1
|
Guan X, Wang H, Zhang W, Xie Z. Asymmetric Total Synthesis of (+)-Hyperbeanol A. Org Lett 2025; 27:8-13. [PMID: 39696798 DOI: 10.1021/acs.orglett.4c02930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A bioinspired alkylation dearomatization reaction was developed to construct the 5/6/6 fused-spiro tricyclic core framework and spiro-quaternary carbon chiral center. The usage of this approach for assembling these natural products of spirocyclic polycyclic polyprenylated acylphloroglucinols with an octahydrospiro-[cyclohexan-1,5'-indene] core is demonstrated by the first asymmetric total synthesis of highly oxidized hyperbeanol A.
Collapse
Affiliation(s)
- Xingchao Guan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haodong Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wanqiao Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Mao HK, Wang Q, Xie S, Xu J. Synthetic Study toward Daphnimacropodines. Org Lett 2024; 26:10616-10621. [PMID: 39629664 DOI: 10.1021/acs.orglett.4c04132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Daphnimacropodines A-C are members of a small but structurally distinct subfamily of Daphniphyllum alkaloids. Their congested polycyclic skeletons, and two vicinal quaternary stereocenters, present significant synthetic challenges. This paper describes two stereoselective approaches to constructing the tricyclic core structures of daphnimacropodines, achieved through a straightforward Rh-catalyzed [4 + 3] cycloaddition using simple building blocks. This work also highlights an intramolecular Heck reaction that rapidly assembles the cyclohexane ring moiety, a Tsuji-Trost allylation that forged the critical C-8 quaternary stereocenter, an efficient hetero-Diels-Alder reaction, and an intramolecular nucleophilic addition, which paved the way to the key cyclopentane ring. The assembly of the tetrahydropyrrole motif was also investigated.
Collapse
Affiliation(s)
- Hai-Kang Mao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Qian Wang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Sujun Xie
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
3
|
Chen L, Lv C, Meng Y, Yang Z, Xin W, Zhu Y, Wang X, Wang B, Ding X, Wang Z, Wei X, Zhang X, Fu X, Meng X, Zhang M, Huo M, Li Y, Yu H, Wei Y, Geng L. The Latest Progress in the Chemistry of Daphniphyllum Alkaloids. Molecules 2024; 29:5498. [PMID: 39683658 DOI: 10.3390/molecules29235498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Daphniphyllum alkaloids (DAs) are interesting molecules with rich molecular skeletons and diverse biological activities. Since their discovery, phytochemists have isolated, purified, and identified more than 350 DAs. Synthetic chemists, attracted by the structure and activity of DAs, have accomplished many elegant synthetic jobs. Herein, we summarize work on the isolation, structural identification, bioactivity testing, and synthesis of DAs from 2018 to 2023, with the aim of providing a reference for future studies.
Collapse
Affiliation(s)
- Lujuan Chen
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Chao Lv
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yinping Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhen Yang
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Wenbin Xin
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yuxue Zhu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuehan Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Baozhen Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuan Ding
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhaoxia Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuyue Wei
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xinyue Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuexue Fu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xiangru Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Meimei Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Manyu Huo
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ying Li
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Hui Yu
- Health and Medicine College, Dezhou University, Dezhou 253023, China
| | - Yuxia Wei
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
4
|
Eljounaidi K, Radzikowska BA, Whitehead CB, Taylor DJ, Conde S, Davis W, Dowle AA, Langer S, James S, Unsworth WP, Ezer D, Larson TR, Lichman BR. Variation of terpene alkaloids in Daphniphyllum macropodum across plants and tissues. THE NEW PHYTOLOGIST 2024; 243:299-313. [PMID: 38757546 DOI: 10.1111/nph.19814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Daphniphyllum macropodum produces alkaloids that are structurally complex with polycyclic, stereochemically rich carbon skeletons. Understanding how these compounds are formed by the plant may enable exploration of their biological function and bioactivities. We employed multiple metabolomics techniques, including a workflow to annotate compounds in the absence of standards, to compare alkaloid content across plants and tissues. Different alkaloid structural types were found to have distinct distributions between genotypes, between tissues and within tissues. Alkaloid structural types also showed different isotope labelling enrichments that matched their biosynthetic relationships. The work suggests that mevalonate derived 30-carbon alkaloids are formed in the phloem region before their conversion to 22-carbon alkaloids which accumulate in the epidermis. This sets the stage for further investigation into the biosynthetic pathway.
