1
|
Dodonov VA, Kryuchenkova AA, Kushnerova OA, Baranov EV, Zhao Y, Osmanov VK, Fedushkin IL. Cooperative and non-cooperative additions involving a silicon atom and a redox-active ligand. Dalton Trans 2025; 54:3921-3929. [PMID: 39887210 DOI: 10.1039/d4dt03409k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The silylene [(dpp-bian)Si:] (1), where dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene, exhibits remarkable reactivity with a variety of substrates. It reacts with chloroform and water via O-H and C-Cl bond activation to yield oxidative addition products 2 and 3, respectively. Reactions of 1 with dibenzylideneacetone and tolane involve exclusively the silicon atom and result in [4 + 1]- and [2 + 1]-cycloaddition products 4 and 6. Treatment with isoselenocyanate results in unprecedented cleavage of the CSe bond, leading to activation product 5. In contrast, treatment with acetylene and phenylacetylene leads to cooperative cycloaddition reactions, producing unique cycloadducts 7 and 8. These reactions represent a new type of cycloaddition to a tetravalent silicon atom, facilitated by a redox-active ligand. The new compounds were characterized by NMR and IR spectroscopy, elemental analysis, and X-ray diffraction studies. Their electronic structures and reaction pathways were investigated using DFT calculations.
Collapse
Affiliation(s)
- Vladimir A Dodonov
- G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinina str. 49, N. Novgorod 603137, Russia.
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Alina A Kryuchenkova
- G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinina str. 49, N. Novgorod 603137, Russia.
| | - Olga A Kushnerova
- G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinina str. 49, N. Novgorod 603137, Russia.
| | - Evgeny V Baranov
- G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinina str. 49, N. Novgorod 603137, Russia.
| | - Yanxia Zhao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Vladimir K Osmanov
- Nizhny Novgorod State Technical University, Minina str. 24, N. Novgorod 603155, Russia.
| | - Igor L Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinina str. 49, N. Novgorod 603137, Russia.
| |
Collapse
|
2
|
Ishida S, Toyooka T, Tamura T, Abe T, Akasaka N, Iwamoto T. Sulfur and Oxygen Transfer Reactions with Simultaneous NHC-Coordination from Cyclic Thioureas and Ureas to a Stable Silylene. Chemistry 2025; 31:e202403847. [PMID: 39676061 DOI: 10.1002/chem.202403847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Reactions of cyclic thioureas (1,3,4,5-tetramethylimidazol-2-thione and 1,3-dimethylimidazolidin-2-thione) and ureas (1,3,4,5-tetramethylimidazol-2-one and 1,3-dimethylimidazolidin-2-one) with an isolable dialkylsilylene were examined. In these reactions, cyclic thioureas served as sulfur and NHC (N-heterocyclic carbene) sources, and the corresponding silanethione and NHC-derived products formed via silanethione-NHC complexes. Reactions of cyclic ureas with the silylene afforded a new NHC and an isolable azomethine ylide. These reactions involved oxygen atom transfer and 1,3-silyl migrations, which were supported by computational studies.
Collapse
Affiliation(s)
- Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Takuto Toyooka
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Tomofumi Tamura
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Tetsuro Abe
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Naohiko Akasaka
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
3
|
Pita-Milleiro A, Hidalgo N, Moreno JJ, Fernández I, Campos J. An open-shell Ir(II)/Ir(IV) redox couple outperforms an Ir(I)/Ir(III) pair in olefin isomerization. Nat Chem 2025:10.1038/s41557-024-01722-7. [PMID: 39833515 DOI: 10.1038/s41557-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Open-shell systems based on first-row transition metals and their involvement in various catalytic processes are well explored. By comparison, mononuclear open-shell complexes of precious transition metals remain underdeveloped. This is particularly true for IrII complexes, as there is very limited information available regarding their application in catalysis. Here we show that a family of IrII metalloradicals, featuring a C6H3-2,6-(OP(tBu)2)2 (POCOP) pincer ligand, effectively catalyses olefin isomerization-a key step in alkane metathesis-exhibiting up to 20 times higher activity than their IrI counterparts. Computational studies reveal that the IrII/IrIV redox cycling enables faster kinetics than the traditional IrI/IrIII pathway owing to reduced barriers for the oxidative addition and reductive elimination steps. Thus, this study presents a redox catalyst involving an IrII/IrIV pair, highlighting the capabilites of precious-metal systems that extend beyond traditional redox cycles. These findings emphasize the need for expanding catalytic design principles, especially for platinum-group metals.
Collapse
Affiliation(s)
- Alejandra Pita-Milleiro
- Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Nereida Hidalgo
- Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Juan J Moreno
- Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
4
|
Ajithkumar VS, Ghanwat PB, Saha S, Pati SK, Sen SS. Stereodivergent sila-germylenation vs. sila-stannylenation of an internal alkyne. Chem Commun (Camb) 2024; 60:9837-9840. [PMID: 39171507 DOI: 10.1039/d4cc02101k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We report on the insertion of electron deficient alkyne, dimethyl acetylene dicarboxylate (DMAD), into the E-Si bond of hypersilyl tetrylenes, PhC(NtBu)2ESi(SiMe3)3 (E = Ge and Sn), at room temperature. Uniquely, the germylene leads to cis alkenes, while the stannylene gives access to trans alkenes, and the insight into divergent stereoselectivity has been obtained by DFT studies.
Collapse
Affiliation(s)
- V S Ajithkumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratiksha B Ghanwat
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sougata Saha
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Ding Y, Jin W, Zhang J, Cui C. Reaction of a Disilyne with Internal Alkynes: Reversible [1 + 2] Cycloaddition and Formation of Strained Unsaturated Silacycles. J Am Chem Soc 2024; 146:18831-18835. [PMID: 38958387 DOI: 10.1021/jacs.4c05436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The reactions of NHB-stabilized disilyne (NHB)Si≡Si(NHB) (1, NHB = [ArN(CMe)2NAr]B, Ar = 2,6-iPr2C6H3) with internal alkynes were described. Reaction of disilyne 1 with one equivalent of bis(trimethylsilyl)acetylene led to a reversible [1 + 2] cycloaddition of one of the Si atoms with the alkyne and the insertion of the other Si into one of Ar rings with the formation of a silirenyl-silepin 2, whereas reaction of 1 with two equivalents of Me3SiCCSiMe3 resulted in the formal addition of the Csp-Si bond to the Si≡Si triple bond to give disilene (NHB)(Me3Si)Si=Si(CCSiMe3)(NHB). Reaction of 1 with 1,3-diyne Me3SiCCCCSiMe3 yielded a 1,2-disilacyclobut-3-ene via cycloaddition, ring expansion, and NHB 1,2-shift sequence. The initial [1 + 2] cycloaddition of one of the silicon atoms with an alkyne was strongly supported by DFT calculations. The results demonstrated the significant bis(silylene) character and rich synthetic potential of bis(boryl) disilyne 1.
