1
|
Wang G, Xu M, Fei L, Wu C. Toward High-Performance Li-Rich Mn-Based Layered Cathodes: A Review on Surface Modifications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405659. [PMID: 39460483 DOI: 10.1002/smll.202405659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Indexed: 10/28/2024]
Abstract
Lithium-rich manganese-based layered oxides (LRMOs) have received attention from both the academic and the industrial communities in recent years due to their high specific capacity (theoretical capacity ≥250 mAh g-1), low cost, and excellent processability. However, the large-scale applications of these materials still face unstable surface/interface structures, unsatisfactory cycling/rate performance, severe voltage decay, etc. Recently, solid evidence has shown that lattice oxygen in LRMOs easily moves and escapes from the particle surface, which inspires significant efforts on stabilizing the surface/interfacial structures of LRMOs. In this review, the main issues associated with the surface of LRMOs together with the recent advances in surface modifications are outlined. The critical role of outside-in surface decoration at both atomic and mesoscopic scales with an emphasis on surface coating, surface doping, surface structural reconstructions, and multiple-strategy co-modifications is discussed. Finally, the future development and commercialization of LRMOs are prospected. Looking forward, the optimal surface modifications of LRMOs may lead to a low-cost and sustainable next-generation high-performance battery technology.
Collapse
Affiliation(s)
- Guangren Wang
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shannxi, 710049, P. R. China
| | - Linfeng Fei
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
2
|
Li S, Hou D, Li J, Liu Y, Gao G, Xu Q, Fan M, Wang L, Lin J, Peng DL, Xie Q, Amine K. Enhancing the Reaction Kinetics and Stability of Co-Free Li-Rich Cathode Materials via a Multifunctional Strategy. SMALL METHODS 2024:e2401490. [PMID: 39382221 DOI: 10.1002/smtd.202401490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Indexed: 10/10/2024]
Abstract
Co-free Li-rich layered oxides (CFLLOs) with anionic redox activity are among the most promising cathode materials for high-energy-density and low-cost lithium-ion batteries (LIBs). However, irreversible oxygen release often causes severe structural deterioration, electrolyte decomposition, and the formation of unstable cathode-electrolyte interface (CEI) film with high impedance. Additionally, the elimination of cobalt elements further deteriorates the reaction kinetics, leading to reduced capacity and poor rate performance. Here, a multifunctional strategy is proposed, incorporating Li2MnO3 phase content regulation, micro-nano structure design, and heteroatom substitution. The increased content of Li2MnO3 phase enhances the capacity through oxygen redox. The smaller nanoscale primary particles induce greater tensile strain and introduce more grain boundaries, thereby improving the reaction kinetics and reactivity, while the larger micron-sized secondary particles help to reduce interfacial side reactions. Furthermore, Na⁺ doping modulates the local coordination environment of oxygen, stabilizing both the anion framework and the crystal structure. As a result, the designed cathode exhibits enhanced rate performance, delivering a capacity of 158 mAh g⁻¹ at 5.0 C and improved cyclic stability, with a high capacity retention of 99% after 400 cycles at 1.0 C. This multifunctional strategy holds great promise for advancing the practical application of CFLLOs in next-generation LIBs.
Collapse
Affiliation(s)
- Saichao Li
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dewen Hou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jiantao Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yuanyuan Liu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Guiyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qixiang Xu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Mengjian Fan
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Laisen Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jie Lin
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dong-Liang Peng
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qingshui Xie
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
3
|
Yuan MM, Wang LD, Zhang J, Ran MJ, Wang K, Hu ZY, Van Tendeloo G, Li Y, Su BL. Cut-off voltage influencing the voltage decay of single crystal lithium-rich manganese-based cathode materials in lithium-ion batteries. J Colloid Interface Sci 2024; 674:238-248. [PMID: 38936080 DOI: 10.1016/j.jcis.2024.06.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The voltage decay of Li-rich layered oxide cathode materials results in the deterioration of cycling performance and continuous energy loss, which seriously hinders their application in the high-energy-density lithium-ion battery (LIB) market. However, the origin of the voltage decay mechanism remains controversial due to the complex influences of transition metal (TM) migration, oxygen release, indistinguishable surface/bulk reactions and the easy intra/inter-crystalline cracking during cycling. We investigated the direct cause of voltage decay in micrometer-scale single-crystal Li1.2Mn0.54Ni0.13Co0.13O2 (SC-LNCM) cathode materials by regulating the cut-off voltage. The redox of TM and O2- ions can be precisely controlled by setting different voltage windows, while the cracking can be restrained, and surface/bulk structural evaluation can be monitored because of the large single crystal size. The results show that the voltage decay of SC-LNCM is related to the combined effect of cation rearrangement and oxygen release. Maintaining the discharge cutoff voltage at 3 V or the charging cutoff voltage at 4.5 V effectively mitigates the voltage decay, which provides a solution for suppressing the voltage decay of Li-rich and Mn-based layered oxide cathode materials. Our work provides significant insights into the origin of the voltage decay mechanism and an easily achievable strategy to restrain the voltage decay for Li-rich and Mn-based cathode materials.
Collapse
Affiliation(s)
- Man-Man Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Lin-Dong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Jian Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Mao-Jin Ran
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Kun Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China.
| | - Gustaaf Van Tendeloo
- Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China.
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.
| |
Collapse
|
4
|
Ye Y, Yuan S, Zhang S, Liu T, Wang J, Wang Q. Functional Composite Dual-Phase In Situ Self-Reconstruction Design for High-Energy-Density Li-Rich Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307669. [PMID: 38168885 DOI: 10.1002/smll.202307669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The unique anionic redox mechanism provides, high-capacity, irreversible oxygen release and voltage/capacity degradation to Li-rich cathode materials (LRO, Li1.2Mn0.54Co0.13Ni0.13O2). In this study, an integrated stabilized carbon-rock salt/spinel composite heterostructured layers (C@spinel/MO) is constructed by in situ self-reconstruction, and the generation mechanism of the in situ reconstructed surface is elucidated. The formation of atomic-level connections between the surface-protected phase and bulk-layered phase contributes to electrochemical performance. The best-performing sample shows a high increase (63%) of capacity retention compared to that of the pristine sample after 100 cycles at 1C, with an 86.7% reduction in surface oxygen release shown by differential electrochemical mass spectrometry. Soft X-ray results show that Co3+ and Mn4+ are mainly reduce in the carbothermal reduction reaction and participate in the formation of the spinel/MO rock-salt phase. The results of oxygen release characterized by Differential electrochemical mass spectrometry (DEMS) strongly prove the effectiveness of surface reconstruction.
