1
|
Deng KY, Xie ZZ, Yuan CP, Guan JP, Chen K, Xiang HY, Yang H. Photoinduced 1,5-HAT-enabled 1,7-hydrosulfonylation of allylic ethers and amides. Chem Commun (Camb) 2024; 60:11984-11987. [PMID: 39351683 DOI: 10.1039/d4cc03557g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Herein, we report a photoinduced 1,7-hydrosulfonylation of allylic ethers and amides via a sequential Pd-mediated 1,5-HAT process and Pd-catalyzed allylic nucleophilic attack of arylsulfonates. This rationally designed synthetic protocol allows for facile construction of a series of structurally novel allylic sulfonated scaffolds, and features mild conditions, cheap and readily available raw materials and functional group compatibility.
Collapse
Affiliation(s)
- Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
2
|
Nong ZS, Wang PS, Zhou QL, Gong LZ. Palladium-Catalyzed Branch-Selective Allylic C-H Amination Enabled by Nucleophile Coordination. Org Lett 2024; 26:8481-8485. [PMID: 39331493 DOI: 10.1021/acs.orglett.4c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Regiochemical control is a central subject in the field of synthetic chemistry. Here we unveil an innovative approach for the branch-selective allylic C-H amination of α-alkenes with amine nucleophiles facilitated by phosphoramidite-palladium catalysis. A diverse array of α-alkenes has been effectively utilized to produce a variety of structurally distinct allylamines with moderate to excellent regioselectivity. Furthermore, the asymmetric version of this reaction is feasible through the use of chiral phosphoramidite ligands, albeit with currently modest enantioselectivity.
Collapse
Affiliation(s)
- Zhong-Sheng Nong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qi-Lin Zhou
- Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Gu X, Shen J, Xu Z, Liu J, Shi M, Wei Y. Visible-Light-Mediated Activation of Remote C(sp 3)-H Bonds by Carbon-Centered Biradical via Intramolecular 1,5- or 1,6-Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202409463. [PMID: 39031578 DOI: 10.1002/anie.202409463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
In this study, we introduce a novel intramolecular hydrogen atom transfer (HAT) reaction that efficiently yields azetidine, oxetane, and indoline derivatives through a mechanism resembling the carbon analogue of the Norrish-Yang reaction. This process is facilitated by excited triplet-state carbon-centered biradicals, enabling the 1,5-HAT reaction by suppressing the critical 1,4-biradical intermediates from undergoing the Norrish Type II cleavage reaction, and pioneering unprecedented 1,6-HAT reactions initiated by excited triplet-state alkenes. We demonstrate the synthetic utility and compatibility of this method across various functional groups, validated through scope evaluation, large-scale synthesis, and derivatization. Our findings are supported by control experiments, deuterium labeling, kinetic studies, cyclic voltammetry, Stern-Volmer experiments, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xintao Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiahao Shen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ziyu Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiaxin Liu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
4
|
Wu Z, Yang X, Zhang F, Liu Y, Feng X. Tandem catalytic allylic C-H amination and asymmetric [2,3]-rearrangement via bimetallic relay catalysis. Chem Sci 2024; 15:13299-13305. [PMID: 39183897 PMCID: PMC11339977 DOI: 10.1039/d4sc03315a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
A bimetallic relay catalysis protocol for tandem allylic C-H amination and asymmetric [2,3]-sigmatropic rearrangement has been developed with the use of an achiral Pd0 catalyst and a chiral N,N'-dioxide-MgII complex in a one-pot operation. A series of anti-α-amino derivatives containing two stereogenic centers were prepared from readily available allylbenzenes and glycine pyrazolamide with good yields and high stereoselectivities. Moreover, the synthetic potential of this protocol was further demonstrated by the product transformations, and a catalytic cycle was proposed to illustrate the reaction process.
Collapse
Affiliation(s)
- Zhenwei Wu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Xi Yang
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Fangqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
| | - Yangbin Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
5
|
Wang R, Zhang L, Luo S. Aerobic Asymmetric Allylic C-H Alkylation by Synergistic Chiral Primary Amine-Palladium-Hydroquinone Catalysis. Chemistry 2024; 30:e202304316. [PMID: 38179799 DOI: 10.1002/chem.202304316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
A synergistic chiral primary amine/palladium /p-hydroquinone catalysis was developed to facilitate oxidative asymmetric allylic C-H alkylation under aerobic conditions. The ternary synergistic catalysis enables a facile allylic C-H activation and alkylation with oxygen so that stoichiometric utilization of benzoquinone can be avoided. The identified optimal catalytic system allows for terminal addition to allyl arenes with α-branched β-ketocarbonyls to afford allylic adducts bearing all-carbon quaternary centers with high regio- and enantioselectivity. This work provides new insights for further studies on the aerobically oxidative C-H alkylation reaction.