Collapse
Affiliation(s)
- Kaouthar Eljounaidi
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Barbara A Radzikowska
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Caragh B Whitehead
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Danielle J Taylor
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Susana Conde
- Department of Biology, University of York, York, YO10 5DD, UK
| | - William Davis
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Adam A Dowle
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Swen Langer
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Sally James
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | | | - Daphne Ezer
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Tony R Larson
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
5
|
Wu BL, Yao JN, Long XX, Tan ZQ, Liang X, Feng L, Wei K, Yang YR. Enantioselective Total Synthesis of (-)-Daphenylline. J Am Chem Soc 2024; 146:1262-1268. [PMID: 38180776 DOI: 10.1021/jacs.3c12741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A concise enantioselective total synthesis of (-)-daphenylline, a hexacyclic Daphniphyllum alkaloid with a unique benzene ring, was achieved in 14 steps. The synthesis commences with two chiral stereocenters, C2 and C18, readily installed via Carreira's Ir/amine dual-catalyzed allylation. The allylic bridgehead amine 6 was rapidly prepared through Wickens' photoredox-catalyzed hydrocarboxylation of olefin and CuBr2-catalyzed α-amination of ketone. The tetracycle 4 was formed via Pd-catalyzed reductive Heck reaction or, more concisely, by Krische's Rh-catalyzed reductive 1,6-enyne cyclization. In this synthesis, newly reported Wickens' photoredox-catalyzed hydrocarboxylation was used twice, and Friedel-Crafts acylation thrice.
Collapse
Affiliation(s)
- Bing-Lu Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Neng Yao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiang-Xi Long
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Qin Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
6
|
Xu Z, Li X, Rose JA, Herzon SB. Finding activity through rigidity: syntheses of natural products containing tricyclic bridgehead carbon centers. Nat Prod Rep 2023; 40:1393-1431. [PMID: 37140079 PMCID: PMC10472132 DOI: 10.1039/d3np00008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Covering: up to 2022Tricyclic bridgehead carbon centers (TBCCs) are a synthetically challenging substructure found in many complex natural products. Here we review the syntheses of ten representative families of TBCC-containing isolates, with the goal of outlining the strategies and tactics used to install these centers, including a discussion of the evolution of the successful synthetic design. We provide a summary of common strategies to inform future synthetic endeavors.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Xin Li
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - John A Rose
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
- Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| |
Collapse
|
7
|
Zou YP, Lai ZL, Zhang MW, Peng J, Ning S, Li CC. Total Synthesis of (±)- and (-)-Daphnillonin B. J Am Chem Soc 2023; 145:10998-11004. [PMID: 37167083 DOI: 10.1021/jacs.3c03755] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first total synthesis of (±)- and (-)-daphnillonin B, a daphnicyclidin-type alkaloid with a new [7-6-5-7-5-5] A/B/C/D/E/F hexacyclic core, has been achieved. The [6-5-7] B/C/D ring system was efficiently and diastereoselectively constructed via a mild type I intramolecular [5+2] cycloaddition, followed by a Grubbs II catalyst-catalyzed radical cyclization. The [5-5] fused E/F ring system was synthesized via a diastereoselective intramolecular Pauson-Khand reaction. Notably, the synthetically challenging [7-6-5-7-5-5] hexacyclic core was reassembled by a unique Wagner-Meerwein-type rearrangement from the [6-6-5-7-5-5] hexacyclic framework found in calyciphylline A-type Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Yun-Peng Zou
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zheng-Lin Lai
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng-Wei Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianzhao Peng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Ning
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
8
|
Hu J, Chen W, Jiang Y, Xu J. Synthesis of Tetracyclic Core Structure of Daphnezomines A and B. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Zhou Z, Xu D, Jiang W, Chen J, Zhen Y, Huo J, Yan J, Gao J, Xie W. Convergent Synthesis of Enantioenriched ortho-Fused Tricyclic Diketones via Catalytic Asymmetric Intramolecular Vinylogous Aldol Condensation. Org Lett 2022; 24:9017-9022. [DOI: 10.1021/acs.orglett.2c03645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Zhiqiang Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Dongyang Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wei Jiang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Junhan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanxia Zhen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jiyou Huo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jiahang Yan
- College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling 712100, China
| | - Jinming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
10
|
Chen H, Wu ZZ, Shao DY, Huang PQ. Multicatalysis protocol enables direct and versatile enantioselective reductive transformations of secondary amides. SCIENCE ADVANCES 2022; 8:eade3431. [PMID: 36417504 PMCID: PMC9683713 DOI: 10.1126/sciadv.ade3431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The catalytic asymmetric geminal bis-nucleophilic addition to nonreactive functional groups is a type of highly desirable yet challenging transformation in organic chemistry. Here, we report the first catalytic asymmetric reductive/deoxygenative alkynylation of secondary amides. The method is based on a multicatalysis strategy that merges iridium/copper relay catalysis with organocatalysis. A further combination with the palladium-catalyzed alkyne hydrogenation allows the one-pot enantioselective reductive alkylation of secondary amides. This versatile protocol allows the efficient synthesis of four types of α-branched chiral amines, which are prevalent structural motifs of active pharmaceutical ingredients. The protocol also features excellent enantioselectivity, chemoselectivity, and functional group tolerance to be compatible with more reactive functional groups such as ketone and aldehyde. The synthetic utility of the method was further demonstrated by the late-stage functionalization of two drug derivatives and the concise, first catalytic asymmetric approach to the κ-opioid antagonist aticaprant.