Collapse
Affiliation(s)
- Yun Ye
- School of Metallurgy, Northeastern University, Shenyang, 110819, P. R. China
| | - Shuang Yuan
- School of Metallurgy, Northeastern University, Shenyang, 110819, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, P. R. China
| | - Shuhao Zhang
- School of Metallurgy, Northeastern University, Shenyang, 110819, P. R. China
| | - Tie Liu
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, P. R. China
| | - Jun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
5
|
Duan J, Wang F, Huang M, Yang M, Li S, Zhang G, Xu C, Tang C, Liu H. High-Performance Single-Crystal Lithium-Rich Layered Oxides Cathode Materials via Na 2WO 4-Assisted Sintering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307998. [PMID: 38010124 DOI: 10.1002/smll.202307998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Indexed: 11/29/2023]
Abstract
Single-crystal lithium-rich layered oxides (LLOs) with excellent mechanical properties can enhance their crystal structure stability. However, the conventional methods for preparing single-crystal LLOs, require large amounts of molten salt additives, involve complicated washing steps, and increase the difficulty of large-scale production. In this study, a sodium tungstate (Na2WO4)-assisted sintering method is proposed to fabricate high-performance single-crystal LLOs cathode materials without large amounts of additives and additional washing steps. During the sintering process, Na2WO4 promotes particle growth and forms a protective coating on the surface of LLOs particles, effectively suppressing the side reactions at the cathode/electrolyte interface. Additionally, trace amounts of Na and W atoms are doped into the LLOs lattice via gradient doping. Experimental results and theoretical calculations indicate that Na and W doping stabilizes the crystal structure and enhances the Li+ ions diffusion rate. The prepared single-crystal LLOs exhibit outstanding capacity retention of 82.7% (compared to 65.0%, after 200 cycles at 1 C) and a low voltage decay rate of 0.76 mV per cycle (compared to 1.80 mV per cycle). This strategy provides a novel pathway for designing the next-generation high-performance cathode materials for Lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Jidong Duan
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
- Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621907, P. R. China
| | - Fengqi Wang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Mengjie Huang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Maoxia Yang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Shaomin Li
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Gen Zhang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Chen Xu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621907, P. R. China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Hao Liu
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
- Sichuan New Li-idea Energy Science and Technology Co., LTD, Shehong, Sichuan, 629200, P. R. China
| |
Collapse
|
6
|
Li JC, Tang J, Tian J, Cheng C, Liao Y, Hu B, Yu T, Li H, Liu Z, Rao Y, Deng Y, Zhang L, Zhang X, Guo S, Zhou H. From Oxygen Redox to Sulfur Redox: A Paradigm for Li-Rich Layered Cathodes. J Am Chem Soc 2024; 146:7274-7287. [PMID: 38377953 DOI: 10.1021/jacs.3c11569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The utilization of anionic redox chemistry provides an opportunity to further improve the energy density of Li-ion batteries, particularly for Li-rich layered oxides. However, oxygen-based hosts still suffer from unfavorable structural rearrangement, including the oxygen release and transition metal (TM)-ion migration, in association with the tenuous framework rooted in the ionicity of the TM-O bonding. An intrinsic solution, by using a sulfur-based host with strong TM-S covalency, is proposed here to buffer the lattice distortion upon the highly activating sulfur redox process, and it achieves howling success in stabilizing the host frameworks. Experimental results demonstrate the prolonged preservation of the layered sulfur lattice, especially the honeycomb superlattice, during the Li+ extraction/insertion process in contrast to the large structural degeneration in Li-rich oxides. Moreover, the Li-rich sulfide cathodes exhibited a negligible overpotential of 0.08 V and a voltage drop of 0.13 mV/cycle, while maintaining a substantial reversible capacity upon cycling. These superior electrochemical performances can be unambiguously ascribed to the much shorter trajectories of sulfur in comparison to those of oxygen revealed by molecular dynamics simulations at a large scale (∼30 nm) and a long time scale (∼300 ps) via high-dimensional neural network potentials during the delithiation process. Our findings highlight the importance of stabilizing host frameworks and establish general guidance for designing Li-rich cathodes with durable anionic redox chemistry.
Collapse
Affiliation(s)
- Jing-Chang Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Jiayi Tang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P. R. China
| | - Jiaming Tian
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China
| | - Yuxin Liao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Tao Yu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Haoyu Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Zhaoguo Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Yuan Rao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Yu Deng
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P. R. China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoyu Zhang
- School of materials science and engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P. R. China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
7
|
Li S, Guan C, Zhang W, Li H, Gao X, Zhang S, Li S, Lai Y, Zhang Z. Stabilized Anionic Redox by Rational Structural Design from Surface to Bulk for Long-Life Fast-Charging Li-Rich Oxide Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303539. [PMID: 37287389 DOI: 10.1002/smll.202303539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Indexed: 06/09/2023]
Abstract
On account of high capacity and high voltage resulting from anionic redox, Li-rich layered oxides (LLOs) have become the most promising cathode candidate for the next-generation high-energy-density lithium-ion batteries (LIBs). Unfortunately, the participation of oxygen anion in charge compensation causes lattice oxygen evolution and accompanying structural degradation, voltage decay, capacity attenuation, low initial columbic efficiency, poor kinetics, and other problems. To resolve these challenges, a rational structural design strategy from surface to bulk by a facile pretreatment method for LLOs is provided to stabilize oxygen redox. On the surface, an integrated structure is constructed to suppress oxygen release, electrolyte attack, and consequent transition metals dissolution, accelerate lithium ions transport on the cathode-electrolyte interface, and alleviate the undesired phase transformation. While in the bulk, B doping into Li and Mn layer tetrahedron is introduced to increase the formation energy of O vacancy and decrease the lithium ions immigration barrier energy, bringing about the high stability of surrounding lattice oxygen and outstanding ions transport ability. Benefiting from the specific structure, the designed material with the enhanced structural integrity and stabilized anionic redox performs an excellent electrochemical performance and fast-charging property..
Collapse
Affiliation(s)
- Shihao Li
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Chaohong Guan
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Zhang
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Huangxu Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Xianggang Gao
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Shuai Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Simin Li
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yanqing Lai
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Zhian Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
8
|
Tian JX, Guo HJ, Wan J, Liu GX, Wen R, Wan LJ. In situ analysis of dynamic evolution of the additive-regulated cathode processes in quasi-solid-state lithium-metal batteries. Sci China Chem 2023; 66:2921-2928. [DOI: 10.1007/s11426-023-1778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2024]
|
9
|
Chen H, Sun C. Recent advances in lithium-rich manganese-based cathodes for high energy density lithium-ion batteries. Chem Commun (Camb) 2023. [PMID: 37376977 DOI: 10.1039/d3cc02195e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The development of society challenges the limit of lithium-ion batteries (LIBs) in terms of energy density and safety. Lithium-rich manganese oxide (LRMO) is regarded as one of the most promising cathode materials owing to its advantages of high voltage and specific capacity (more than 250 mA h g-1) as well as low cost. However, the problems of fast voltage/capacity fading, poor rate performance and the low initial Coulombic efficiency severely hinder its practical application. In this paper, we review the latest research advances of LRMO cathode materials, including crystal structure, electrochemical reaction mechanism, existing problems and modification strategies. In this review, we pay more attention to recent progress in modification methods, including surface modification, doping, morphology and structure design, binder and electrolyte additives, and integration strategies. It not only includes widely studied strategies such as composition and process optimization, coating, defect engineering, and surface treatment, but also introduces many relatively novel modification methods, such as novel coatings, grain boundary coating, gradient design, single crystal, ion exchange method, solid-state batteries and entropy stabilization strategy. Finally, we summarize the existing problems in the development of LRMO and put forward some perspectives on the further research.
Collapse
Affiliation(s)
- Hexiang Chen
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, P. R. China.
| | - Chunwen Sun
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, P. R. China.
| |
Collapse
|
10
|
Yang P, Zhang S, Wei Z, Guan X, Xia J, Huang D, Xing Y, He J, Wen B, Liu B, Xu H. A Gradient Doping Strategy toward Superior Electrochemical Performance for Li-Rich Mn-Based Cathode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207797. [PMID: 36808233 DOI: 10.1002/smll.202207797] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/04/2023] [Indexed: 05/18/2023]
Abstract
Lithium-rich layered oxides (LLOs) are concerned as promising cathode materials for next-generation lithium-ion batteries due to their high reversible capacities (larger than 250 mA h g-1 ). However, LLOs suffer from critical drawbacks, such as irreversible oxygen release, structural degradation, and poor reaction kinetics, which hinder their commercialization. Herein, the local electronic structure is tuned to improve the capacity energy density retention and rate performance of LLOs via gradient Ta5+ doping. As a result, the capacity retention elevates from 73% to above 93%, and the energy density rises from 65% to above 87% for LLO with modification at 1 C after 200 cycles. Besides, the discharge capacity for the Ta5+ doped LLO at 5 C is 155 mA h g-1 , while it is only 122 mA h g-1 for bare LLO. Theoretical calculations reveal that Ta5+ doping can effectively increase oxygen vacancy formation energy, thus guaranteeing the structure stability during the electrochemical process, and the density of states results indicate that the electronic conductivity of the LLOs can be boosted significantly at the same time. This strategy of gradient doping provides a new avenue to improve the electrochemical performance of the LLOs by modulating the local structure at the surface.