Collapse
Affiliation(s)
- Yazhou Ding
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Wen Jin
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
6
|
Kushvaha SK, Gorantla SMNVT, Kallenbach P, Herbst-Irmer R, Stalke D, Roesky HW. Preparation of a high-coordinated-silicon-centered spiro-cyclic compound. Dalton Trans 2024; 53:11410-11416. [PMID: 38900062 DOI: 10.1039/d4dt00627e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Silicon compounds containing silicon-silicon bond with a variety of unusual oxidation states are quite important, because their high reactivity leads to the formation of a variety of silicon compounds. The isolation of such compounds with unusual oxidation states requires a resilient synthetic strategy. Herein, we report the synthesis of a silicon based spirocyclic compound containing a hyper-valent silicon atom and a silicon-silicon bond. The computational calculations employing natural bond orbital (NBO) analysis and energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) reveal that the nature of bonding between the silicon atoms is of an electron sharing nature.
Collapse
Affiliation(s)
| | - Sai Manoj N V T Gorantla
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Paula Kallenbach
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany.
| |
Collapse
|
7
|
Müller MP, Hinz A. Silylenes with a Small Chalcogenide Substituent: Tuning Frontier Orbital Energies from O to Te. Angew Chem Int Ed Engl 2024; 63:e202405319. [PMID: 38656624 DOI: 10.1002/anie.202405319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The general synthesis of heteroleptic acyclic silylenes with a bulky carbazolyl substituent (dtbpCbz) is detailed and a series of compounds with a chalcogenide substituent of the type [(dtbpCbz)SiE16R] (E16R=OtBu, SEt, SePh, TePh) is reported. With the bulky carbazolyl substituent present, the chalcogenide moiety can be very small, as is shown by incorporating groups as small as ethyl, phenyl or tert-butyl. For the first time, the electronic properties of the silylene can be tuned along a complete series of chalcogenide substituents. The effects are clearly visible in the NMR and UV/Vis spectra, and were rationalised by DFT computations. The reactivity of the heaviest chalcogenide-substituted silylenes was probed by reactions with trimethylphosphine selenide and the terphenyl azide TerN3 (Ter=2,6-dimesitylphenyl).
Collapse
Affiliation(s)
- Maximilian P Müller
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe
| |
Collapse
|
8
|
Akhtar R, Gaurav K, Khan S. Applications of low-valent compounds with heavy group-14 elements. Chem Soc Rev 2024; 53:6150-6243. [PMID: 38757535 DOI: 10.1039/d4cs00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the last two decades, the low-valent compounds of group-14 elements have received significant attention in several fields of chemistry owing to their unique electronic properties. The low-valent group-14 species include tetrylenes, tetryliumylidene, tetrylones, dimetallenes and dimetallynes. These low-valent group-14 species have shown applications in various areas such as organic transformations (hydroboration, cyanosilylation, N-functionalisation of amines, and hydroamination), small molecule activation (e.g. P4, As4, CO2, CO, H2, alkene, and alkyne) and materials. This review presents an in-depth discussion on low-valent group-14 species-catalyzed reactions, including polymerization of rac-lactide, L-lactide, DL-lactide, and caprolactone, followed by their photophysical properties (phosphorescence and fluorescence), thin film deposition (atomic layer deposition and vapor phase deposition), and medicinal applications. This review concisely summarizes current developments of low-valent heavier group-14 compounds, covering synthetic methodologies, structural aspects, and their applications in various fields of chemistry. Finally, their opportunities and challenges are examined and emphasized.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kumar Gaurav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
9
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
10
|
Qiao Z, Li X, Chen M, Cao F, Mo Z. Double 1,2-Carbon Migration at Mixed Heavier Sn=Ge Vinylidenes. Angew Chem Int Ed Engl 2024; 63:e202401570. [PMID: 38380578 DOI: 10.1002/anie.202401570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
1,2-migration is one recurring isomerization reaction in organic chemistry. In contrast, double 1,2-migration remains rare and limited to transition-metal complexes. Herein, we describe the synthesis, characterization and reactivity of mixed heavier Sn=Ge vinylidenes. Double 1,2-carbon migration enables the isomerization of the stannagermenylidene (3) to the germastannenylidene (4). X-ray diffraction analysis and DFT calculations revealed that 3 and 4 feature a Sn=Ge double bond. The reaction of 3 with IMe4 (1,3,4,5-tetramethylimidazoline-2-ylidene) results in the electron redistribution in the Sn=Ge core to give the germylone-stannylene adduct (5). Moreover, treatment of 3 with 0.25 equiv. of (AlCp*)4 produces the heteronuclear aluminyl stannagermyne (6).
Collapse
Affiliation(s)
- Zihao Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xueyan Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fanshu Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Feng G, Chan KL, Lin Z, Yamashita M. Alumanyl-Samarium(II): Synthesis, Characterization, and Reactivity Studies. J Am Chem Soc 2024; 146:7204-7209. [PMID: 38505938 DOI: 10.1021/jacs.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Metal-metal bonded species involving lanthanides are intriguing but rare. The recently reported salt metathesis reaction of an Al anion and SmI2(thf)2 yields novel heterometallic compound possessing two distinctive Al-Sm bonds. Although the Al-Sm bonds were considerably long [3.518(1) and 3.543(1) Å], DFT calculations indicated polar character of the Alδ--Smδ+ bonds. This is the first example of lanthanide species containing X-type Al ligands. Reactivity studies have demonstrated that the introduction of Sm(II) produces unique reactivity. The reaction with carbodiimide led to an insertion of carbodiimide into the Al-Sm bonds and reductive coupling of carbodiimide to create an oxalamidinate moiety, facilitated by Sm(II). Exposure of the Al-Sm-Al complex toward ethylene furnished a Sm(II) salt of anionic aluminacyclopropane that was spontaneously isomerized to a 1,4-dialuminacyclohexane derivative. The important role of Sm(II) to facilitate the ring expansion through an alkyl-relay mechanism was elucidated by DFT calculations.