Collapse
Affiliation(s)
- Rui Wang
- Center of Basic Molecular Sciences (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Long Zhang
- Center of Basic Molecular Sciences (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Sanzhong Luo
- Center of Basic Molecular Sciences (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Nong ZS, Chen XR, Wang PS, Hong X, Gong LZ. Enantioconvergent Palladium-Catalyzed Alkylation of Tertiary Allylic C-H Bonds. Angew Chem Int Ed Engl 2023; 62:e202312547. [PMID: 37752890 DOI: 10.1002/anie.202312547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
Enantioconvergent catalysis enables the conversion of racemic molecules into a single enantiomer in perfect yield and is considered an ideal approach for asymmetric synthesis. Despite remarkable advances in this field, enantioconvergent transformations of inert tertiary C-H bonds remain largely unexplored due to the high bond dissociation energy and the surrounding steric repulsion that pose unparalleled constraints on bond cleavage and formation. Here, we report an enantioconvergent Pd-catalyzed alkylation of racemic tertiary allylic C-H bonds of α-alkenes, providing a unique approach to access a broad range of enantioenriched γ,δ-unsaturated carbonyl compounds featuring quaternary carbon stereocenters. Mechanistic studies reveal that a stereoablative event occurs through the rate-limiting cleavage of tertiary allylic C-H bonds to generate σ-allyl-Pd species, and the achieved E/Z-selectivity of σ-allyl-Pd species effectively regulates the diastereoselectivity via a nucleophile coordination-enabled SN 2'-allylation pathway.
Collapse
Affiliation(s)
- Zhong-Sheng Nong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xin-Ran Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Pu-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, 230026, China
| |
Collapse
|
7
|
Liu R, Shen ML, Fan LF, Zhou XL, Wang PS, Gong LZ. Palladium-Catalyzed Branch- and Z-Selective Allylic C-H Amination with Aromatic Amines. Angew Chem Int Ed Engl 2023; 62:e202211631. [PMID: 36399016 DOI: 10.1002/anie.202211631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Allylamines are important building blocks in the synthesis of bioactive compounds. The direct coupling of allylic C-H bonds and commonly available amines is a major synthetic challenge. An allylic C-H amination of 1,4-dienes has been accomplished by palladium catalysis. With aromatic amines, branch-selective allylic aminations are favored to generate thermodynamically unstable Z-allylamines. In addition, more basic aliphatic cyclic amines can also engage in the reaction, but linear dienyl allylic amines are the major products.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Meng-Lan Shen
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Lian-Feng Fan
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Xiao-Le Zhou
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Pu-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Liu-Zhu Gong
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| |
Collapse
|
8
|
Yue Q, Liu B, Liao G, Shi BF. Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330031, China
| | - Gang Liao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543Republic of Singapore
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| |
Collapse
|
9
|
Yin Q, Li Z, Wu F, Ji M, Fu C, Wu X. Conjugate Addition of α‐Substituted Acyl Imidazoles to Nitroalkenes Catalyzed by Nickel Bisoxazoline and B(C6F5)3. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Lin HC, Knox GJ, Pearson CM, Yang C, Carta V, Snaddon TN. A Pd-H/Isothiourea Cooperative Catalysis Approach to anti-Aldol Motifs: Enantioselective α-Alkylation of Esters with Oxyallenes. Angew Chem Int Ed Engl 2022; 61:e202201753. [PMID: 35307949 DOI: 10.1002/anie.202201753] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/11/2022]
Abstract
The biological and therapeutic significance of natural products is a powerful impetus for the development of efficient methods to facilitate their construction. Accordingly, and reflecting the prevalence of β-oxy-carbonyl motifs, a sophisticated arsenal of aldol-based strategies has evolved that is contingent on the generation of single enolate isomers. Since this has the potential to compromise efficiency in reagent-based paradigms, direct catalysis-based solutions would be enabling. To complement the array of substrate-based strategies, and regulate enolate geometry at the catalyst level, a direct catalytic alkylation of esters with oxyallenes has been developed. Synergizing metal hydride reactivity with Lewis base catalysis has resulted in a broad reaction scope with useful levels of stereocontrol (up to >99 % ee). Facile derivatization of these ambiphilic linchpins is demonstrated, providing access to high-value vicinal stereocenter-containing motifs, including 1,2-amino alcohols.