Collapse
|
11
|
Li LX, Min L, Yao TB, Ji SX, Qiao C, Tian PL, Sun J, Li CC. Total Synthesis of Yuzurine-type Alkaloid Daphgraciline. J Am Chem Soc 2022; 144:18823-18828. [PMID: 36198113 DOI: 10.1021/jacs.2c09548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first total synthesis of daphgraciline has been achieved, which also represents the first example of the synthesis of Daphniphyllum yuzurine-type alkaloids (∼50 members). The unique bridged azabicyclo[4.3.1] ring system in the yuzurine-type subfamily was efficiently and diastereoselectively assembled via a mild type II [5+2] cycloaddition for the first time. The compact tetracyclic [6-7-5-5] skeleton was installed efficiently via an intramolecular Diels-Alder reaction, followed by a benzilic acid-type rearrangement. The synthetically challenging spiro tetrahydropyran moiety in the final product was installed diastereoselectively via a TiIII-mediated reductive epoxide coupling reaction. Potential access to enantioenriched daphgraciline is presented.
Collapse
Affiliation(s)
- Li-Xuan Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Long Min
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tian-Bing Yao
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shu-Xiao Ji
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang Qiao
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pei-Lin Tian
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
12
|
Hu J, Guo LD, Chen W, Jiang Y, Pu F, Ning C, Xu J. Total Syntheses of Daphnezomine L-type and Secodaphniphylline-type Daphniphyllum Alkaloids via Late-Stage C-N Bond Activation. Org Lett 2022; 24:7416-7420. [PMID: 36191161 DOI: 10.1021/acs.orglett.2c02988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here, we report the first total syntheses of daphnezomine L-type alkaloids daphnezomine L methyl ester and calyciphylline K via late-stage C-N bond activation. The first synthesis of secodaphniphylline-type alkaloid caldaphnidine D was also achieved via a similar strategy. Other key transformations employed in our synthesis were a facile vicinal diol olefination and an efficient radical cyclization cascade. Biological studies indicated two synthetic compounds possess promising neuroprotective activity.
Collapse
Affiliation(s)
- Jingping Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China.,Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Fan Pu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China.,SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, Guangdong518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China.,Shenzhen Bay Laboratory, Shenzhen518132, China
| |
Collapse
|
13
|
Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. Total Syntheses of Calyciphylline A-Type Alkaloids (-)-10-Deoxydaphnipaxianine A, (+)-Daphlongamine E and (+)-Calyciphylline R via Late-Stage Divinyl Carbinol Rearrangements. J Am Chem Soc 2022; 144:16042-16051. [PMID: 36007885 DOI: 10.1021/jacs.2c05957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Among the famous Daphniphyllum alkaloids family, the calyciphylline A-type subfamily has triggered particular interest from the organic synthesis community in recent years. Here, we report divergent total syntheses of three calyciphylline A-type alkaloids, namely, (-)-10-deoxydaphnipaxianine A, (+)-daphlongamine E, and (+)-calyciphylline R. Our work highlights an efficient, divergent strategy via late-stage divinyl carbinol rearrangements, including an unprecedented oxidative Nazarov electrocyclization using an unfunctionalized tertiary divinyl carbinol and an unusual allylic alcohol rearrangement. A highly efficient "donor-acceptor" platinum catalyst was used for a critical nitrile hydration step. Moreover, the power of selective amide reductions has also been showcased by novel and classic tactics.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Manrong Song
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yujia Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongyuan Yan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyue Hu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengqian Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
A flexible enantioselective approach to 2,5-disubstituted cis-decahydroquinolines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Cao MY, Ma BJ, Gu QX, Fu B, Lu HH. Concise Enantioselective Total Synthesis of Daphenylline Enabled by an Intramolecular Oxidative Dearomatization. J Am Chem Soc 2022; 144:5750-5755. [PMID: 35289615 DOI: 10.1021/jacs.2c01674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Daphenylline is a structurally unique member of the triterpenoid Daphniphyllum natural alkaloids, which exhibit intriguing biological activities. Six total syntheses have been reported, five of which utilize aromatization approaches. Herein, we report a concise protecting-group-free total synthesis by means of a novel intramolecular oxidative dearomatization reaction, which concurrently generates the critical seven-membered ring and the quaternary-containing vicinal stereocenters. Other notable transformations include a tandem reductive amination/amidation double cyclization reaction, to assemble the cage-like architecture, and installation of the other two chiral stereocenters via a highly enantioselective rhodium-catalyzed challenging hydrogenation of the diene intermediate (90% e.e.) and an unprecedented remote acid-directed Mukaiyama-Michael reaction of the complex benzofused cyclohexanone (13:1 d.r.).