Collapse
Affiliation(s)
- Puheng Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- School of Physics Science and Nuclear Energy Engineering, Beihang University, Beijing, 100191, China
| | - Shichao Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ziwei Wei
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xianggang Guan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jun Xia
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Danyang Huang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yalan Xing
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jia He
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Bohua Wen
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Huaizhe Xu
- School of Physics Science and Nuclear Energy Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
11
|
Chu Y, Mu Y, Zou L, Hu Y, Cheng J, Wu B, Han M, Xi S, Zhang Q, Zeng L. Thermodynamically Stable Dual-Modified LiF&FeF 3 layer Empowering Ni-Rich Cathodes with Superior Cyclabilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212308. [PMID: 36913606 DOI: 10.1002/adma.202212308] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Indexed: 05/26/2023]
Abstract
Pushing the limit of cutoff potentials allows nickel-rich layered oxides to provide greater energy density and specific capacity whereas reducing thermodynamic and kinetic stability. Herein, a one-step dual-modified method is proposed for in situ synthesizing thermodynamically stable LiF&FeF3 coating on LiNi0.8 Co0.1 Mn0.1 O2 surfaces by capturing lithium impurity on the surface to overcome the challenges suffered. The thermodynamically stabilized LiF&FeF3 coating can effectively suppress the nanoscale structural degradation and the intergranular cracks. Meanwhile, the LiF&FeF3 coating alleviates the outward migration of Oα- (α<2), increases oxygen vacancy formation energies, and accelerates interfacial Li+ diffusion. Benefited from these, the electrochemical performance of LiF&FeF3 modified materials is improved (83.1% capacity retention after 1000 cycles at 1C), even under exertive operational conditions of elevated temperature (91.3% capacity retention after 150 cycles at 1C). This work demonstrates that the dual-modified strategy can simultaneously address the problems of interfacial instability and bulk structural degradation and represents significant progress in developing high-performance lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Youqi Chu
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yongbiao Mu
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lingfeng Zou
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yan Hu
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jie Cheng
- School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210023, P. R. China
| | - Buke Wu
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Meisheng Han
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Qing Zhang
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lin Zeng
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
12
|
He D, Tong W, Zhang J, Huang Z, Chen Z, Yang M, Wang R, Zhao W, Ma Z, Xiao Y. Structural Insights into Lithium-Deficient Type Li-Rich Layered Oxide for high-performance Cathode. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
13
|
Wang Z, Yin Y, He G, Zhao H, Bai Y. Improving the long-term electrochemical performances of Li-rich cathode material by encapsulating a three-in-one nanolayer. NANOSCALE 2023; 15:588-598. [PMID: 36484351 DOI: 10.1039/d2nr04074c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With large specific capacity, wide voltage window, and high energy density, Li-rich layered oxides have been considered as a promising cathode candidate for advanced lithium-ion batteries (LIBs). However, their commercial application is challenging due to severe capacity degradation and voltage fading caused by irreversible oxygen evolution and phase transition upon repeated cycling. This work proposes an effective strategy to improve the long-term electrochemical performances of Li1.2Mn0.56Ni0.17Co0.07O2 (LMNCO) by constructing multifunctional nanolayers composed of element-doping, layered-spinel heterostructural connection, and fast ion conductor shell via a facile method. The Li0.09B0.97PO4 (LBPO) coating shell acts as a fast ion carrier and physical screen to promote Li+ diffusion and isolate side reactions at the cathode-electrolyte interface; moreover, two-phase transitional region provides three-dimensional channel to facilitate Li+ transport and inhibit phase transition. Besides, B3+ and PO43--doping collaborates with oxygen vacancies to stabilize lattice oxygen and restrain oxygen evolution from the bulk active cathode. The optimized LMNCO@LBPO material exhibits a superior capacity retention of 78.6%, higher than that of the pristine sample (49.3%), with the mitigated voltage fading of 0.73 mV per cycle after 500 cycles at 1 C. This study opens up an avenue for the surface modification to the electrochemical properties and perspective application of Li-rich cathodes in high-performance LIBs.
Collapse
Affiliation(s)
- Zhenbo Wang
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, China.
| | - Yanfeng Yin
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, China.
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Guanjie He
- Materials Research Center, UCL Department of Chemistry, Christopher Ingold Building, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Huiling Zhao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, China.
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Ying Bai
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, China.
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| |
Collapse
|
14
|
Improvement of stability and capacity of Co-free, Li-rich layered oxide Li1.2Ni0.2Mn0.6O2 cathode material through defect control. J Colloid Interface Sci 2023; 630:281-289. [DOI: 10.1016/j.jcis.2022.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
15
|
Li F, Gu X, Wu S, Dong S, Wang J, Dai P, Li L, Liu D, Wu M. Interface Engineering Enabled High-Performance Layered P3-Type K0.5MnO2 Cathode for Low-Cost Potassium-Ion Batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Enhancing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathodes through amorphous coatings. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Lin L, Liu F, Zhang Y, Ke C, Zheng H, Ye F, Yan X, Lin J, Sa B, Wang L, Peng DL, Xie Q. Adjustable Mixed Conductive Interphase for Dendrite-Free Lithium Metal Batteries. ACS NANO 2022; 16:13101-13110. [PMID: 35946592 DOI: 10.1021/acsnano.2c05832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lithium (Li) metal batteries with high energy density are of great promise for next-generation energy storage; however, they suffer from severe Li dendritic growth and an unstable solid electrolyte interphase. In this study, a mixed ionic and electronic conductive (MIEC) interphase layer with an adjustable ratio assembled by ZnO and Zn nanoparticles is developed. During the initial cycle, the in situ formed Li2O with high ionic conductivity and a lithiophilic LiZn alloy with high electronic conductivity enable fast Li+ transportation in the interlayer and charge transfer at the ion/electron conductive junction, respectively. The optimized interface kinetics is achieved by balancing the ion migration and charge transfer in the MIEC Li2O-LiZn interphase. As a result, the symmetric cell with MIEC interphase delivers superior cycling stability of over 1200 h. Also, Li||Zn-ZnO@PP||LFP (LFP = LiFePO4) full cells exhibit long cyclic life for 2000 cycles with a very high capacity retention of 91.5% at a high rate of 5 C and stable cycling for 350 cycles at a high LFP loading mass of 13.27 mg cm-2.
Collapse
Affiliation(s)
- Liang Lin
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Fang Liu
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Yinggan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Chengzhi Ke
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Hongfei Zheng
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Fangjun Ye
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiaolin Yan
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Jie Lin
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Baisheng Sa
- Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Laisen Wang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Dong-Liang Peng
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Qingshui Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
18
|
Electrochemical performances of Li-rich Mn-based layered structure cathodes optimized by compositional design. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05249-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Luo D, Xie H, Tan F, Ding X, Cui J, Xie X, Liu C, Lin Z. Scalable Nitrate Treatment for Constructing Integrated Surface Structures to Mitigate Capacity Fading and Voltage Decay of Li-Rich Layered Oxides. Angew Chem Int Ed Engl 2022; 61:e202203698. [PMID: 35441768 DOI: 10.1002/anie.202203698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/05/2022]
Abstract
Capacity fading and voltage decay is one of the biggest obstacles for the practical application of Li-rich layered oxides due to the serious surface-related detrimental reactions. Herein, we develop a versatile and scalable method to construct a robust surface-integrated structure. All the designed samples deliver outstanding capacity and voltage stability, among which the Zn-treated sample possesses the best electrochemical performance. Its capacity retention is larger than 90 % after 400 cycles with a voltage decay ratio as small as 0.73 mV per cycle. What is more, the rules of surface-integrated structure with different cations in terms of capacity and voltage stability is further deciphered by combining with density function theory (DFT) calculations. It is found that to obtain advanced Li-rich layered oxide cathodes, cations in Li-sites should firstly ensure the binding energy of the surface-integrated structure in a lower level and then provide Bader charge for the nearest O atoms as small as possible.