Collapse
Affiliation(s)
- Genfeng Feng
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
| | - Ka Lok Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
| |
Collapse
|
12
|
Kushvaha SK, Kallenbach P, Gorantla SMNVT, Herbst-Irmer R, Stalke D, Roesky HW. Preparation of a Compound with a Si II -Si IV -Si II Bonding Arrangement. Chemistry 2024; 30:e202303113. [PMID: 37933699 DOI: 10.1002/chem.202303113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Herein, we report the synthesis of a rare bis-silylene, 1, in which two SiII atoms are bridged by a SiIV atom. Compound 1 contains an unusual SiII -SiIV -SiII bonding arrangement with SiII -SiIV bond distances of 2.4212(8) and 2.4157(7) Å. Treatment of 1 with Fe(CO)5 afforded a dinuclear Fe0 complex 2 with two unusually long Si-Si bonds (2.4515(8) and 2.4488(10) Å). We have also carried out a detailed computational study to understand the nature of the Si-Si bonds in these compounds. Natural bond orbital (NBO) and energy decomposition analysis-natural orbital for chemical valence (EDA-NOCV) analyses reveal that the Si-Si bonds in 1 and 2 are of an electron-sharing nature.
Collapse
Affiliation(s)
| | - Paula Kallenbach
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany
| | - Sai Manoj N V T Gorantla
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August Universität, Göttingen, Germany
| |
Collapse
|
13
|
Kong D, Li J, Dai W, Jiang L, Zhao Y, Zhu H, Fu G, Roesky HW. Geometrically Compelled Silicon(II)/Silicon(IV) Donor-Acceptor Interaction Enables the Enamination of Nitriles. Angew Chem Int Ed Engl 2023; 62:e202315249. [PMID: 37877345 DOI: 10.1002/anie.202315249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Discovering new bonding scenarios and subsequently exploring the reactivity contribute substantially to advance the main group element chemistry. Herein, we report on the isolation and characterization of an intriguing class of the hydrido-benzosiloles 2-4. These compounds exhibit a side arm of the amidinatosilylenyl group, featuring unidirectional silicon(II)/silicon(IV) donor-acceptor interaction on account of the geometric constraint. Furthermore, the reactions involving 2-4 with nitriles yield the tricyclic compounds that edge-fused of the Si-heteroimidazolidine-CN2 Si2 , silole-C4 Si, and phenyl-C6 -rings (5-13). These compounds are manifesting a unique reaction that the silicon(II)/silicon(IV) interaction enables the enamination of the α-H-bearing nitriles. The reaction mechanism involved in H-shift under oxidative addition at silylene followed by hydrosilylation of a ketenimine intermediate was revealed by density function theory (DFT) calculations.
Collapse
Affiliation(s)
- Deliang Kong
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiancheng Li
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wen Dai
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Liuying Jiang
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yiling Zhao
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hongping Zhu
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Gang Fu
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Herbert W Roesky
- Institüt für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| |
Collapse
|
14
|
Müller MP, Hinz A. Strain-Driven, Non-Catalysed Ring Expansion of Silicon Heterocycles. Chemistry 2023; 29:e202302311. [PMID: 37489573 DOI: 10.1002/chem.202302311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Silacycles are ubiquitous building blocks. Small silacycles can typically be expanded catalytically. A silirane, silirene and phosphasilirene as well as a siletane and a silolene were prepared starting from the base-free bromosilylene [(dtbp Cbz)SiBr] (dtbp Cbz=1,8-bis(3,5-ditertbutylphenyl)-3,6-ditertbutylcarbazolyl). As these heterocycles were derived from a dicoordinated silylene, they are susceptible to reactions with an external base. The three-membered silacycles readily undergo non-catalysed ring expansion reactions with isonitriles yielding the related four-membered silacycles. Surprisingly, the ring-expanded derivatives of the silirane undergo up to two further isomerisation reactions, first by enamine formation and then by another ring expansion. DFT computations were utilised to gauge the scope of this reactivity pattern. Three-membered silacycles should essentially universally undergo a ring expansion with isonitriles, while for four-membered silacycles, only very few instances are predicted to accommodate more challenging kinetic requirements of this ring expansion. Larger silacycles lack the ring strain energy required for this ring expansion reaction and are not expected to be expanded.
Collapse
Affiliation(s)
- Maximilian P Müller
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Alexander Hinz
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
15
|
Dabringhaus P, Heizmann T, Krossing I. Activation of the Ga I Cation for Bond Activation: from Oxidative Additions into C-Cl and H-P Bonds to Reversible Insertion into P 4. Chemistry 2023; 29:e202302212. [PMID: 37583347 DOI: 10.1002/chem.202302212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Although the discovery of the GaI complex salt [Ga(PhF)2-3 ][Al(ORF )4 ] (RF =C(CF3 )3 , PhF=C6 H5 F) invoked the preparation of a diverse library of cationic Ga(I) coordination complexes and clusters, studies on small molecule activation with low-valent GaI cations are scarce. Herein, a first experimental study on the reactivity of a monomeric Ga(I) cation activated with a pyridine-diimine pincer ligand (in [Ga(PDIdipp )][Al(ORF )4 ]) towards small-molecules is reported. First controlled oxidative additions of the GaI cation into C-Cl, H-P and P-P bonds are presented. Moreover, the [4+1]cycloaddition to butadienes was achieved. Intriguingly, the isolated, blue insertion product into the P-P bond of P4 allows for the quantitative release of the P4 molecule upon reaction with AlEt3 and butadienes. Reversible P4 insertion of main-group metals has previously been reported for Ge and Sn, respectively. The experimental study is supported by high-level computational analysis of the in-part reversible oxidative additions at the DLPNO-CCSD(T)/def2-TZVPP//PBEh-3c/def2-mSVP level of theory with COSMO-RS solvation in 1,2-difluorobenzene.
Collapse
Affiliation(s)
- Philipp Dabringhaus
- Albert-Ludwigs-Universität Freiburg, Institute for Inorganic and Analytical Chemistry, Freiburg Materials Research Center FMF, Albertstrasse 21, 79104, Freiburg i. Br., Germany
| | - Tim Heizmann
- Albert-Ludwigs-Universität Freiburg, Institute for Inorganic and Analytical Chemistry, Freiburg Materials Research Center FMF, Albertstrasse 21, 79104, Freiburg i. Br., Germany
| | - Ingo Krossing
- Albert-Ludwigs-Universität Freiburg, Institute for Inorganic and Analytical Chemistry, Freiburg Materials Research Center FMF, Albertstrasse 21, 79104, Freiburg i. Br., Germany
| |
Collapse
|
16
|
Yanagisawa D, Ishida S, Iwamoto T. Silacyclopropenylsilylene-NHC Complex: Synthesis by (1+2) Retro-cycloaddition, Dynamic Behavior in Solution, and Ring-expansion Reaction. CHEM LETT 2023. [DOI: 10.1246/cl.220528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Daichi Yanagisawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
17
|
Nougué R, Takahashi S, Baceiredo A, Saffon‐Merceron N, Branchadell V, Kato T. Reversible Isomerization Between Silacyclopropyl Cation and Cyclic (Alkyl)(Amino)Silylene. Angew Chem Int Ed Engl 2023; 62:e202215394. [PMID: 36445806 PMCID: PMC10108311 DOI: 10.1002/anie.202215394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
A phosphine-stabilized silacyclopropyl cation 2 has been synthesized and fully characterized. Of particular interest, 2 reversibly isomerizes into the corresponding seven-membered cyclic (alkyl)(amino)silylene 3 at room temperature via a formal migratory ethylene insertion into the Si-P bond. Although silylene 3 has not been spectroscopically detected, its transient formation has been evidenced by the isolation of the corresponding disilene dimer 5 as well as by trapping reactions.