Collapse
Affiliation(s)
- Meng-Yue Cao
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bin-Jie Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qing-Xiu Gu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bei Fu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hai-Hua Lu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
16
|
Cai R, Zhou Q, Hou T, Li B, Liu Y, Li H, Gao Y, Zhu L, Luo J. Facile construction of the all-bridge-position-functionalized 2,4,6,8-tetraazaadamantane skeleton and conversion of its N-functionalities. Org Chem Front 2022. [DOI: 10.1039/d2qo00427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unusual protocol of a “one-pot” three-step strategy to build the 2,4,6,8-tetraazaadamantane skeleton was developed. 17 products were obtained in 19–46% yields, and the N-benzyl groups were transferred to nitroso, acetyl, benzoyl and nitro groups.
Collapse
Affiliation(s)
- Rongbin Cai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qi Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tianjiao Hou
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bing Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yunzhi Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuan Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
17
|
Zhang X, Xu J. Five-membered carbocycle construction in the synthesis of Daphniphyllum alkaloids: recent strategic and methodological advances. Org Chem Front 2022. [DOI: 10.1039/d2qo01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review article, we summarize novel or non-standard strategies and methods for the five-membered carbocycle construction in recent Daphniphyllum alkaloid synthesis.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
18
|
He Q, Ye JL, Xu FF, Geng H, Chen TT, Chen H, Huang PQ. Tf 2O/TTBP (2,4,6-Tri- tert-butylpyrimidine): An Alternative Amide Activation System for the Direct Transformations of Both Tertiary and Secondary Amides. J Org Chem 2021; 86:16300-16314. [PMID: 34499513 DOI: 10.1021/acs.joc.1c01572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ten types of Tf2O/TTBP-mediated amide transformation reactions were investigated. The results showed that compared with pyridine derivatives 2,6-di-tert-butyl-4-methylpyridine (DTBMP) and 2-fluoropyridine (2-F-Pyr.), TTBP can serve as an alternative amide activation system for the direct transformation of both secondary and tertiary amides. For most surveyed examples, higher or comparable yields were generally obtained. In addition, Tf2O/TTBP combination was used to promote the condensation reactions of 2-(tert-butyldimethylsilyloxy)furan (TBSOF) with both tertiary and secondary amides, the one-pot reductive Bischler-Napieralski-type reaction of tertiary lactams, and Movassaghi and Hill's modern version of the Bischler-Napieralski reaction. The value of the Tf2O/TTBP-based methodology was further demonstrated by the concise and high-yielding syntheses of several natural products.
Collapse
Affiliation(s)
- Qian He
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jian-Liang Ye
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Fang-Fang Xu
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hui Geng
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Ting-Ting Chen
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hang Chen
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
19
|
Cui Y, Ren J, Lv J, Wang Z. Studies toward the Total Syntheses of Calyciphylline D-Type Daphniphyllum Alkaloids. Org Lett 2021; 23:9189-9193. [PMID: 34791884 DOI: 10.1021/acs.orglett.1c03497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient construction of an aza-[5.7.6.5] tetracyclic core structure of calyciphylline D-type Daphniphyllum alkaloids has been achieved. The synthetic route features a diastereoselective cyclopropanation, efficient construction of the core bridged 8-aza-[3.2.1]octane skeleton through a [3 + 2] IMCC strategy, oxidative dearomatization of phenol, and gram-scale preparation in each step.