Collapse
Affiliation(s)
- Dong Luo
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huixian Xie
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fulin Tan
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaokai Ding
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiaxiang Cui
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoyan Xie
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chenyu Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
20
|
He W, Zhuang Y, Mei J, Guo W, Chen F, Chang Z, Fan M, Liu C, Wang L, Liu P, Zhu ZZ, Xie Q, Peng DL. In Situ Induced Lattice-Matched Interfacial Oxygen-Passivation-Layer Endowing Li-Rich and Mn-Based Cathodes with Ultralong Life. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200942. [PMID: 35760758 DOI: 10.1002/smll.202200942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The high capacity of Li-rich and Mn-based (LRM) cathode materials is originally due to the unique hybrid anion- and cation redox, which also induces detrimental oxygen escape. Furthermore, the counter diffusion of released oxygen (into electrolyte) and induced oxygen vacancies (into the interior bulk phase) that occurs at the interface will cause uncontrolled phase collapse and other issues. Therefore, due to its higher working voltage (>4.7 V) than the activation voltage of lattice oxygen in LRM (≈4.5 V), the anion-redox-free and structurally consistent cobalt-free LiNi0.5 Mn1.5 O4 (LNMO) is selected to in situ construct a robust, crystal-dense and lattice-matched oxygen-passivation-layer (OPL) on the surface of LRM particles by the electrochemical delithiation to protect the core layered components. As expected, the modified sample displays continuously decreasing interfacial impedance and high specific capacity of 135.5 mAh g-1 with a very small voltage decay of 0.67 mV per cycle after 1000 cycles at 2 C rate. Moreover, the stress accumulation during cycling is mitigated effectively. This semicoherent OPL strengthens the surface stability and interrupts the counter diffusion of oxygen and oxygen vacancies in LRM cathode materials, which would provide guidance for designing high-energy-density layered cathode materials.
Collapse
Affiliation(s)
- Wei He
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yanping Zhuang
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Mei
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Weibin Guo
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Feng Chen
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhanying Chang
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Mengjian Fan
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Chuan Liu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Laisen Wang
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Pengfei Liu
- Zhengzhou Key Laboratory of Big Data Analysis and Application, Henan Academy of Big Data, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Zi-Zhong Zhu
- Collaborative Innovation Centre for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Qingshui Xie
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Dong-Liang Peng
- State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
21
|
Chang Z, Zhang Y, He W, Wang J, Zheng H, Qu B, Wang X, Xie Q, Peng DL. Surface Spinel-Coated and Polyanion-Doped Co-Free Li-Rich Layered Oxide Cathode for High-Performance Lithium-Ion Batteries. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhanying Chang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yiming Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Wei He
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jin Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Hongfei Zheng
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Baihua Qu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People’s Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, People’s Republic of China
| | - Xinghui Wang
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Qingshui Xie
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People’s Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, People’s Republic of China
| | - Dong-Liang Peng
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
22
|
Yang X, Wang S, Han D, Wang K, Tayal A, Baran V, Missyul A, Fu Q, Song J, Ehrenberg H, Indris S, Hua W. Structural Origin of Suppressed Voltage Decay in Single-Crystalline Li-Rich Layered Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201522. [PMID: 35607746 DOI: 10.1002/smll.202201522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Lithium- and manganese-rich layered oxides (LMLOs, ≥ 250 mAh g-1 ) with polycrystalline morphology always suffer from severe voltage decay upon cycling because of the anisotropic lattice strain and oxygen release induced chemo-mechanical breakdown. Herein, a Co-free single-crystalline LMLO, that is, Li[Li0.2 Ni0.2 Mn0.6 ]O2 (LLNMO-SC), is prepared via a Li+ /Na+ ion-exchange reaction. In situ synchrotron-based X-ray diffraction (sXRD) results demonstrate that relatively small changes in lattice parameters and reduced average micro-strain are observed in LLNMO-SC compared to its polycrystalline counterpart (LLNMO-PC) during the charge-discharge process. Specifically, the as-synthesized LLNMO-SC exhibits a unit cell volume change as low as 1.1% during electrochemical cycling. Such low strain characteristics ensure a stable framework for Li-ion insertion/extraction, which considerably enhances the structural stability of LLNMO during long-term cycling. Due to these peculiar benefits, the average discharge voltage of LLNMO-SC decreases by only ≈0.2 V after 100 cycles at 28 mA g-1 between 2.0 and 4.8 V, which is much lower than that of LLNMO-PC (≈0.5 V). Such a single-crystalline strategy offers a promising solution to constructing stable high-energy lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Xiaoxia Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, China
| | - Suning Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, China
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Duzhao Han
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, China
| | - Kai Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Akhil Tayal
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany
| | - Volodymyr Baran
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany
| | - Alexander Missyul
- CELLS-ALBA Synchrotron, Cerdanyola del Valles, Barcelona, E-08290, Spain
| | - Qiang Fu
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Jiangxuan Song
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China
| | - Helmut Ehrenberg
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Sylvio Indris
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Weibo Hua
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, China
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
Fundamental mechanism revealed for lithium deficiencies engineering in a new spherical Li-Rich Mn-based layered Li1.23Mn0.46Ni0.246Co0.046Al0.015O2 cathode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Luo D, Xie H, Tan F, Ding X, Cui J, Xie X, Liu C, Lin Z. Scalable Nitrate Treatment for Constructing Integrated Surface Structures to Mitigate Capacity Fading and Voltage Decay of Li‐Rich Layered Oxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dong Luo
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Huixian Xie
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Fulin Tan
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Xiaokai Ding
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Jiaxiang Cui
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Xiaoyan Xie
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Chenyu Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
25
|
Ji X, Xu Y, Zhou Y, Song J, Feng H, Wang P, Yang J, Zhuge F, Xie H, Tan Q. Suppressing Oxygen Vacancies on the Surface of Li-Rich Material as a High-Energy Cathode via High Oxygen Affinity Ca0.95Bi0.05MnO3 Coating. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Liu J, Wu Z, Yu M, Hu H, Zhang Y, Zhang K, Du Z, Cheng F, Chen J. Building Homogenous Li 2 TiO 3 Coating Layer on Primary Particles to Stabilize Li-Rich Mn-Based Cathode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106337. [PMID: 34994076 DOI: 10.1002/smll.202106337] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Li-rich Mn-based oxides (LRMOs) are promising cathode materials for next-generation lithium-ion batteries (LIBs) with high specific energy (≈900 Wh kg-1 ) because of anionic redox contribution. However, LRMOs suffer from issues such as irreversible release of lattice oxygen, transition metal (TM) dissolution, and parasitic cathode-electrolyte reactions. Herein, a facile, scalable route to build homogenous and ultrathin Li2 TiO3 (LTO) coating layer on the primary particles of LRMO through molten salt (LiCl) assisted solid-liquid reaction between TiO2 and Li1.08 Mn0.54 Co0.13 Ni0.13 O2 is reported. The prepared LTO-coated Li1.08 Mn0.54 Co0.13 Ni0.13 O2 (LTO@LRMO) exhibits 99.7% capacity retention and 95.3% voltage retention over 125 cycles at 0.2 C, significantly outperforming uncoated LRMO. Combined characterizations of differential electrochemical mass spectrometry, in situ X-ray diffraction, and ex situ X-ray photoelectron spectroscopy evidence significantly suppressed oxygen release, phase transition, and interfacial reactions. Further analysis of cycled electrodes reveals that the LTO coating layer inhibits TM dissolution and prevents the lithium anode from TM crossover effect. This study expands the primary particle coating strategy to upgrade LRMO cathode materials for advanced LIBs.