Collapse
Affiliation(s)
- Hua-Chen Lin
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA.,Current address: School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Gary J Knox
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Colin M Pearson
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Chao Yang
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Veronica Carta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Thomas N Snaddon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| |
Collapse
|
11
|
Muzart J. Allylic C(
sp
3
)−C(
sp
3
) Bond Formation Through Pd‐Catalyzed C(
sp
3
)−H Activation of Alkenes and 1,4‐Dienes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jacques Muzart
- Institut de Chimie Moléculaire de Reims, UMR 7312 CNRS – Université de Reims Champagne-Ardenne B.P. 1039 51687 Reims Cedex 2 France
| |
Collapse
|
12
|
Kim YH, Kim DB, Jang SS, Youn SW. Pd-Catalyzed Regioselective Intramolecular Allylic C-H Amination of 1,1-Disubstituted Alkenyl Amines. J Org Chem 2022; 87:7574-7580. [PMID: 35549260 DOI: 10.1021/acs.joc.2c00781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pd-Catalyzed intramolecular allylic C-H amination of 1,1-disubstituted alkenyl amines with various allylic tethers (X = O, NMs, CH2) was developed. This process allows for the divergent synthesis of 1,3-X,N-heterocycles through a regioselective allylic C-H cleavage and π-allylpalladium formation. Particularly noteworthy is the use of substrates containing a labile allylic moiety and new simple catalytic systems capable of promoting highly chemo- and regioselective allylic C-H amination by overcoming significant challenges.
Collapse
Affiliation(s)
- Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dong Bin Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Su San Jang
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
13
|
Lin H, Knox GJ, Pearson CM, Yang C, Carta V, Snaddon TN. A Pd−H/Isothiourea Cooperative Catalysis Approach to
anti
‐Aldol Motifs: Enantioselective α‐Alkylation of Esters with Oxyallenes**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hua‐Chen Lin
- Department of Chemistry Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
- Current address: School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 P. R. China
| | - Gary J. Knox
- Department of Chemistry Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - Colin M. Pearson
- Department of Chemistry Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - Chao Yang
- Department of Chemistry Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - Veronica Carta
- Department of Chemistry Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - Thomas N. Snaddon
- Department of Chemistry Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| |
Collapse
|
14
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C-H Alkylation via a Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022; 61:e202115715. [PMID: 35040550 DOI: 10.1002/anie.202115715] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/08/2023]
Abstract
An asymmetric allylic C-H functionalization has been developed by making use of transient chiral nucleophiles, as well as bimetallic synergistic catalysis with an achiral Pd0 catalyst and a chiral N,N'-dioxide-CoII complex. A variety of β-ketoesters and N-Boc oxindoles coupled with allylbenzenes and aliphatic terminal alkenes were well tolerated, furnishing the desired allylic alkylation products in high yields (up to 99 %) with excellent regioselectivities and enantioselectivities (up to 99 % ee).
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yang Xu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Fangqing Zhang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yangbin Liu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
15
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C−H Alkylation via Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hongkai Wang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yang Xu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Fangqing Zhang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yangbin Liu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Xiaoming Feng
- Sichuan University College of Chemistry 29 Wangjiang Road, Jiuyan Bridge 610064 Chengdu CHINA
| |
Collapse
|
16
|
Wang TC, Zhu L, Luo S, Nong ZS, Wang PS, Gong LZ. Palladium-Catalyzed Enantioselective C(sp 3)-H/C(sp 3)-H Umpolung Coupling of N-Allylimine and α-Aryl Ketones. J Am Chem Soc 2021; 143:20454-20461. [PMID: 34817997 DOI: 10.1021/jacs.1c10721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asymmetric functionalization of the C(sp3)-H bond is an attractive yet challenging strategy to achieve versatile bond-forming events, enabling the precise assembly of molecular complexity with minimal manipulation of functional groups. Here, we report an asymmetric C(sp3)-H/C(sp3)-H umpolung coupling of N-allylimine and coordinating α-aryl carbonyls by using chiral phosphoramidite-palladium catalysis. A wide variety of α-heteroaryl ketones and 2-acylimidazoles are nicely tolerated to open a convenient and tunable avenue for efficient synthesis of enantioenriched β-amino-γ,δ-unsaturated carbonyl derivatives with high levels of regio- and stereoselectivities, capable of providing a key intermediate for asymmetric synthesis of Focalin. This protocol showcases an umpolung reactivity of the N-allylimines through a concerted proton and two-electron transfer process to cleave the allylic C-H bond, effectively complementing established methodology for allylic C-H functionalization. An inner-sphere allylation pathway for both α-heteroaryl carbonyls and 2-acylimidazoles to attack the π-allylpalladium species is suggested by computational studies and experimental facts, wherein the nitrogen coordination to the palladium center enables the preference of branched regioselectivity.