Collapse
Affiliation(s)
- Raphaël Nougué
- Université de ToulouseUPSCNRSLHFA UMR 506931062ToulouseFrance
| | | | | | | | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona08193BellaterraSpain
| | - Tsuyoshi Kato
- Université de ToulouseUPSCNRSLHFA UMR 506931062ToulouseFrance
| |
Collapse
|
18
|
Zhu H, Kostenko A, Franz D, Hanusch F, Inoue S. Room Temperature Intermolecular Dearomatization of Arenes by an Acyclic Iminosilylene. J Am Chem Soc 2023; 145:1011-1021. [PMID: 36597967 DOI: 10.1021/jacs.2c10467] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel nontransient acyclic iminosilylene (1), bearing a bulky super silyl group (-SitBu3) and N-heterocyclic imine ligand with a methylated backbone, was prepared and isolated. The methylated backbone is the feature of 1 that distinguishes it from the previously reported nonisolable iminosilylenes, as it prevents the intramolecular silylene center insertion into an aromatic C-C bond of an aryl substituent. Instead, 1 exhibits an intermolecular Büchner-ring-expansion-type reactivity; the silylene is capable of dearomatization of benzene and its derivatives, giving the corresponding silicon analogs of cycloheptatrienes, i.e. silepins, featuring seven-membered SiC6 rings with nearly planar geometry. The ring expansion reactions of 1 with benzene and 1,4-bis(trifluoromethyl)benzene are reversible. Similar reactions of 1 with N-heteroarenes (pyridine and DMAP) proceed more rapidly and irreversibly forming the corresponding azasilepins, also with nearly planar seven-membered SiNC5 rings. DFT calculations reveal an ambiphilic nature of 1 that allows the intermolecular aromatic C-C bond insertion to occur. Additional computational studies, which elucidate the inherent reactivity of 1, the role of the substituent effect, and reaction mechanisms behind the ring expansion transformations, are presented.
Collapse
Affiliation(s)
- Huaiyuan Zhu
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Arseni Kostenko
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Daniel Franz
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Franziska Hanusch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
19
|
Baradzenka AG, Vyboishchikov SF, Pilkington M, Dmitrienko A, Nikonov GI. The Insertion of E
II
and E
IV
Chlorides (E=Si, Ge) into the Si−Si Bond of Disilylene. Chemistry 2022; 28:e202202799. [DOI: 10.1002/chem.202202799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Aliona G. Baradzenka
- Department of Chemistry Brock University 1812 Sir Isaac Brock Way St. Catharines Ontario L2S 3 A1 Canada
| | - Sergei F. Vyboishchikov
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Carrer Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Melanie Pilkington
- Department of Chemistry Brock University 1812 Sir Isaac Brock Way St. Catharines Ontario L2S 3 A1 Canada
| | - Anton Dmitrienko
- Department of Chemistry Brock University 1812 Sir Isaac Brock Way St. Catharines Ontario L2S 3 A1 Canada
| | - Georgii I. Nikonov
- Department of Chemistry Brock University 1812 Sir Isaac Brock Way St. Catharines Ontario L2S 3 A1 Canada
| |
Collapse
|
20
|
Yadav R, Sun X, Köppe R, Gamer MT, Weigend F, Roesky PW. Stimuli Responsive Silylene: Electromerism Induced Reversible Switching Between Mono- and Bis-Silylene. Angew Chem Int Ed Engl 2022; 61:e202211115. [PMID: 36161745 PMCID: PMC9828679 DOI: 10.1002/anie.202211115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/12/2023]
Abstract
Electromerism is a very well-known phenomenon in transition metal chemistry. In main group chemistry, this concept has only started getting attention recently. We report stimuli responsive low-valent silicon compounds exhibiting electromerism. A mixed-valent silaiminyl-silylene 1, [LSi-Si(NDipp)L] (L=PhC(Nt Bu)2 ), was synthesized in a single step from amidinate-chlorosilylene. Compound 1 has two interconnected Si atoms in formally +I and +III oxidation states. Upon treatment with Lewis acidic CuI X (X=mesityl, Cl, Br, I), electron redistribution occurs resulting in the formation of [{LSi(NDipp)Si(L)}-CuX], in which both silicon atoms are in the +II formal oxidation state. Removal of the copper center from [{LSi(NDipp)Si(L)}-CuX] by using a Lewis basic carbene led to reformation of the precursor [LSi-Si(NDipp)L]. Thus, the process is fully reversible. This showcases the first example of Lewis acid/base-induced reversible electromerism in silicon chemistry.
Collapse
Affiliation(s)
- Ravi Yadav
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Xiaofei Sun
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Ralf Köppe
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Michael T. Gamer
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Florian Weigend
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Peter W. Roesky
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| |
Collapse
|
21
|
Saurwein A, Eisner T, Inoue S, Rieger B. Steric and Electronic Properties of Phosphinimide-Based Silylenes─The Influence of the Phosphine Moiety. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Saurwein
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, 85748 Garching, Germany
- WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Teresa Eisner
- WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Shigeyoshi Inoue
- WACKER-Institute of Silicon Chemistry, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
22
|
Xiong Y, Dong S, Yao S, Dai C, Zhu J, Kemper S, Driess M. An Isolable 2,5‐Disila‐3,4‐Diphosphapyrrole and a Conjugated Si=P−Si=P−Si=N Chain Through Degradation of White Phosphorus with a
N,N
‐Bis(Silylenyl)Aniline. Angew Chem Int Ed Engl 2022; 61:e202209250. [PMID: 35876267 PMCID: PMC9545316 DOI: 10.1002/anie.202209250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/08/2022]
Abstract
White phosphorus (P4) undergoes degradation to P2 moieties if exposed to the new N,N‐bis(silylenyl)aniline PhNSi21 (Si=Si[N(tBu)]2CPh), furnishing the first isolable 2,5‐disila‐3,4‐diphosphapyrrole 2 and the two novel functionalized Si=P doubly bonded compounds 3 and 4. The pathways for the transformation of the non‐aromatic 2,5‐disila‐3,4‐diphosphapyrrole PhNSi2P22 into 3 and 4 could be uncovered. It became evident that 2 reacts readily with both reactants P4 and 1 to afford either the polycyclic Si=P‐containing product [PhNSi2P2]2P23 or the unprecedented conjugated Si=P−Si=P−Si=NPh chain‐containing compound 4, depending on the employed molar ratio of 1 and P4 as well as the reaction conditions. Compounds 3 and 4 can be converted into each other by reactions with 1 and P4, respectively. All new compounds 1–4 were unequivocally characterized including by single‐crystal X‐ray diffraction analysis. In addition, the electronic structures of 2–4 were established by Density Functional Theory (DFT) calculations.