Collapse
Affiliation(s)
- Jiuding Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhonghan Wu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Meng Yu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Honglu Hu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yudong Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zexue Du
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
27
|
Hwang YY, Han JH, Park SH, Jung JE, Lee NK, Lee YJ. Understanding anion-redox reactions in cathode materials of lithium-ion batteries through in situcharacterization techniques: a review. NANOTECHNOLOGY 2022; 33:182003. [PMID: 35042200 DOI: 10.1088/1361-6528/ac4c60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
As the demand for rechargeable lithium-ion batteries (LIBs) with higher energy density increases, the interest in lithium-rich oxide (LRO) with extraordinarily high capacities is surging. The capacity of LRO cathodes exceeds that of conventional layered oxides. This has been attributed to the redox contribution from both cations and anions, either sequentially or simultaneously. However, LROs with notable anion redox suffer from capacity loss and voltage decay during cycling. Therefore, a fundamental understanding of their electrochemical behaviors and related structural evolution is a prerequisite for the successful development of high-capacity LRO cathodes with anion redox activity. However, there is still controversy over their electrochemical behavior and principles of operation. In addition, complicated redox mechanisms and the lack of sufficient analytical tools render the basic study difficult. In this review, we aim to introduce theoretical insights into the anion redox mechanism andin situanalytical instruments that can be used to prove the mechanism and behavior of cathodes with anion redox activity. We summarized the anion redox phenomenon, suggested mechanisms, and discussed the history of development for anion redox in cathode materials of LIBs. Finally, we review the recent progress in identification of reaction mechanisms in LROs and validation of engineering strategies to improve cathode performance based on anion redox through various analytical tools, particularly,in situcharacterization techniques. Because unexpected phenomena may occur during cycling, it is crucial to study the kinetic properties of materialsin situunder operating conditions, especially for this newly investigated anion redox phenomenon. This review provides a comprehensive perspective on the future direction of studies on materials with anion redox activity.
Collapse
Affiliation(s)
- Ye Yeong Hwang
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Ji Hyun Han
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sol Hui Park
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Ji Eun Jung
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Nam Kyeong Lee
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yun Jung Lee
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
28
|
Cao X, Li H, Qiao Y, Jia M, Kitaura H, Zhang J, He P, Cabana J, Zhou H. Structure design enables stable anionic and cationic redox chemistry in a T2-type Li-excess layered oxide cathode. Sci Bull (Beijing) 2022; 67:381-388. [DOI: 10.1016/j.scib.2021.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
|
29
|
Liu C, Zhang S, Feng Y, Miao X, Yang G, Li J. Preparation and characterization of the Li 1.12K 0.05Mn 0.57Ni 0.24Nb 0.02O 2 cathode material with highly improved rate cycling performance for lithium ion batteries. NANOSCALE 2021; 14:65-75. [PMID: 34889915 DOI: 10.1039/d1nr06824e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, Li1.12K0.05Mn0.57Ni0.24Nb0.02O2 (LMN-K/Nb) as a novel and high energy density cathode material is successfully synthesized and applied in lithium ion batteries. By combining interlayer exchange and elemental analysis, it can be confirmed that K+ and Nb5+ substitution is respectively in the lithium layer and transition metal (TM) layer since H+ replaces the cations that remain in the lithium layer rather than those in the TM layer. The effect of K+ and Nb5+ co-substitution on the kinetic behavior of insertion/extraction of Li+ is evaluated by electrochemical impedance spectroscopy (EIS), the galvanostatic intermittent titration technique (GITT) and galvanostatic charge/discharge (GCD). LMN-K/Nb delivers an initial capacity of 145 mA h g-1 at 5C rate and 112 mA h g-1 at 10C rate, and maintains 83.1% after 400 cycles at 5C rate and 82.5% at 10C rate. By post-mortem analysis of long-term cycled LMN-K/Nb, K+ and Nb5+ are recognized to play a role in suppressing the irreversible side reactions in LLOs during cycling. This work demonstrates that dual elemental substitution into the lithium layer and TM layer is a feasible strategy to enhance the performance of LLO cathode materials.
Collapse
Affiliation(s)
- Cong Liu
- Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, P.R. China.
| | - Shuang Zhang
- Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, P.R. China.
| | - Yuanyuan Feng
- Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, P.R. China.
| | - Xiaowei Miao
- Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, P.R. China.
| | - Gang Yang
- Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, P.R. China.
| | - Jie Li
- Department of Energy, Politecnico di Milano, Campus Bovisa - Via Lambruschini 4a, Milan, 20156, Italy.
| |
Collapse
|
30
|
He W, Guo W, Wu H, Lin L, Liu Q, Han X, Xie Q, Liu P, Zheng H, Wang L, Yu X, Peng DL. Challenges and Recent Advances in High Capacity Li-Rich Cathode Materials for High Energy Density Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005937. [PMID: 33772921 DOI: 10.1002/adma.202005937] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Li-rich cathode materials have attracted increasing attention because of their high reversible discharge capacity (>250 mA h g-1 ), which originates from transition metal (TM) ion redox reactions and unconventional oxygen anion redox reactions. However, many issues need to be addressed before their practical applications, such as their low kinetic properties and inefficient voltage fading. The development of cutting-edge technologies has led to cognitive advances in theory and offer potential solutions to these problems. Herein, a recent in-depth understanding of the mechanisms and the frontier electrochemical research progress of Li-rich cathodes are reviewed. In addition, recent advances associated with various strategies to promote the performance and the development of modification methods are discussed. In particular, excluding Li-rich Mn-based (LRM) cathodes, other branches of the Li-rich cathode materials are also summarized. The consistent pursuit is to obtain energy storage devices with high capacity, reliable practicability, and absolute safety. The recent literature and ongoing efforts in this area are also described, which will create more opportunities and new ideas for the future development of Li-rich cathode materials.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Weibin Guo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Hualong Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Liang Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Qun Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiao Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Qingshui Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Pengfei Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Hongfei Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Laisen Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiqian Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dong-Liang Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
31
|
Ma X, Wang M, Qian Y, Feng D, Zhang G, Xu D, Kang Y, Liu Z, Hu S, Zheng J, Wang J, Wang C, Deng Y. Poly (methyl vinyl ether-alt-maleic anhydride) as an ecofriendly electrolyte additive for high-voltage lithium-rich oxides with improved stability of interphase. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Zhang C, Wei B, Jiang W, Wang M, Hu W, Liang C, Wang T, Chen L, Zhang R, Wang P, Wei W. Insights into the Enhanced Structural and Thermal Stabilities of Nb-Substituted Lithium-Rich Layered Oxide Cathodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45619-45629. [PMID: 34530607 DOI: 10.1021/acsami.1c13908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium-rich manganese-based layered oxides (LLOs) are considered to be the most promising cathode materials for next-generation lithium-ion batteries (LIBs) for their higher reversible capacity, higher operating voltage, and lower cost compared with those of other commercially available cathode materials. However, irreversible lattice oxygen release and associated severe structural degradation that exacerbate under high temperature and deep delithiation hinder the large-scale application of LLOs. Herein, we propose a strategy to stabilize the layered lattice framework and improve the thermal stability of cobalt-free Li1.2Mn0.53Ni0.27O2 by doping with 4d transition metal niobium (Nb). Detailed atomic-scale imaging, in situ characterization, and DFT simulations confirm that the induced strong Nb-O bonds stabilize the oxygen lattice framework and restrains the fracture of TM-O bonds, thereby inhibiting the release of lattice oxygen and the continuous migration of TM ions to the lithium layer during the cycle. Furthermore, Nb doping also promotes the surface rearrangement to form a Ni-enrichment layered/rocksalt heterogeneous interface to enhance surface structural stability. As a result, the Nb-doped material delivers a capacity of 181.7 mAh g-1 with retention of 85.5% after 200 cycles at 1C, extraordinary thermal stability with a capacity retention of 80.7% after 200 cycles at 50 °C, and superior rate capability.