Collapse
Affiliation(s)
- Tian-Ci Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ling Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shiwei Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Sheng Nong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.,Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Wang TC, Wang PS, Chen DF, Gong LZ. Access to chiral homoallylic vicinal diols from carbonyl allylation of aldehydes with allyl ethers via palladium-catalyzed allylic C-H borylation. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1134-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Horino Y, Korenaga T. Versatile Reactivity of Metalloid-Substituted π-Allylpalladium Species. CHEM REC 2021; 21:3911-3924. [PMID: 34647684 DOI: 10.1002/tcr.202100203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Indexed: 01/07/2023]
Abstract
π-Allylpalladium complexes can not only serve as electrophilic allylating agents for a broad range of nucleophiles, but also nucleophilic allylating agents for electrophiles depending on their electronic environments. In contrast to these typical reactivities of π-allylpalladium complexes, silylated and borylated π-allylpalladium species show unique reactivities that can allow versatile transformations in addition to simple allylation. Herein, four different types of transformations that are in principle achieved via the inherently reactive silylated and borylated π-allylpalladium species as common intermediates are described. An appropriate selection of ligands of the silylated and borylated π-allylpalladium species can allow control over the reaction pathways.
Collapse
Affiliation(s)
- Yoshikazu Horino
- Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology, Bibi 65-758, Chitose, Hokkaido, 066-8655, Japan
| | - Toshinobu Korenaga
- Department of Chemistry and Bioengineering, Iwate University, Morioka, Iwate, 020-8551, Japan
| |
Collapse
|
19
|
Palladium-catalyzed regio- and enantioselective migratory allylic C(sp 3)-H functionalization. Nat Commun 2021; 12:5626. [PMID: 34561444 PMCID: PMC8463607 DOI: 10.1038/s41467-021-25978-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022] Open
Abstract
Transition metal-catalyzed asymmetric allylic substitution with a suitably pre-stored leaving group in the substrate is widely used in organic synthesis. In contrast, the enantioselective allylic C(sp3)-H functionalization is more straightforward but far less explored. Here we report a catalytic protocol for the long-standing challenging enantioselective allylic C(sp3)-H functionalization. Through palladium hydride-catalyzed chain-walking and allylic substitution, allylic C-H functionalization of a wide range of acyclic nonconjugated dienes is achieved in high yields (up to 93% yield), high enantioselectivities (up to 98:2 er), and with 100% atom efficiency. Exploring the reactivity of substrates with varying pKa values uncovers a reasonable scope of nucleophiles and potential factors controlling the reaction. A set of efficient downstream transformations to enantiopure skeletons showcase the practical value of the methodology. Mechanistic experiments corroborate the PdH-catalyzed asymmetric migratory allylic substitution process. Alkene isomerizations and asymmetric C–H functionalizations have been independently studied, but their combination in one protocol is uncommon. Here the authors show a palladium-catalyzed method to iteratively “walk” a terminal alkene along a carbon chain to a position next to styrenes where a soft nucleophile is added asymmetrically.
Collapse
|
20
|
Wang K, Lin X, Liu Y, Li C. Palladium-Catalyzed Asymmetric Allylic C–H Functionalization for the Synthesis of Hydroquinolines through Intermolecular [4+2] Cycloadditions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kai Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangfeng Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
21
|
Dai ZY, Wang PS, Gong LZ. Access to chiral γ-butenolides via palladium-catalyzed asymmetric allylic C-H alkylation of 1,4-dienes. Chem Commun (Camb) 2021; 57:6748-6751. [PMID: 34236350 DOI: 10.1039/d1cc02295d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric allylic C-H alkylation of 1,4-pentadienes with α-angelica lactones has been developed by tri-axial phosphoramidite-palladium catalysis. This reaction can tolerate a range of functional groups under mild conditions, furnishing versatile chiral γ,γ-disubstituted butenolides in high yields with good to high levels of stereoselectivity.