Collapse
Affiliation(s)
- Yi Cui
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jun Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jiayuan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhongwen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
20
|
Sánchez-Roselló M, Escolano M, Gaviña D, Del Pozo C. Two Decades of Progress in the Asymmetric Intramolecular aza-Michael Reaction. CHEM REC 2021; 22:e202100161. [PMID: 34415097 DOI: 10.1002/tcr.202100161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
The asymmetric intramolecular aza-Michael reaction (IMAMR) is a very convenient strategy for the generation of heterocycles bearing nitrogen-substituted stereocenters. Due to the ubiquitous presence of these skeletons in natural products, the IMAMR has found widespread applications in the total synthesis of alkaloids and biologically relevant compounds. The development of asymmetric versions of the IMAMR are quite recent, most of them reported in this century. The fundamental advances in this field involve the use of organocatalysts. Chiral imidazolidinones, diaryl prolinol derivatives, Cinchone-derived primary amines and quaternary ammonium salts, and BINOL-derived phosphoric acids account for the success of those methodologies. Moreover, the use of N-sulfinyl imines with a dual role, as nitrogen nucleophiles and as chiral auxiliaries, appeared as a versatile mode of performing the asymmetric IMAMR.
Collapse
Affiliation(s)
- María Sánchez-Roselló
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| | - Marcos Escolano
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| | - Daniel Gaviña
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| | - Carlos Del Pozo
- Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia), Spain
| |
Collapse
|
21
|
Yu HF, Ding CF, Zhang LC, Wei X, Cheng GG, Liu YP, Zhang RP, Luo XD. Alstoscholarisine K, an Antimicrobial Indole from Gall-Induced Leaves of Alstonia scholaris. Org Lett 2021; 23:5782-5786. [PMID: 34270896 DOI: 10.1021/acs.orglett.1c01942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alstoscholarisine K, an indole alkaloid with eight chiral carbons and featuring a novel 6/5/6/6/6/6/6/5 octacyclic architecture, was found to be specific to the gall-infected leaves of Alstonia scholaris. Its structure was elucidated by spectroscopy, computational analysis, and single-crystal X-ray diffraction. The unusual highly fused cage-like pyrrolo[1,2-a]pyrimidine structure with an additional -C4N unit is possibly derived from a combination of monoterpenoid indole and polyamine pathways. The fascinating compound exhibited significant antibacterial bioactivities by targeting cell membranes.
Collapse
Affiliation(s)
- Hao-Fei Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.,School of Pharmaceutical Sciences, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Cai-Feng Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.,School of Pharmaceutical Sciences, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Lan-Chun Zhang
- School of Pharmaceutical Sciences, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Gui-Guang Cheng
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.,Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Rong-Ping Zhang
- School of Pharmaceutical Sciences, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P. R. China.,School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan University of Traditional Chinese Medicine, Kunming 650500, P. R. China
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
22
|
Moyá DA, Lee MA, Chanthakhoun JC, LeSueur AK, Joaquin D, Barfuss JD, Castle SL. Towards a streamlined synthesis of peptides containing α,β-dehydroamino acids. Tetrahedron Lett 2021; 74:153175. [PMID: 34176981 PMCID: PMC8224935 DOI: 10.1016/j.tetlet.2021.153175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Investigation of a strategy to streamline the synthesis of peptides containing α,β-dehydroamino acids (ΔAAs) is reported. The key step involves generating the alkene moiety via elimination of a suitable precursor after it has been inserted into a peptide chain. This process obviates the need to prepare ΔAA-containing azlactone dipeptides to facilitate coupling of these residues. Z-dehydroaminobutyric acid (Z-ΔAbu) could be constructed most efficiently via EDC/CuCl-mediated dehydration of Thr. Formation of Z-ΔPhe by this or other dehydration methods was unsuccessful. Production of the bulky ΔVal residue could be accomplished by DAST-promoted dehydrations of β-OHVal or by DBU-triggered eliminations of sulfonium ions derived from penicillamine derivatives. However, competitive formation of an oxazoline byproduct remains problematic.