Collapse
Affiliation(s)
- Chunxiao Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Bo Wei
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Wenjun Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Meiyu Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative, Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wang Hu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Chaoping Liang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Tianshuo Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ruifeng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative, Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Weifeng Wei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
33
|
Guo W, Zhang C, Zhang Y, Lin L, He W, Xie Q, Sa B, Wang L, Peng DL. A Universal Strategy toward the Precise Regulation of Initial Coulombic Efficiency of Li-Rich Mn-Based Cathode Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103173. [PMID: 34337804 DOI: 10.1002/adma.202103173] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Li-rich Mn-based cathode materials (LRMs) are potential cathode materials for high energy density lithium-ion batteries. However, low initial Coulombic efficiency (ICE) severely hinders the commercialization of LRM. Herein, a facile oleic acid-assisted interface engineering is put forward to precisely control the ICE, enhance reversible capacity and rate performance of LRM effectively. As a result, the ICE of LRM can be precisely adjusted from 84.1% to 100.7%, and a very high specific capacity of 330 mAh g-1 at 0.1 C, as well as outstanding rate capability with a fascinating specific capacity of 250 mAh g-1 at 5 C, are harvested. Theoretical calculations reveal that the introduced cation/anion double defects can reduce the diffusion barrier of Li+ ions, and in situ surface reconstruction layer can induce a self-built-in electric field to stabilize the surface lattice oxygen. Moreover, this facile interface engineering is universal and can enhance the ICEs of other kinds of LRM effectively. This work provides a valuable new idea for improving the comprehensive electrochemical performance of LRM through multistrategy collaborative interface engineering technology.
Collapse
Affiliation(s)
- Weibin Guo
- State Key Laboratory of Physical Chemistry of Solid Surface Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, China
| | - Chenying Zhang
- State Key Laboratory of Physical Chemistry of Solid Surface Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yinggan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surface Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, China
| | - Liang Lin
- State Key Laboratory of Physical Chemistry of Solid Surface Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei He
- State Key Laboratory of Physical Chemistry of Solid Surface Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qingshui Xie
- State Key Laboratory of Physical Chemistry of Solid Surface Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, China
| | - Baisheng Sa
- Multiscale Computational Materials Facility College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350100, China
| | - Laisen Wang
- State Key Laboratory of Physical Chemistry of Solid Surface Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dong-Liang Peng
- State Key Laboratory of Physical Chemistry of Solid Surface Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
34
|
Li S, Zhang H, Li H, Zhang S, Zhu B, Wang S, Zheng J, Liu F, Zhang Z, Lai Y. Enhanced Activity and Reversibility of Anionic Redox by Tuning Lithium Vacancies in Li-Rich Cathode Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39480-39490. [PMID: 34382789 DOI: 10.1021/acsami.1c11178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Li-rich Mn-based layered oxide cathodes (LLOs) are considered to be the most promising cathode candidates for lithium-ion batteries owing to their high-voltage platform and ultrahigh specific capacity originating from anionic redox. However, anionic redox results in many problems including irreversible oxygen release, voltage hysteresis, and so on. Although many efforts have been made to regulate anionic redox, a fundamental issue, the effect of lithium vacancies on anionic redox, is still unclear. Herein, we synthesized a series of LLO materials with different lithium vacancy contents by controlling the amount of lithium salt. Specifically, lithium-vacancy-type LLOs Li1.11Ni0.18Co0.18Mn0.53O2 with a pompon morphology exhibit an ultrahigh specific capacity (293.9 mA h g-1 at 0.1 C), an outstanding long-term cycling stability (173.5 mA h g-1 after 300 cycles at 1 C), and an excellent rate performance (106 mA h g-1 at 10 C). It reveals that lithium vacancy is a key factor to enhance anionic redox activity and reversibility. Lithium vacancies exhibit different inductive effects on the structure of the surface and bulk. Abundant surface oxygen vacancies and a surface spinel phase layer induced by lithium vacancies suppress irreversible oxygen release, while the bulk phase transformation and cation disorder combined with sufficient lithium vacancies in the bulk stabilize structure and improve anionic redox kinetic. The findings offer a significant theoretical guidance for the practical application of LLO materials.
Collapse
Affiliation(s)
- Shihao Li
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Haiyan Zhang
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
- Hunan ChangYuan LiCo Co., Ltd, Changsha, Hunan 410205, P. R. China
| | - Huangxu Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Shuai Zhang
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Bin Zhu
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Sha Wang
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Jingqiang Zheng
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Fangyan Liu
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Zhian Zhang
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yanqing Lai
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
35
|
Xie Y, Meng S, Chen X, Liang X, Jin Y, Xiang L. Synergetic effect of high Ni ratio and low oxygen defect interface zone of single crystals on the capacity retention of lithium rich layered oxides. J Colloid Interface Sci 2021; 594:485-492. [PMID: 33774404 DOI: 10.1016/j.jcis.2021.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
Li-rich layered oxides (LLOs) are promising cathode materials for Li-ion batteries owing to their high capacities (>250 mAh g-1), however, they suffered from severe capacity and voltage fading caused by irreversible oxygen loss and phase changes. Herein, the structural stability of single crystalline and polycrystalline Li1.14Ni0.32Mn0.44Co0.04O2 was compared in detail. It was found that the stability of oxidized oxygen ions on the near surface was improved in single crystals, which retarded oxygen loss from surface and surficial phase changes, possibly owing to the facet regulating and low surface curvature. In addition, the formation-migration of Mn3+, one of the crucial factors that caused capacity fading of LLOs, can be mitigated by increasing Ni3+ ratio. Under the synergistic effect of low oxygen defects on the near surface and high Ni3+ ratio, stable cycling performances and higher thermal stability were obtained.
Collapse
Affiliation(s)
- Yin Xie
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Su Meng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiao Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yongcheng Jin
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Lan Xiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Yang J, Chen Y, Li Y, Xi X, Zheng J, Zhu Y, Xiong Y, Liu S. Encouraging Voltage Stability upon Long Cycling of Li-Rich Mn-Based Cathode Materials by Ta-Mo Dual Doping. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25981-25992. [PMID: 34039001 DOI: 10.1021/acsami.1c03981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Li-rich and Mn-based material xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, and Mn) is regarded as one of the new generations of cathode materials for Li-ion batteries due to its high energy density, low cost, and less toxicity. However, there still exist some drawbacks such as its high initial irreversible capacity, capacity/voltage fading, poor rate capability, and so forth, which seriously limit its large-scale commercial applications. In this paper, the Ta-Mo codoped Li1.2Ni0.13Co0.13Mn0.54O2 with high energy density is prepared via a coprecipitation method, followed by a solid-state reaction. The synthetic mechanism and technology, the effect of charge-discharge methods, the bulk doping and the surface structure design on the structure, morphology, and electrochemical performances of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode are systematically investigated. The results show that Ta5+ and Mo6+ mainly occupy the Li site and transition-metal site, respectively. Both the appropriate Ta and Ta-Mo doping are conductive to increase the Mn3+ concentration and suppress the generation of Li/Ni mixing and the oxygen defects. The Ta-Mo codoped cathode sample can deliver 243.2 mA h·g-1 at 1 C under 2.0-4.8 V, retaining 80% capacity retention after 240 cycles, and decay 1.584 mV per cycle in 250 cycles. The capacity retention can be still maintained to 80% after 410 cycles over 2.0-4.4 V, and the average voltage fading rate is 0.714 mV per cycle in 500 cycles. Compared with the pristine, the capacity and voltage fading of Ta-Mo codoped materials are effectively suppressed, which are mainly ascribed to the fact that the highly valence Ta5+ and Mo6+ that entered into the crystal lattice are favorable for maintaining the charge balance, and the strong bond energies of Ta-O and Mo-O can help to maintain the crystal structure and relieve the corrosion from the electrolyte during the charging/discharging process.