Collapse
Affiliation(s)
- Zhen-Yao Dai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China. and Center for Excellence in Molecular Synthesis of CAS, Hefei 230026, China
| |
Collapse
|
22
|
Xu WB, Sun M, Shu M, Li C. Rhodium-Catalyzed Regio- and Enantioselective Allylic Amination of Racemic 1,2-Disubstituted Allylic Phosphates. J Am Chem Soc 2021; 143:8255-8260. [PMID: 34029072 DOI: 10.1021/jacs.1c04016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alkynylphosphines are rarely used as ligands in asymmetric metal catalysis. We synthesized a series of chiral bis(oxazoline)alkynylphosphine ligands and used them in Rh-catalyzed highly regio- and enantioselective allylic amination reactions of 1,2-disubstituted allylic phosphates. Chiral 1,2-disubstituted allylic amines were synthesized in up to 95% yield with >20:1 branched/linear (b/l) ratio and 99% ee from racemic 1,2-disubstituted allylic precursors. The sterically smaller linear alkynyl group on the P atom in the bis(oxazoline)alkynylphosphine ligands was the key to fit the new requirements of the introduction of bulky 2-R' groups.
Collapse
Affiliation(s)
- Wen-Bin Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Minghe Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mouhai Shu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
23
|
Zhao CY, Ji DW, Zheng H, He GC, Liu H, Hu YC, Chen QA. Pd-Catalyzed Redox Divergent Coupling of Ketones with Terpenols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chao-Yang Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Hao Zheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Heng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
24
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
25
|
Carlet F, Bertarini G, Broggini G, Pradal A, Poli G. Oxoammonium‐Mediated Allylsilane–Ether Coupling Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Federica Carlet
- Faculté des Sciences et Ingénierie CNRS Institut Parisien de Chimie Moléculaire IPCM Sorbonne Université 4 place Jussieu 75005 Paris France
- Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Greta Bertarini
- Faculté des Sciences et Ingénierie CNRS Institut Parisien de Chimie Moléculaire IPCM Sorbonne Université 4 place Jussieu 75005 Paris France
- Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Gianluigi Broggini
- Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Alexandre Pradal
- Faculté des Sciences et Ingénierie CNRS Institut Parisien de Chimie Moléculaire IPCM Sorbonne Université 4 place Jussieu 75005 Paris France
| | - Giovanni Poli
- Faculté des Sciences et Ingénierie CNRS Institut Parisien de Chimie Moléculaire IPCM Sorbonne Université 4 place Jussieu 75005 Paris France
| |
Collapse
|
26
|
Bunno Y, Tsukimawashi Y, Kojima M, Yoshino T, Matsunaga S. Metal-Containing Schiff Base/Sulfoxide Ligands for Pd(II)-Catalyzed Asymmetric Allylic C–H Aminations. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Youka Bunno
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuta Tsukimawashi
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
27
|
Dong G, Bao M, Xie X, Jia S, Hu W, Xu X. Asymmetric Allylation by Chiral Organocatalyst‐Promoted Formal Hetero‐Ene Reactions of Alkylgold Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Guizhi Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ming Bao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiongda Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shikun Jia
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
28
|
Wan X, Sun M, Wang JY, Yu L, Wu Q, Zhang YC, Shi F. Regio- and enantioselective ring-opening reaction of vinylcyclopropanes with indoles under cooperative catalysis. Org Chem Front 2021. [DOI: 10.1039/d0qo00699h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The title reaction has been established under the cooperative bimetallic catalysis of iridium and copper catalysts, which afforded indole C3-allylation products with branched selectivity in moderate yields and good enantioselectivities.
