky N-heterocyclic carbenes: avenues to novel phosphorus frameworks. Dalton Trans 2019; 48:14242-14245. [DOI: 10.1039/c9dt03185e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of RCP (R = tBu or Ad (admantyl)) with NHCs (SIMes, 1a; IMes, 1b and IDipp, 1d), leading to 1,2,3-triphosphetenes 2 and 3, a triphosphole 4, and a di-1,2-dihydro-1,2-diphosphete-substituted diphosphene 5, are reported.
Collapse
Affiliation(s)
- Liu Leo Liu
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Jiliang Zhou
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Youngsuk Kim
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
- Department of Chemistry
| | - Levy L. Cao
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | |
Collapse
|