Collapse
Affiliation(s)
- Jiachao Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, PR China
| | - Yongxiang Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, PR China
| | - Yunjiao Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, PR China
| | - Xiaoming Xi
- Changsha Research Institute of Mining and Metallurgy, Changsha 410083, PR China
| | - Junchao Zheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, PR China
| | - Yaliang Zhu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yike Xiong
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, PR China
| | - Shuaiwei Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, PR China
| |
Collapse
|
37
|
Structural and electrochemical characterization of vanadium-excess Li3V2(PO4)3-LiVOPO4/C composite cathode material synthesized by sol–gel method. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04986-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Zhang J, Zhang Q, Wong D, Zhang N, Ren G, Gu L, Schulz C, He L, Yu Y, Liu X. Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nat Commun 2021; 12:3071. [PMID: 34031408 PMCID: PMC8144552 DOI: 10.1038/s41467-021-23365-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
Oxygen release and irreversible cation migration are the main causes of voltage fade in Li-rich transition metal oxide cathode. But their correlation is not very clear and voltage decay is still a bottleneck. Herein, we modulate the oxygen anionic redox chemistry by constructing Li2ZrO3 slabs into Li2MnO3 domain in Li1.21Ni0.28Mn0.51O2, which induces the lattice strain, tunes the chemical environment for redox-active oxygen and enlarges the gap between metallic and anionic bands. This modulation expands the region in which lattice oxygen contributes capacity by oxidation to oxygen holes and relieves the charge transfer from anionic band to antibonding metal-oxygen band under a deep delithiation. This restrains cation reduction, metal-oxygen bond fracture, and the formation of localized O2 molecule, which fundamentally inhibits lattice oxygen escape and cation migration. The modulated cathode demonstrates a low voltage decay rate (0.45 millivolt per cycle) and a long cyclic stability.
Collapse
Affiliation(s)
- Jicheng Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, P. R. China
| | - Deniz Wong
- Department of Dynamics and Transport in Quantum Materials, Helmholtz-Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, Berlin, Germany
| | - Nian Zhang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Guoxi Ren
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, P. R. China
| | - Christian Schulz
- Department of Dynamics and Transport in Quantum Materials, Helmholtz-Center Berlin for Materials and Energy, Hahn-Meitner-Platz 1, Berlin, Germany
| | - Lunhua He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, P. R. China
- Spallation Neutron Source Science Center, Dongguan, P. R. China
| | - Yang Yu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, P. R. China.
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Chen J, Deng W, Gao X, Yin S, Yang L, Liu H, Zou G, Hou H, Ji X. Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. ACS NANO 2021; 15:6061-6104. [PMID: 33792291 DOI: 10.1021/acsnano.1c00304] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The practical application of lithium-ion batteries suffers from low energy density and the struggle to satisfy the ever-growing requirements of the energy-storage Internet. Therefore, developing next-generation electrode materials with high energy density is of the utmost significance. There are high expectations with respect to the development of lattice oxygen redox (LOR)-a promising strategy for developing cathode materials as it renders nearly a doubling of the specific capacity. However, challenges have been put forward toward the deep-seated origins of the LOR reaction and if its whole potential could be effectively realized in practical application. In the following Review, the intrinsic science that induces the LOR activity and crystal structure evolution are extensively discussed. Moreover, a variety of characterization techniques for investigating these behaviors are presented. Furthermore, we have highlighted the practical restrictions and outlined the probable approaches of Li-based layered oxide cathodes for improving such materials to meet the practical applications.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wentao Deng
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xu Gao
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shouyi Yin
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Li Yang
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huanqing Liu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
40
|
Ren Q, Xie H, Wang M, Ding X, Cui J, Luo D, Liu C, Lin Z. Deciphering the effects of hexagonal and monoclinic structure distribution on the properties of Li-rich layered oxides. Chem Commun (Camb) 2021; 57:3512-3515. [PMID: 33690759 DOI: 10.1039/d1cc00025j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Uniform distribution of Li2MnO3 and LiMO2 components in a Co-free Li-rich layered oxide is achieved by treating precursors with NH3·H2O, which expands the lattice parameter and promotes the activation of Li2MnO3, resulting in excellent electrochemical performance. What's more, it also contributes to the storage stability of Li-rich layered oxides.
Collapse
Affiliation(s)
- Qingqing Ren
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dual-redox enhanced supercapacitors with sodium anthraquinone-2-sulfonate and potassium bromide. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Huang C, Fang ZQ, Wang ZJ, Zhao JW, Zhao SX, Ci LJ. Accelerating the activation of Li 2MnO 3 in Li-rich high-Mn cathodes to improve its electrochemical performance. NANOSCALE 2021; 13:4921-4930. [PMID: 33625417 DOI: 10.1039/d0nr08980j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Li-rich high-Mn oxides, xLi2MnO3·(1 - x)LiMO2 (x ≥ 0.5, M = Co, Ni, Mn…), have attracted extensive research interest due to their high specific capacity and low cost. However, slow Li2MnO3 activation and poor cycling stability have affected their electrochemical performance. Herein, to solve these problems, morphology regulation and LiAlF4 coating strategies have been synergistically applied to a Li-rich high-Mn material Li1.7Mn0.8Co0.1Ni0.1O2.7 (HM-811). This dual-strategy successfully promotes the activation process of the Li2MnO3 phase and thus improves the electrochemical performance of HM-811. Theoretical computation indicates that the LiAlF4 layer has a lower Li+ migration barrier than the HM-811 matrix, so it could boost the diffusion of Li+ ions and promote the activation of the Li2MnO3 phase. Benefiting from the morphology regulation and LiAlF4 coating, the HM-811 cathode shows a high initial charge capacity of >300 mA h g-1. In addition, the modified HM-811 could deliver superior electrochemical performance even at a low temperature of -20 °C. This work provides a new approach for developing high performance cathode materials for next-generation Li-ion batteries.
Collapse
Affiliation(s)
- Chao Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. and School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zou-Qiang Fang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. and School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhi-Jie Wang
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, NSW 2522, Australia
| | - Jian-Wei Zhao
- Shenzhen HUASUAN Technology Co. Ltd, Shenzhen, 518055, China
| | - Shi-Xi Zhao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Li-Jie Ci
- State key lab of advanced welding and joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
43
|
Liu Q, Xie T, Xie Q, He W, Zhang Y, Zheng H, Lu X, Wei W, Sa B, Wang L, Peng DL. Multiscale Deficiency Integration by Na-Rich Engineering for High-Stability Li-Rich Layered Oxide Cathodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8239-8248. [PMID: 33555872 DOI: 10.1021/acsami.0c19040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium-rich manganese-based (LRM) layered oxides are considered as one of the most promising cathode materials for next-generation high-energy-density lithium-ion batteries (LIBs) because of their high specific capacity (>250 mAh g-1). However, they also go through severe capacity decay, serious voltage fading, and poor rate capability during cycling. Herein, a multiscale deficiency integration, including surface coating, subsurface defect construction, and bulk doping, is realized in a Li1.2Mn0.54Ni0.13Co0.13O2 cathode material by facile Na-rich engineering through a sol-gel method. This multiscale design can significantly improve the bulk and surface structural stability and diffusion rate of Li+ ions of electrode materials. Specifically, an outstanding specific capacity of 201 mAh g-1 is delivered at 1C of the designed cathode material after 400 cycles, relating to a large capacity retention of 89.0%. Meanwhile, the average voltage is retained up to 3.13 V with a large voltage retention of 89.6% and the energy density is maintained at 627.4 Wh kg-1. In situ X-ray diffraction (XRD), ex situ transmission electron microscopy (TEM) investigations, and density functional theory (DFT) calculations are conducted to explain the greatly enhanced electrochemical properties of a LRM cathode. We believe that this strategy would be a meaningful reference of LRM cathode materials for the research in the future.