Collapse
Affiliation(s)
- Xiao Wan
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- 221116
- China
| | - Meng Sun
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- 221116
- China
| | - Jing-Yi Wang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- 221116
- China
| | - Lei Yu
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- 221116
- China
| | - Qiong Wu
- School of Materials and Chemical Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| | - Yu-Chen Zhang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- 221116
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- 221116
- China
| |
Collapse
|
29
|
Wang PS, Gong LZ. Palladium-Catalyzed Asymmetric Allylic C-H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications. Acc Chem Res 2020; 53:2841-2854. [PMID: 33006283 DOI: 10.1021/acs.accounts.0c00477] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asymmetric functionalization of inert C-H bonds is undoubtedly a synthetically significant yet challenging bond-forming process, allowing for the preparation of densely functionalized molecules from abundantly available feedstocks. In the past decade, our group and others have found that trivalent phosphorus ligands are capable of facilitating Pd-catalyzed allylic C-H functionalization of α-alkenes upon using p-quinone as an oxidant. In these reactions, a 16-electron Pd(0) complex bearing a monodentate phosphorus ligand, a p-quinone, and an α-alkene has been identified as a key intermediate. Through a concerted proton and two-electron transfer process, electrophilic π-allylpalladium is subsequently generated and can be leveraged to forge versatile chemical bonds with a wide range of nucleophiles. This Account focuses on describing the origin, evolution, and synthetic applications of Pd-catalyzed asymmetric allylic C-H functionalization reactions, with an emphasis on the fundamental mechanism of the concerted proton and two-electron transfer process in allylic C-H activation.Enabled by the cooperative catalysis of the palladium complex of triarylphosphine, a primary amine, and a chiral phosphoric acid, an enantioselective α-allylation of aldehydes with α-alkenes is established. The combination of chiral phosphoric acid and a palladium complex of a chiral phosphoramidite ligand allows the allylic C-H alkylation of α-alkenes with pyrazol-5-ones to give excellent enantioselectivities, wherein the chiral ligand and chiral phosphoric acid synergistically control the stereoselectivity. Notably, the palladium-phosphoramidite complexes are also efficient catalysts for allylic C-H alkylation, with a wide scope of nucleophiles. In the case of 1,4-dienes, the geometry and coordination pattern of the nucleophile are able to vary the transition states of bond-forming events and thereby determine the Z/E-, regio-, and stereoselectivities.These enantioselective allylic C-H functionalization reactions are tolerant of a wide range of nucleophiles and α-alkenes, providing a large library of optically active building blocks. Based on enantioselective intramolecular allylic C-H oxidation, the formal synthesis of (+)-diversonol is accomplished, and enantioselective intramolecular allylic C-H amination can enable concise access to letermovir. In particular, the asymmetric allylic C-H alkylation of 1,4-dienes with azlactones offers highly enantioenriched α,α-disubstituted α-amino acid derivatives that are capable of serving as key building blocks for the enantioselective synthesis of lepadiformine alkaloids. In addition, a tachykinin receptor antagonist and (-)-tanikolide are also synthesized with chiral molecules generated from the corresponding allylic C-H alkylation reactions.
Collapse
Affiliation(s)
- Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Dong G, Bao M, Xie X, Jia S, Hu W, Xu X. Asymmetric Allylation by Chiral Organocatalyst‐Promoted Formal Hetero‐Ene Reactions of Alkylgold Intermediates. Angew Chem Int Ed Engl 2020; 60:1992-1999. [DOI: 10.1002/anie.202012678] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/30/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Guizhi Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ming Bao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiongda Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shikun Jia
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
31
|
Hang Q, Liu S, Yu L, Sun T, Zhang Y, Mei G, Shi F. Design and Application of
Indole‐Based
Allylic Donors for
Pd‐Catalyzed
Decarboxylative Allylation Reactions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qing‐Qing Hang
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Si‐Jia Liu
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Lei Yu
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Ting‐Ting Sun
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Yu‐Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Guang‐Jian Mei
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| |
Collapse
|
32
|