Collapse
Affiliation(s)
- Yun Xiong
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Shenglai Yao
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Sebastian Kemper
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
23
|
Sun T, Li J, Wang H. Recent advances in the chemistry of heavier group 14 analogues of carbonyls. Chem Asian J 2022; 17:e202200611. [PMID: 35883252 DOI: 10.1002/asia.202200611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Indexed: 11/08/2022]
Abstract
Heavier analogues of carbonyls, in the form of "R2E=O" (E = Si, Ge, Sn, Pb), feature a high polar E=O double bond. In contrast to carbonyl compounds, heavier analogues are extremely unstable and prone to proceed head-to-tail oligomerization. Thus, the isolation of such species under ambient conditions is a challenging synthetic target in main group chemistry. In recent years, much progress has been achieved in the synthesis and isolation of a variety of Lewis base/acid, Lewis base-stabilized and even Lewis acid/base free heavier analogues. These compounds exhibit interesting reactivities, such as small molecule activation and metathesis reactions, indicating the potential of heavier analogues in synthetic chemistry. This review summarizes the recent achievements in the chemistry of Lewis base and/or acid stabilized heavier analogues of carbonyls, including synthetic approaches, structural parameters and reactivity of these isolable compounds.
Collapse
Affiliation(s)
| | | | - Hao Wang
- Southeast University, Chemistry, Southeast University Road, 211189, Nanjing, CHINA
| |
Collapse
|
24
|
Xiong Y, Dong S, Yao S, Dai C, Zhu J, Kemper S, Driess M. An Isolable 2,5‐Disila‐3,4‐Diphosphapyrrole and a Conjugated Si=P‐Si=P‐Si=N Chain Through Degradation of White Phosphorus with a N,N‐Bis(Silylenyl)Aniline. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yun Xiong
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | | | - Shenglai Yao
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | | | - Jun Zhu
- Xiamen University Chemistry CHINA
| | - Sebastian Kemper
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | - Matthias Driess
- Technische Universität Berlin Chemie Strasse des 17. Juni 135, Sekr. C2 10623 Berlin GERMANY
| |
Collapse
|
25
|
Xiong Y, Dong S, Yao S, Zhu J, Driess M. Unexpected White Phosphorus (P 4 ) Activation Modes with Silylene-Substituted o-Carboranes and Access to an Isolable 1,3-Diphospha-2,4-disilabutadiene. Angew Chem Int Ed Engl 2022; 61:e202205358. [PMID: 35502702 PMCID: PMC9401593 DOI: 10.1002/anie.202205358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/12/2022]
Abstract
New types of metal-free white phosphorus (P4 ) activation are reported. While the phosphine-silylene-substituted dicarborane 1, CB-SiP (CB=ortho-C,C'-C2 B10 H10 , Si=PhC(tBuN)2 Si, P=P[N(tBu)CH2 ]2 ), activates white phosphorus in a 2 : 1 molar ratio to yield the P5 -chain containing species 2, the analogous bis(silylene)-substituted compound 3, CB-Si2 , reacts with P4 in the molar ratio of 2 : 1 to furnish the first isolable 1,3-diphospha-2,4-disilabutadiene (Si=P-Si=P-containing) compound 4. For the latter reaction, two intermediates having a CB-Si2 P4 and CB-Si2 P2 core could be observed by multinuclear NMR spectroscopy. The compounds 2 and 4 were characterized including single-crystal X-ray diffraction analyses. Their electronic structures and mechanisms were investigated by density functional theory calculations.
Collapse
Affiliation(s)
- Yun Xiong
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStrasse des 17. Juni 135, Sekr. C210623BerlinGermany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStrasse des 17. Juni 135, Sekr. C210623BerlinGermany
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStrasse des 17. Juni 135, Sekr. C210623BerlinGermany
| |
Collapse
|
26
|
Xiong Y, Dong S, Yao S, Zhu J, Driess M. Unexpected White Phosphorus (P
4
) Activation Modes with Silylene‐Substituted
o
‐Carboranes and Access to an Isolable 1,3‐Diphospha‐2,4‐disilabutadiene. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yun Xiong
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
27
|
Gour K, Bisai MK, Sen SS. Hypersilyl Substituent in Heavier Low‐valent Group 14 Chemistry. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kritika Gour
- CSIR-NCL: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Milan Kumar Bisai
- CSIR-NCL: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Sakya S. Sen
- National Chemical Laboraotry Catalysis Division Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
28
|
Keuter J, Hepp A, Massolle A, Neugebauer J, Mück‐Lichtenfeld C, Lips F. Synthesis and Reactivity of a Neutral Homocyclic Silylene. Angew Chem Int Ed Engl 2022; 61:e202114485. [PMID: 34797603 PMCID: PMC9299817 DOI: 10.1002/anie.202114485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 12/31/2022]
Abstract
Isolation of the neutral homocyclic silylene 2 is possible via amine ligand abstraction with potassium graphite (KC8 ) and subsequent reaction with SiMe3 Cl from a bicyclic silicon(I) amide J. This reaction proceeds via an anionic homoaromatic silicon ring compound 1 as an intermediate. The twofold-coordinated silicon atom in the homocyclic silylene 2 is stabilized by an allyl-type π-electron delocalization. 2 reacts in an oxidative addition with two equivalents of MeOH and in cycloadditions with ethene, phenylacetylene, diphenylacetylene and with 2,3-dimethyl-1,3-butadiene to afford novel functionalized ring compounds.