Collapse
Affiliation(s)
- Diego A Moyá
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Michael A Lee
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Joseph C Chanthakhoun
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Austin K LeSueur
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Daniel Joaquin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jaden D Barfuss
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Steven L Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
23
|
Chen Y, Guo LD, Xu J. Synthesis of the tricyclic skeleton of Daphniphyllum alkaloids daphnimacropodines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Beemelmanns C, Roman D, Sauer M. Applications of the Horner–Wadsworth–Emmons Olefination in Modern Natural Product Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1493-6331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractThe Horner–Wadsworth–Emmons (HWE) reaction is one of the most reliable olefination reaction and can be broadly applied in organic chemistry and natural product synthesis with excellent selectivity. Within the last few years HWE reaction conditions have been optimized and new reagents developed to overcome challenges in the total syntheses of natural products. This review highlights the application of HWE olefinations in total syntheses of structurally different natural products covering 2015 to 2020. Applied HWE reagents and reactions conditions are highlighted to support future synthetic approaches and serve as guideline to find the best HWE conditions for the most complicated natural products.1 Introduction and Historical Background2 Applications of HWE2.1 Cyclization by HWE Reactions2.2.1 Formation of Medium- to Larger-Sized Rings2.2.2 Formation of Small- to Medium-Sized Rings2.3 Synthesis of α,β-Unsaturated Carbonyl Groups2.4 Synthesis of Substituted C=C Bonds2.5 Late-Stage Modifications by HWE Reactions2.6 HWE Reactions on Solid Supports2.7 Synthesis of Poly-Conjugated C=C Bonds2.8 HWE-Mediated Coupling of Larger Building Blocks2.9 Miscellaneous3 Summary and Outlook
Collapse
|
25
|
Wang B, Xu B, Xun W, Guo Y, Zhang J, Qiu FG. A General Strategy for the Construction of Calyciphylline A‐Type Alkaloids: Divergent Total Syntheses of (−)‐Daphenylline and (−)‐Himalensine A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingyang Wang
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bo Xu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen Xun
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yiming Guo
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Zhang
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fayang G. Qiu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
26
|
Wang B, Xu B, Xun W, Guo Y, Zhang J, Qiu FG. A General Strategy for the Construction of Calyciphylline A-Type Alkaloids: Divergent Total Syntheses of (-)-Daphenylline and (-)-Himalensine A. Angew Chem Int Ed Engl 2021; 60:9439-9443. [PMID: 33569888 DOI: 10.1002/anie.202016212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Indexed: 12/16/2022]
Abstract
An efficient general strategy for the synthesis of the Daphniphyllum alkaloids via the rapid construction of a common core intermediate has been established, based on which a divergent total synthesis of (-)-daphenylline and (-)-himalensine A has been accomplished in 16 and 19 steps, respectively. The present work features an enantioselective Mg(ClO4 )2 -catalyzed intramolecular amidocyclization to construct the aza-bridged core structure; a Cu-catalyzed intramolecular cyclopropanation and subsequent phosphine-catalyzed Cope-type rearrangement to furnish the himalensine A scaffold; and a one-pot Diels-Alder/aromatization method to assemble the aromatic skeleton of daphenylline.
Collapse
Affiliation(s)
- Bingyang Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Xun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fayang G Qiu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Lin Y, He SF, Geng H, Xiao YC, Ji KL, Zheng JF, Huang PQ. Chemoselective Reactions of Isocyanates with Secondary Amides: One-Pot Construction of 2,3-Dialkyl-Substituted Quinazolinones. J Org Chem 2021; 86:5345-5353. [PMID: 33710879 DOI: 10.1021/acs.joc.0c02929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A facile method for the preparation of 2,3-dialkyl-substituted quinazolinones from readily available N-arylamides and commercial isocyanates was developed. This one-pot procedure involves the chemoselective activation of the secondary amide with Tf2O/2-Br-Pyr, the sequential addition of isocyanate, and cyclization. The mild reaction is general for a wide range of substrates and can be run on a gram scale.
Collapse
Affiliation(s)
- Yi Lin
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Shu-Fan He
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hui Geng
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yu-Chen Xiao
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Kan-Lei Ji
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jian-Feng Zheng
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China.,State Key Laboratory of Bio-organic and Natural Products Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
28
|
Abstract
The triterpenoids Daphniphyllum alkaloids share the unique fused hexacyclic ring framework are isolated from the genus Daphniphyllum. These natural products possess comprehensive biological activities and exhibit excellent potential medicinal appliment. This review covers the reported isolation studies and biological activities of Daphniphyllum alkaloids spanning the period from 1966 to the beginning of 2020, In the meantime, the total synthesis of Daphniphyllum alkaloids will be emphatically summarized for supplement over this review series.