Collapse
Affiliation(s)
- Qun Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, China
| | - Te Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, China
| | - Qingshui Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, China
| | - Wei He
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yinggan Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hongfei Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiangjun Lu
- Key Laboratory of Functional Materials and Applications of Fujian Province, School of Material Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wensheng Wei
- College of Physics & Electronic Information Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Baisheng Sa
- Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Laisen Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, China
| | - Dong-Liang Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
44
|
Su Y, Zhao J, Chen L, Li N, Lu Y, Dong J, Fang Y, Chen S, Wu F. Interfacial Degradation and Optimization of Li‐rich Cathode Materials
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuefeng Su
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
| | - Jiayu Zhao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
| | - Lai Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
| | - Ning Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
| | - Yun Lu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
| | - Jinyang Dong
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
| | - Youyou Fang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
| | - Shi Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Institute of Technology Chongqing Innovation Center Chongqing 401120 China
| |
Collapse
|
45
|
Cao X, Li H, Qiao Y, Jia M, Li X, Cabana J, Zhou H. Stabilizing Anionic Redox Chemistry in a Mn-Based Layered Oxide Cathode Constructed by Li-Deficient Pristine State. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004280. [PMID: 33270286 DOI: 10.1002/adma.202004280] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Indexed: 06/12/2023]
Abstract
Li-rich cathode materials are of significant interest for coupling anionic redox with cationic redox chemistry to achieve high-energy-density batteries. However, lattice oxygen loss and derived structure distortion would induce serious capacity loss and voltage decay, further hindering its practical application. Herein, a novel Li-rich cathode material, O3-type Li0.6 [Li0.2 Mn0.8 ]O2 , is developed with the pristine state displaying both a Li excess in the transition metal layer and a deficiency in the alkali metal layer. Benefiting from stable structure evolution and Li migration processes, not only can high reversible capacity (≈329 mAh g-1 ) be harvested but also irreversible/reversible anionic/cationic redox reactions are comprehensively assigned via the combination of in/ex situ spectroscopies. Furthermore, irreversible lattice oxygen loss and structure distortion are effectively restrained, resulting in long-term cycle stability (capacity drop of 0.045% per cycle, 500 cycles). Altogether, tuning the Li state in the alkali metal layer presents a promising way for modification of high-capacity Li-rich cathode candidates.
Collapse
Affiliation(s)
- Xin Cao
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba, 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8573, Japan
| | - Haifeng Li
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Yu Qiao
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba, 305-8568, Japan
| | - Min Jia
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba, 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8573, Japan
| | - Xiang Li
- Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Jordi Cabana
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Haoshen Zhou
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba, 305-8568, Japan
- Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, 305-8573, Japan
- Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
46
|
Yang J, Niu Y, Wang X, Xu M. A review on the electrochemical reaction of Li-rich layered oxide materials. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00687h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium-rich layered oxide materials xLi2MnO3·(1 − x)LiMO2 (M = Mn, Co, Ni, Fe, Cr, etc.) as promising cathode candidates for high energy Li-ion batteries have been summarized in this review.
Collapse
Affiliation(s)
- Jingang Yang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, PR China
| | - Yubin Niu
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, PR China
| | - Xi Wang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, PR China
| | - Maowen Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
47
|
Qiao Z, Lin L, Yan X, Guo W, Chen Q, Xie Q, Han X, Lin J, Wang L, Peng DL. Function and Application of Defect Chemistry in High-Capacity Electrode Materials for Li-Based Batteries. Chem Asian J 2020; 15:3620-3636. [PMID: 32985136 DOI: 10.1002/asia.202000904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Indexed: 01/16/2023]
Abstract
Current commercial Li-based batteries are approaching their energy density limitation, yet still cannot satisfy the energy density demand of the high-end devices. Hence, it is critical to developing advanced electrode materials with high specific capacity. However, these electrode materials are facing challenges of severe structural degradation and fast capacity fading. Among various strategies, constructing defects in electrode materials holds great promise in addressing these issues. Herein, we summarize a series of significant defect engineering in the high-capacity electrode materials for Li-based batteries. The detailed retrospective on defects specification, function mechanism, and corresponding application achievements on these electrodes are discussed from the view of point, line, planar, volume defects. Defect engineering can not only stabilize the structure and enhance electric/ionic conductivity, but also act as active sites to improve the ionic storage and bonding ability of electrode materials to Li metal. We hope this review can spark more perspectives on evaluating high-energy-density Li-based batteries.
Collapse
Affiliation(s)
- Zhensong Qiao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Liang Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Xiaolin Yan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Weibin Guo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Qiulin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Qingshui Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Xiao Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Jie Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Laisen Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Dong-Liang Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
48
|
Hu G, Fan J, Lu Y, Zhang Y, Du K, Peng Z, Li L, Zhang B, Shi Y, Cao Y. Surface Architecture Design of LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathode with Synergistic Organics Encapsulation to Enhance Electrochemical Stability. CHEMSUSCHEM 2020; 13:5699-5710. [PMID: 32818324 DOI: 10.1002/cssc.202001771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Ni-rich LiNi0.8 Co0.15 Al0.05 O2 (NCA) material attracts extensive attention due to its high discharge specific capacity, but its distinct drawbacks of rapid capacity decline and poor cycle performance at elevated temperatures and high voltage during charge/discharge cycling restricts its widespread application. To solve these problems, a multifunctional coating layer composed of a lithium-ion-conductive lithium polyacrylate (LiPAA) inner layer and a cross-linked polymer outer layer from certain organic substances of silane-coupling agent (KH550) and polyacrylic acid (PAA) is successfully designed on the surface of NCA materials, which is favorable for eliminating residual lithium and improving lithium-ion conductivity, surface stability, and hydrophobicity of NCA materials. In addition, the amount of the coating material is also investigated. A series of characterization methods such as XRD, FTIR, SEM, TEM, and X-ray photoelectron spectroscopy are used to analyze the morphologies and structures for materials of pristine and modified NCA. It is revealed that the co-coating layer plays a vital part in reducing the surface residual alkalis and improving the stability of NCA particles; as a result, the modified NCA exhibits a greatly improved rate capability, cycle performance, and low polarization impedance.
Collapse
Affiliation(s)
- Guorong Hu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Ju Fan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yan Lu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yinjia Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Ke Du
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Zhongdong Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Luyu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Baichao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - You Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yanbing Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
49
|
Wu H, Li X, Wang Z, Guo H, Peng W, Hu Q, Yan G, Wang J. Revealing the fake initial coulombic efficiency of spinel/layered Li-rich cathode materials. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat Commun 2020; 11:3050. [PMID: 32546760 PMCID: PMC7298058 DOI: 10.1038/s41467-020-16824-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023] Open
Abstract
Single-crystal cathode materials for lithium-ion batteries have attracted increasing interest in providing greater capacity retention than their polycrystalline counterparts. However, after being cycled at high voltages, these single-crystal materials exhibit severe structural instability and capacity fade. Understanding how the surface structural changes determine the performance degradation over cycling is crucial, but remains elusive. Here, we investigate the correlation of the surface structure, internal strain, and capacity deterioration by using operando X-ray spectroscopy imaging and nano-tomography. We directly observe a close correlation between surface chemistry and phase distribution from homogeneity to heterogeneity, which induces heterogeneous internal strain within the particle and the resulting structural/performance degradation during cycling. We also discover that surface chemistry can significantly enhance the cyclic performance. Our modified process effectively regulates the performance fade issue of single-crystal cathode and provides new insights for improved design of high-capacity battery materials.
Collapse
|