Collapse
Affiliation(s)
- Jan Keuter
- Westfälische Wilhelms-Universität MünsterInstitut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Alexander Hepp
- Westfälische Wilhelms-Universität MünsterInstitut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Anja Massolle
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches Institut and Center for Multiscale Theory and ComputationCorrensstraße 3648149MünsterGermany
| | - Johannes Neugebauer
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches Institut and Center for Multiscale Theory and ComputationCorrensstraße 3648149MünsterGermany
| | - Christian Mück‐Lichtenfeld
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches Institut and Center for Multiscale Theory and ComputationCorrensstraße 3648149MünsterGermany
| | - Felicitas Lips
- Westfälische Wilhelms-Universität MünsterInstitut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| |
Collapse
|
29
|
Keuter J, Hepp A, Massolle A, Neugebauer J, Mück‐Lichtenfeld C, Lips F. Synthese und Reaktivität eines Neutralen Homozyklischen Silylens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Keuter
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstraße 28–30 48149 Münster Deutschland
| | - Alexander Hepp
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstraße 28–30 48149 Münster Deutschland
| | - Anja Massolle
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut und Center for Multiscale Theory and Computation Corrensstraße 36 48149 Münster Deutschland
| | - Johannes Neugebauer
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut und Center for Multiscale Theory and Computation Corrensstraße 36 48149 Münster Deutschland
| | - Christian Mück‐Lichtenfeld
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut und Center for Multiscale Theory and Computation Corrensstraße 36 48149 Münster Deutschland
| | - Felicitas Lips
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstraße 28–30 48149 Münster Deutschland
| |
Collapse
|
30
|
Sharma MK, Wölper C, Schulz S. Selective 1,2 addition of polar X-H bonds to the Ga-P double bond of gallaphosphene L(Cl)GaPGaL. Dalton Trans 2022; 51:1612-1616. [PMID: 34994365 DOI: 10.1039/d1dt04299h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gallaphosphene L(Cl)GaPGaL 1 (L = HC[C(Me)N(2,6-i-Pr2-C6H3)]2) reacts at ambient temperature with a series of polar X-H bonds, i.e. ammonia, primary amines, water, phenol, thiophenol, and selenophenol, selectively with 1,2 addition at the polar Ga-P double bond. The gallium atom serves as electrophile and the phosphorous atom is protonated in all reactions. The resulting complexes L(Cl)GaP(H)Ga(X)L (X = NH22, NHi-Pr 3, NHPh 4, OH 5, OXyl 6, SPh 7, SePh 8) were characterized by IR and heteronuclear (1H, 13C{1H}, 31P{1H}) NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5-7, D-45141 Essen, Germany.
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5-7, D-45141 Essen, Germany.
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5-7, D-45141 Essen, Germany.
| |
Collapse
|
31
|
Muraoka T, Suzuki Y, Tsuchimoto M, Trigagema G, Ueno K, Koyama S. Synthesis and structure of a pyridine-stabilized silanone molybdenum complex and its reactions with PMe 3 and acetone. Dalton Trans 2022; 51:18203-18212. [DOI: 10.1039/d2dt02560d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synthesis, structure and reactivity of a pyridine-stabilized silanone molybdenum complex are described.
Collapse
Affiliation(s)
- Takako Muraoka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Yuzuki Suzuki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Masato Tsuchimoto
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Gama Trigagema
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Keiji Ueno
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Shinji Koyama
- Division of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| |
Collapse
|
32
|
Schoening J, Ganesamoorthy C, Wölper C, Solel E, Schreiner PR, Schulz S. Synthesis, electronic nature, and reactivity of selected silylene carbonyl complexes. Dalton Trans 2022; 51:8249-8257. [DOI: 10.1039/d2dt01335e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room-temperature stable main group element carbonyl complexes are rare. Here we report on the synthesis of two such complexes, namely gallium-substituted silylene-carbonyl complexes [L(X)Ga]2SiCO (X = I 2, Me 3;...
Collapse
|
33
|
McOnie SL, Özpınar GA, Bourque JL, Müller T, Baines KM. NH bond activation of ammonia and amines by ditetrelenes: key insights into the stereochemistry of nucleophilic addition. Dalton Trans 2021; 50:17734-17750. [PMID: 34812813 DOI: 10.1039/d1dt03739k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The NH bond activation of ammonia, primary and secondary amines by tetramesityldisilene and -digermene was investigated. In each case, a disilyl- or digermylamine was formed as the only product of amine addition. The mechanism of the addition of ammonia to tetramesityldisilene was computed and revealed a three-step reaction pathway: formation of the anti-ammonia-disilene adduct, inversion at the β-silicon, and syn-transfer of the proton to give the syn-product, where each step follows a distinct stereochemical course. Examination of the reaction landscape also revealed several additional insights: (a) that, in the initial step, the formation of the anti-oriented zwitterionic intermediate is kinetically more preferable than formation of the syn-oriented zwitterionic intermediate, (b) that intermolecular transfer of a proton is not energetically feasible in non-polar solvents, and (c) that the bulk of the substituents can have a profound effect on the stereochemical course of the reaction. With this detailed understanding, nucleophilic additions to ditetrelenes can be exploited in the future.
Collapse
Affiliation(s)
- Sarah L McOnie
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | - Gül Altınbaş Özpınar
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26129 Oldenburg, Federal Republic of Germany, European Union.
| | - Jeremy L Bourque
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26129 Oldenburg, Federal Republic of Germany, European Union.
| | - Kim M Baines
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
34
|
Bisai MK, Das T, Vanka K, Gonnade RG, Sen SS. Unsymmetrical sp
2
‐sp
3
Disilenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Tamal Das
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pashan Pune 411008 India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pashan Pune 411008 India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pashan Pune 411008 India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
35
|
Sasaki H, Yokouchi Y, Nukazawa T, Iwamoto T. Rapid and Mild Synthesis of an NHC-Coordinated Bis(trimethylsilyl)silylene via Elimination of Halotrimethylsilane. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hayato Sasaki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuki Yokouchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takumi Nukazawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
36
|
Bisai MK, Das T, Vanka K, Gonnade RG, Sen SS. Unsymmetrical sp 2 -sp 3 Disilenes. Angew Chem Int Ed Engl 2021; 60:20706-20710. [PMID: 34288335 DOI: 10.1002/anie.202107847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 11/08/2022]
Abstract
Disilenes with differently coordinated silicon atoms are not known. Here, we have shown the high yield synthesis of a range of disilenes (2-4 and 6) upon reaction of a hypersilyl silylene PhC(NtBu)2 SiSi(SiMe3 )3 (1) with aliphatic chlorophosphines. The most striking characteristic of these disilenes is the presence of two differently coordinated Si atoms (one is three-coordinated, the other four-coordinated). The analogous reaction with Ph2 PCl did not afford the desired disilene, but, surprisingly, led to the first tetraphosphinosilane (8). DFT calculations were performed to understand the bonding in disilenes and differences in reactivity of the complexes.