Manna K, Begam HM, Samanta K, Jana R. Overcoming the Deallylation Problem: Palladium(II)-Catalyzed Chemo-, Regio-, and Stereoselective Allylic Oxidation of Aryl Allyl Ether, Amine, and Amino Acids. Org Lett 2020; 22:7443-7449. [PMID: 32955263 DOI: 10.1021/acs.orglett.0c02465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein a Pd(II)/bis-sulfoxide-catalyzed intramolecular allylic C-H acetoxylation of aryl allyl ether, amine, and amino acids with the retention of a labile allyl moiety. Mechanistically, the reaction proceeds through a distinct double-bond isomerization from the allylic to the vinylic position followed by intramolecular carboxypalladation and the β-hydride elimination pathway. For the first time, C-H oxidation of N-allyl-protected amino acids to furnish five-membered heterocycles through 1,3-syn-addition is established with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Kartic Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Krishanu Samanta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
33
|
Manoharan R, Jeganmohan M. Recent Advancements in Allylic C(sp
3
)–H Functionalization of Olefins Catalyzed by Rh(III) or Ir(III) Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ramasamy Manoharan
- School of Chemistry and Chemical Engineering Shandong University No. 27 Shanda South Road 250100 Jinan China
| | | |
Collapse
|
34
|
Sun M, Chen W, Xia X, Shen G, Ma Y, Yang J, Ding H, Wang Z. Palladium-Catalyzed Tandem Dehydrogenative [4 + 2] Annulation of Terminal Olefins with N-Sulfonyl Amides via C–H Activations. Org Lett 2020; 22:3229-3233. [DOI: 10.1021/acs.orglett.0c01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmacy, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
35
|
Palladium-catalyzed asymmetric allylic C-H alkylation of 1,4-dienes and glycine Schiff bases. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9687-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Li H, Chen H, Zhou Y, Huang J, Yi J, Zhao H, Wang W, Jing L. Selective Synthesis of Z-Cinnamyl Ethers and Cinnamyl Alcohols through Visible Light-Promoted Photocatalytic E to Z Isomerization. Chem Asian J 2020; 15:555-559. [PMID: 31901002 DOI: 10.1002/asia.201901778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/19/2022]
Abstract
A photocatalytic E to Z isomerization of alkenes using an iridium photosensitizer under mild reaction conditions is disclosed. This method provides scalable and efficient access to Z-cinnamyl ether and allylic alcohol derivatives in high yields with excellent stereoselectivity. Importantly, this method also provides a powerful strategy for the selective synthesis of Z-magnolol and honokiol derivatives possessing potential biological activity.
Collapse
Affiliation(s)
- Hengchao Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Hang Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Yang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Jin Huang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Jundan Yi
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Hongcai Zhao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Wei Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| |
Collapse
|
37
|
Shaikh MN, Aziz MA, Yamani ZH. Facile hydrogenation of cinnamaldehyde to cinnamyl ether by employing a highly re-usable “dip-catalyst” containing Pt nanoparticles on a green support. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00973c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the fabrication of a ‘dip-catalyst’ based on Pt nanoparticles on jute stalks as a green support and its catalytic application in cinnamyl alkyl ether synthesis.
Collapse
Affiliation(s)
- M. Nasiruzzaman Shaikh
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals (KFUPM)
- Dhahran-31261
- Saudi Arabia
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals (KFUPM)
- Dhahran-31261
- Saudi Arabia
| | - Zain H. Yamani
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum and Minerals (KFUPM)
- Dhahran-31261
- Saudi Arabia
| |
Collapse
|
38
|
Fan L, Luo S, Chen S, Wang T, Wang P, Gong L. Nucleophile Coordination Enabled Regioselectivity in Palladium‐Catalyzed Asymmetric Allylic C−H Alkylation. Angew Chem Int Ed Engl 2019; 58:16806-16810. [DOI: 10.1002/anie.201908960] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Lian‐Feng Fan
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shi‐Wei Luo
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shu‐Sen Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Tian‐Ci Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Pu‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of CAS China
| |
Collapse
|
39
|
Fan L, Luo S, Chen S, Wang T, Wang P, Gong L. Nucleophile Coordination Enabled Regioselectivity in Palladium‐Catalyzed Asymmetric Allylic C−H Alkylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lian‐Feng Fan
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shi‐Wei Luo
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shu‐Sen Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Tian‐Ci Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Pu‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of CAS China
| |
Collapse
|
40
|
Fan LF, Wang PS, Gong LZ. Monodentate Phosphorus Ligand-Enabled General Palladium-Catalyzed Allylic C–H Alkylation of Terminal Alkenes. Org Lett 2019; 21:6720-6725. [DOI: 10.1021/acs.orglett.9b02325] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lian-Feng Fan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
41
|
Fan LF, Wang TC, Wang PS, Gong LZ. Palladium-Catalyzed Asymmetric Allylic C–H Alkylation of 1,4-Dienes with Cyclic β-Keto Esters. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lian-Feng Fan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Tian-Ci Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|