Collapse
|
29
|
Shen SM, Li H, Wang JR, Zeng YB, Guo YW. Further new complex daphniphyllum alkaloids from the stems and leaves of Daphniphyllum calycinum: Structure and stereochemistry. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Guo LD, Chen Y, Xu J. Total Synthesis of Daphniphyllum Alkaloids: From Bicycles to Diversified Caged Structures. Acc Chem Res 2020; 53:2726-2737. [PMID: 33074659 DOI: 10.1021/acs.accounts.0c00532] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Native to the Asia-Pacific region and widely applied in traditional Chinese medicine, the genus Daphniphyllum has produced over 330 known Daphniphyllum alkaloids. Investigations into these alkaloids have shown an exceptional range of interesting bioactivities. Challenging and caged polycyclic architectures and the promising biological profiles make Daphniphyllum alkaloids intriguing synthetic targets. Based on their backbones, these alkaloids can be categorized into 13-35 structurally distinct subfamilies. In addition to our work, almost 30 impressive total syntheses of Daphniphyllum alkaloids from seven subfamilies, namely, daphniphylline-type, secodaphniphylline-type, daphnilactone A-type, bukittinggine-type, daphmanidin A-type, calyciphylline A-type, and calyciphylline B-type alkaloids, have been reported by 11 research groups. However, many Daphniphyllum alkaloid subfamilies remain inaccessible by chemical synthesis.In this Account, we summarize our recent endeavors in the total synthesis of Daphniphyllum alkaloids commencing from simple chiral bicyclic synthons. Daphniphyllum alkaloids with diversified skeletons from four different subfamilies, namely, calyciphylline A-type, daphnezomine A-type, bukittinggine-type, and yuzurimine-type alkaloids, have been achieved. Furthermore, the tricyclic core structure of daphniglaucin C-type alkaloids daphnimacropodines was also synthesized. First, we describe a 14-step synthesis of calyciphylline A-type alkaloid (-)-himalensine A, which features a mild Cu-mediated nitrile hydration, an intramolecular Heck reaction to assemble the pivotal 2-azabicyclo[3.3.1]nonane moiety, and a Meinwald rearrangement to introduce the critical oxidative state into the skeleton. We then introduce the synthesis of daphnezomine A-type alkaloid dapholdhamine B, which possesses a unique aza-adamantane core. This target molecule was fabricated using key reactions including Huang's amide-activation-annulation. An unexpected radical detosylation during the synthesis of dapholdhamine B further inspired an ambitious radical cyclization cascade strategy, which eventually led to an efficient total synthesis of bukittinggine-type alkaloid (-)-caldaphnidine O. This highly chemo-, regio-, and stereoselective radical reaction cascade also shed light on the synthetic strategy of other alkaloids with caged structures. We next describe the first total synthesis of yuzurimine-type alkaloid (+)-caldaphnidine J. The key steps in our approach include a Pd-catalyzed regioselective hydroformylation and a novel Swern oxidation/ketene dithioacetal Prins reaction cascade. The work has achieved the first synthesis of a member of the largest subfamily of Daphniphyllum alkaloids. Finally, we show our efforts toward the total synthesis of daphniglaucin C-type alkaloids. Overall, we hope that the interesting strategies and synthetic methods demonstrated in our efforts could inspire a wide variety of additional applications to natural product synthesis.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
31
|
Enantioselective total syntheses of (+)-stemofoline and three congeners based on a biogenetic hypothesis. Nat Commun 2020; 11:5314. [PMID: 33082332 PMCID: PMC7576163 DOI: 10.1038/s41467-020-19163-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
The powerful insecticidal and multi-drug-resistance-reversing activities displayed by the stemofoline group of alkaloids render them promising lead structures for further development as commercial agents in agriculture and medicine. However, concise, enantioselective total syntheses of stemofoline alkaloids remain a formidable challenge due to their structural complexity. We disclose herein the enantioselective total syntheses of four stemofoline alkaloids, including (+)-stemofoline, (+)-isostemofoline, (+)-stemoburkilline, and (+)-(11S,12R)-dihydrostemofoline, in just 19 steps. Our strategy relies on a biogenetic hypothesis, which postulates that stemoburkilline and dihydrostemofolines are biogenetic precursors of stemofoline and isostemofoline. Other highlights of our approach are the use of Horner–Wadsworth–Emmons reaction to connect the two segments of the molecule, an improved protocol allowing gram-scale access to the tetracyclic cage-type core, and a Cu-catalyzed direct and versatile nucleophilic alkylation reaction on an anti-Bredt iminium ion. The synthetic techniques that we developed could also be extended to the preparation of other Stemona alkaloids. Stemofoline alkaloids are promising lead structures for further development in the fields of agriculture and medicine. Here, the authors report the enantioselective total syntheses of four stemofoline alkaloids in 19 steps based on a biogenetic hypothesis.
Collapse
|
32
|
Abstract
Daphnezomines A and B are structurally unusual Daphniphyllum alkaloids that contain a unique aza-adamantane core skeleton. Herein, a modular approach to these alkaloids is presented that exploits a diverse array of reaction strategies. Commencing from a chiral pool terpene-(S)-carvone, the azabicyclo[3.3.1]nonane backbone, which occurs widely in Daphniphyllum alkaloids, was easily accessed through a Sharpless allylic amination and a palladium-catalyzed oxidative cyclization. A protecting group enabled a stereoselective B-alkyl Suzuki-Miyaura coupling sequence and an Fe-mediated hydrogen atom transfer (HAT)-based radical cyclization were then applied to construct C6 and C8 stereocenters. A final epimer locking strategy enabled the assembly of the highly congested aza-adamantane core, thereby achieving the first total synthesis of (-)-daphnezomines A and B in 14 steps.