Collapse
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tamal Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
37
|
Holzner R, Porzelt A, Karaca US, Kiefer F, Frisch P, Wendel D, Holthausen MC, Inoue S. Imino(silyl)disilenes: application in versatile bond activation, reversible oxidation and thermal isomerization. Dalton Trans 2021; 50:8785-8793. [PMID: 34085690 DOI: 10.1039/d1dt01629f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel disilenes of type ABSi[double bond, length as m-dash]SiAB bearing N-heterocyclic imino (A = NItBu) and trialkylsilyl (B = SitBu31, B = SitBu2Me 2) groups are reported. The reduced steric demand in 2 results in a highly stable, nonetheless flexible system, wherefore (E/Z) isomerization is observed from room temperature up to 90 °C. The proposed isomerization mechanism proceeds via monomeric silylenes in line with experimental results. Despite enhanced stability, disilene 2 retains high reactivity in the activation of small molecules, including H2. The rare example of a disilene radical cation 7 is isolated and shows reversible redox behavior. White phosphorous (P4) selectively reacts with 2 to give the unique cage-compound 8. Selective thermal rearrangement of 2 at higher temperatures yields the A2Si[double bond, length as m-dash]SiB2-type disilene 9 (A = NItBu, B = SitBu2Me), which bears characteristics of a zwitterionic and a dative central Si-Si bond. The proposed mechanism proceeds via an initial NHI migration followed by silyl migration.
Collapse
Affiliation(s)
- Richard Holzner
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | - Amelie Porzelt
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | - Uhut S Karaca
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | - Fiona Kiefer
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | - Philipp Frisch
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | - Daniel Wendel
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | - Max C Holthausen
- Institute for Inorganic and Analytical Chemistry, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | - Shigeyoshi Inoue
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| |
Collapse
|
38
|
Sen N, Parvin N, Tothadi S, Khan S. Reactivity of (TMS)2N(η1-Cp*)Si═Si(η1-Cp*)N(TMS)2 toward the Halides of Groups 13–15. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nilanjana Sen
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Nasrina Parvin
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
39
|
Xiong Y, Yao S, Ruzicka A, Driess M. Distinctly different reactivity of bis(silylenyl)- versus phosphanyl-silylenyl-substituted o-dicarborane towards O 2, N 2O and CO 2. Chem Commun (Camb) 2021; 57:5965-5968. [PMID: 34027530 DOI: 10.1039/d1cc01939b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In stark contrast to the reactivity of the bis-silylenyl dicarborane CB-Si2 (1) [CB = ortho-C,C'-C2B10H10, Si = PhC(tBuN)2Si] towards O2, N2O, and CO2, yielding the same dioxygenation product CB-Si2O2 (2) with a four-membered 1,3,2,4-disiladioxetane ring, the activation of the latter small molecules with the phosphanyl-silylenyl-functionalised CB-SiP (3) {P[double bond, length as m-dash]P[N(tBu)CH2]2} affords with O2 the CB-Si([double bond, length as m-dash]O)P([double bond, length as m-dash]O) silanone-phosphine oxide (4), with N2O the CB-Si([double bond, length as m-dash]O)P silanone-phosphine (5), and with CO2 the CB-Si(O2C[double bond, length as m-dash]O)P silicon carbonate-phosphine (6) and CB-C([double bond, length as m-dash]O)OSiOP ester (7), respectively.
Collapse
Affiliation(s)
- Yun Xiong
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, Berlin 10623, Germany.
| | - Shenglai Yao
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, Berlin 10623, Germany.
| | - Ales Ruzicka
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Matthias Driess
- Metalorganics and Inorganic Materials, Department of Chemistry, Technische Universität Berlin, Straße des 17, Juni 135, Sekr. C2, Berlin 10623, Germany.
| |
Collapse
|
40
|
Lainer T, Pillinger M, Fischer RC, Jones C, Haas M. New Strategies towards Bulky Bis(alkyl)‐ and Bis(silyl)‐ Substituted Polysilanes as Precursor Molecules for Desilylation and Dechlorination Experiments. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thomas Lainer
- Institute of Inorganic Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Michael Pillinger
- Institute of Inorganic Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Roland C. Fischer
- Institute of Inorganic Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Cameron Jones
- School of Chemistry Monash University PO Box 23, Clayton VIC, 3800 Australia
| | - Michael Haas
- Institute of Inorganic Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
- School of Chemistry Monash University PO Box 23, Clayton VIC, 3800 Australia
| |
Collapse
|
41
|
Takahashi S, Ishii A, Nakata N. Interconversion between a silaimine and an aminosilylene supported by an iminophosphonamide ligand. Chem Commun (Camb) 2021; 57:3203-3206. [PMID: 33687409 DOI: 10.1039/d1cc00667c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The reaction of a chlorosilylene, supported by an iminophosphonamide ligand, with KN(SiMe3)2 resulted in the formation of a silaimine instead of the expected aminosilylene. However, this silaimine exists in equilibrium with the corresponding aminosilylene, which was experimentally demonstrated using variable-temperature NMR spectroscopy and a trapping reaction with elemental selenium to give a silaselenourea.
Collapse
Affiliation(s)
- Shintaro Takahashi
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| | | | | |
Collapse
|
42
|
Abstract
Since the discovery that the so-called "double-bond" rule could be broken, the field of molecular main group multiple bonds has expanded rapidly. With the majority of homodiatomic double and triple bonds realised within the p-block, along with many heterodiatomic combinations, this Minireview examines the reactivity of these compounds with a particular emphasis on small molecule activation. Furthermore, whilst their ability to act as transition metal mimics has been explored, their catalytic behaviour is somewhat limited. This Minireview aims to highlight the potential of these complexes towards catalytic application and their role as synthons in further functionalisations making them a versatile tool for the modern synthetic chemist.
Collapse
Affiliation(s)
- Catherine Weetman
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
43
|
Bisai MK, Swamy VSVSN, Raj KV, Vanka K, Sen SS. Diverse Reactivity of Hypersilylsilylene with Boranes and Three-Component Reactions with Aldehyde and HBpin. Inorg Chem 2021; 60:1654-1663. [DOI: 10.1021/acs.inorgchem.0c03137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - V. S. V. S. N. Swamy
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K. Vipin Raj
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumar Vanka
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
44
|
Huang Y, Wu J, Qiu R, Xu F, Zhu J. Probing the tautomerization of disilenes and disilabenzenes with their isomeric silylenes: significant substituent, aromaticity and base effects. Dalton Trans 2020; 49:17341-17349. [PMID: 33206739 DOI: 10.1039/d0dt03527k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disilene has attracted considerable interest due to the trans-bending geometry which is significantly different from the planar alkene. However, the equilibrium between disilene and isomeric silylsilylene has not been fully understood. Here, we report a density functional theory (DFT) study on this equilibrium. Calculations reveal significant effects of substituent, aromaticity and base. Specifically, the parent disilene is thermodynamically more stable than the isomeric silylene. When the methoxy substituent is introduced, the corresponding silylene becomes thermodynamically more stable, which could be rationalized by the Bent's rule. Interestingly, disilabenzene becomes thermodynamically more stable than the isomeric silylene when the concept of aromaticity is taken into account. Finally, once the base is introduced, the silylene could become thermodynamically more stable than the isomeric disilabenzene. The kinetic effect of the tautomerization with several typical substituents (F, Me and OMe) has also been investigated. Some species with a bridged form have been found to have a higher thermodynamic stability over the nonbridged ones. All these findings could be particularly useful to develop the chemistry of disilenes and silylenes.
Collapse
Affiliation(s)
- Yuanyuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | | | | | | | | |
Collapse
|
45
|
Pan Y, Morisako S, Aoyagi S, Sasamori T. Generation of Bis(ferrocenyl)silylenes from Siliranes. Molecules 2020; 25:molecules25245917. [PMID: 33327589 PMCID: PMC7765056 DOI: 10.3390/molecules25245917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Divalent silicon species, the so-called silylenes, represent attractive organosilicon building blocks. Isolable stable silylenes remain scarce, and in most hitherto reported examples, the silicon center is stabilized by electron-donating substituents (e.g., heteroatoms such as nitrogen), which results in electronic perturbation. In order to avoid such electronic perturbation, we have been interested in the chemistry of reactive silylenes with carbon-based substituents such as ferrocenyl groups. Due to the presence of a divalent silicon center and the redox-active transition metal iron, ferrocenylsilylenes can be expected to exhibit interesting redox behavior. Herein, we report the design and synthesis of a bis(ferrocenyl)silirane as a precursor for a bis(ferrocenyl)silylene, which could potentially be used as a building block for redox-active organosilicon compounds. It was found that the isolated bis(ferrocenyl)siliranes could be a bottleable precursor for the bis(ferrocenyl)silylene under mild conditions.
Collapse
Affiliation(s)
- Yang Pan
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan; (Y.P.); (S.A.)
| | - Shogo Morisako
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan;
| | - Shinobu Aoyagi
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan; (Y.P.); (S.A.)
| | - Takahiro Sasamori
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan; (Y.P.); (S.A.)
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan;
- Correspondence: ; Tel.: +81-29-853-4412
| |
Collapse
|
46
|
Leong BX, Teo YC, Condamines C, Yang MC, Su MD, So CW. A NHC-Silyliumylidene Cation for Catalytic N-Formylation of Amines Using Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03795] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bi-Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yeow-Chuan Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Cloé Condamines
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
47
|
|
48
|
Agarwal A, Bose SK. Bonding Relationship between Silicon and Germanium with Group 13 and Heavier Elements of Groups 14-16. Chem Asian J 2020; 15:3784-3806. [PMID: 33006219 DOI: 10.1002/asia.202001043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
The topic of heavier main group compounds possessing multiple bonds is the subject of momentous interest in modern organometallic chemistry. Importantly, there is an excitement involving the discovery of unprecedented compounds with unique bonding modes. The research in this area is still expanding, particularly the reactivity aspects of these compounds. This article aims to describe the overall developments reported on the stable derivatives of silicon and germanium involved in multiple bond formation with other group 13, and heavier groups 14, 15, and 16 elements. The synthetic strategies, structural features, and their reactivity towards different nucleophiles, unsaturated organic substrates, and in small molecule activation are discussed. Further, their physical and chemical properties are described based on their spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Abhishek Agarwal
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| |
Collapse
|
49
|
Reiter D, Holzner R, Porzelt A, Frisch P, Inoue S. Silylated silicon-carbonyl complexes as mimics of ubiquitous transition-metal carbonyls. Nat Chem 2020; 12:1131-1135. [PMID: 33071286 DOI: 10.1038/s41557-020-00555-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022]
Abstract
Transition-metal-carbonyl complexes are common organometallic reagents that feature metal-CO bonds. These complexes have proven to be powerful catalysts for various applications. By contrast, silicon-carbonyl complexes, organosilicon reagents poised to be eco-friendly alternatives for transition-metal carbonyls, have remained largely elusive. They have mostly been explored theoretically and/or through low-temperature matrix isolation studies, but their instability had typically precluded isolation under ambient conditions. Here we present the synthesis, isolation and full characterization of stable silyl-substituted silicon-carbonyl complexes, along with bonding analysis. Initial reactivity investigations showed examples of CO liberation, which could be induced either thermally or photochemically, as well as substitution and functionalization of the CO moiety. Importantly, the complexes exhibit strong Si-CO bonding, with CO→Si σ-donation and Si→CO π-backbonding, which is reminiscent of transition-metal carbonyls. This similarity between the abundant semi-metal silicon and rare transition metals may provide new opportunities for the development of silicon-based catalysis.
Collapse
Affiliation(s)
- Dominik Reiter
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Garching bei München, Germany
| | - Richard Holzner
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Garching bei München, Germany
| | - Amelie Porzelt
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Garching bei München, Germany
| | - Philipp Frisch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Garching bei München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Garching bei München, Germany.
| |
Collapse
|
50
|
Leszczyńska KI, Deglmann P, Präsang C, Huch V, Zimmer M, Schweinfurth D, Scheschkewitz D. Pentamethylcyclopentadienyl-substituted hypersilylsilylene: reversible and irreversible activation of C[double bond, length as m-dash]C double bonds and dihydrogen. Dalton Trans 2020; 49:13218-13225. [PMID: 32935711 DOI: 10.1039/d0dt02943b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent studies of low-valent main group species underscore their resemblance to transition metal complexes with regards to the ability to activate small molecules. Here, we report synthesis and full characterisation of the persistent (hypersilyl)(pentamethylcyclopentadienyl)silylene Cp*[(Me3Si)3Si]Si: as well as its unique reactivity. Silylene Cp*[(Me3Si)3Si]Si: activates dihydrogen to give the corresponding dihydrosilane Cp*[(Me3Si)3Si]SiH2 at particularly mild conditions as well as ethylene to afford the three-membered cyclic silirane c-Cp*[(Me3Si)3Si]Si(H2CCH2). The addition of N-heterocyclic carbene NHC (NHC = 1,3,4,5-tetramethyl-imidazol-2-ylidene) to dihydrosilane Cp*[(Me3Si)3Si]SiH2 induces the reductive elimination of Cp*H, which according to DFT calculations is thermodynamically preferred over H2 elimination. With NHC, Cp*[(Me3Si)3Si]Si: forms a typical donor-acceptor complex with concomitant change in hapticity of the Cp* ligand from η2 to η1 (σ). In contrast, the reaction with the N-heterocyclic silylene c-[(CH[double bond, length as m-dash]CH(tBuN)2]Si: leads to an unusual "masked" disilene with the former Cp* ligand bridging the two silicon centres. The heterodimer is stable in the solid state, but dissociates reversibly to the constituting silylene fragments in solution.
Collapse
Affiliation(s)
- Kinga I Leszczyńska
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | | | | | | | | | | | | |
Collapse
|