Collapse
Affiliation(s)
- Guangpeng Xu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Jinbao Wu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Luyang Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Yunan Lu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Chao Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
33
|
Pharmacological profile of natural and synthetic compounds with rigid adamantane-based scaffolds as potential agents for the treatment of neurodegenerative diseases. Biochem Biophys Res Commun 2020; 529:1225-1241. [PMID: 32819589 DOI: 10.1016/j.bbrc.2020.06.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
This review is dedicated to the comparative analysis of structure-activity relationships for more than 75 natural and synthetic derivatives of adamantane. Some of these compounds, such as amantadine and memantine, are currently used to treat dementia, Alzheimer's and Parkinson's diseases and other neurodegenerative diseases. The data presented show that the pharmacological potential of 1-fluoro- and 1-phosphonic acid adamantane derivatives against Alzheimer's and Parkinson's diseases and other neurodegenerative diseases exceeds those of well-known amantadine and memantine. The information presented in this review highlights the promising directions of studies for biochemists, pharmacologists, medicinal chemists, physiologists, and neurologists, as well as to the pharmaceutical industry.
Collapse
|
34
|
Guo LD, Zhang Y, Hu J, Ning C, Fu H, Chen Y, Xu J. Asymmetric total synthesis of yuzurimine-type Daphniphyllum alkaloid (+)-caldaphnidine J. Nat Commun 2020; 11:3538. [PMID: 32669587 PMCID: PMC7363893 DOI: 10.1038/s41467-020-17350-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
Ever since Hirata’s report of yuzurimine in 1966, nearly fifty yuzurimine-type alkaloids have been isolated, which formed the largest subfamily of the Daphniphyllum alkaloids. Despite extensive synthetic studies towards this synthetically challenging and biologically intriguing family, no total synthesis of any yuzurimine-type alkaloids has been achieved to date. Here, the first enantioselective total synthesis of (+)-caldaphnidine J, a highly complex yuzurimine-type Daphniphyllum alkaloid, is described. Key transformations of this approach include a highly regioselective Pd-catalyzed hydroformylation, a samarium(II)-mediated pinacol coupling, and a one-pot Swern oxidation/ketene dithioacetal Prins reaction. Our approach paves the way for the synthesis of other yuzurimine-type alkaloids and related natural products. Despite being known for more than 50 years, yuzurimine-type alkaloids have not been accessed by total synthesis. Here, the authors report the first enantioselective total synthesis of (+)-Caldaphnidine J, a highly complex yuzurimine-type Daphniphyllum alkaloid.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yan Zhang
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jingping Hu
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Chengqing Ning
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Heyifei Fu
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yuye Chen
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jing Xu
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
35
|
Amides as surrogates of aldehydes for C-C bond formation: amide-based direct Knoevenagel-type condensation reaction and related reactions. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9586-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Hugelshofer CL, Palani V, Sarpong R. Calyciphylline B-type Alkaloids: Evolution of a Synthetic Strategy to (−)-Daphlongamine H. J Org Chem 2019; 84:14069-14091. [DOI: 10.1021/acs.joc.9b02223] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cedric L. Hugelshofer
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Vignesh Palani
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Guo LD, Hu J, Zhang Y, Tu W, Zhang Y, Pu F, Xu J. Enantioselective Total Synthesis of (-)-Caldaphnidine O via a Radical Cyclization Cascade. J Am Chem Soc 2019; 141:13043-13048. [PMID: 31381311 DOI: 10.1021/jacs.9b07558] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthetically challenging, diverse chemical skeletons and promising biological profiles of the Daphniphyllum alkaloids have generated intense interest from the synthetic chemistry community. Herein, the first and enantioselective total synthesis of (-)-caldaphnidine O, a complex bukittinggine-type Daphniphyllum alkaloid, is described. The key transformations in this concise approach included an intramolecular aza-Michael addition, a ring expansion reaction sequence, a Sm(II)/Fe(III)-mediated Kagan-Molander coupling, and the rapid formation of the entire hexacyclic ring skeleton of the target molecule via a radical cyclization cascade reaction, which was inspired by an unexpected radical detosylation observed in our recent dapholdhamine B synthesis.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Jingping Hu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Wentong Tu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Yue Zhang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Fan Pu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| |
Collapse
|
38
|
Zhong J, He H, Gao S. Exploration of 1,3-dipolar cycloaddition reactions to construct the core skeleton of Calyciphylline A-type alkaloids. Org Chem Front 2019. [DOI: 10.1039/c9qo01111k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrone induced 1,3-dipolar [3 + 2] cycloadditions were studied to construct the core structure of Calyciphylline A-type Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Jiaxin Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|