1
|
Yin Y, Wu J, Qin S, Tang A, Li Q, Liao D, Tang Y, Liu Y. Study on Thermally Induced Lignin Aggregation Kinetics for the Preparation of Uniformly Sized Lignin Nanoparticles in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21152-21160. [PMID: 39264391 DOI: 10.1021/acs.langmuir.4c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Lignin nanoparticles (LNPs) present a potential avenue for the high-value utilization of lignin. However, the simple and ecofriendly method of thermally induced self-assembly for the preparation of LNPs has been overlooked due to a lack of sufficient understanding of the lignin aggregation mechanism. Therefore, this study focuses on the kinetics of thermally induced lignin aggregation. It was found that lignin aggregates formed at lower temperatures exhibit poor stability and are more prone to continuous growth through coalescence. This apparent contradiction with the conventional understanding of thermoresponsive polymers could be attributed to changes in the viscoelasticity of the lignin aggregates during phase separation. Based on this finding, we worked out strategies to optimize the preparation of LNPs in water through thermally induced self-assembly. Pure LNPs with well-defined interfaces and a minimum polydispersity index (PDI) of 0.12 were obtained by increasing the temperature to 125-150 °C. Furthermore, combined with noncovalent modification, LNPs with a PDI of 0.08 would even be formed at 80 °C. Notably, the resulting pure LNPs show potential for application in photonic crystal products that require excellent monodispersity. This study provides a new approach for the environmentally friendly preparation of LNPs with a controllable morphology.
Collapse
Affiliation(s)
- Yaqing Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Centre Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jingzhi Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Centre Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Shanjia Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Aixing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingyun Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dankui Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yajie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youyan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Røjkjær Rasmussen D, Lock N, Quinson J. Lights on the Synthesis of Surfactant-Free Colloidal Gold Nanoparticles in Alkaline Mixtures of Alcohols and Water. CHEMSUSCHEM 2024:e202400763. [PMID: 39344878 DOI: 10.1002/cssc.202400763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Surfactant-free colloidal syntheses in aqueous media are attractive to develop nanomaterials relevant for various applications, e. g. catalysis or medicine. However, controlled green syntheses without surfactants of metal nanoparticles in aqueous media remain scarce. Here, room temperature syntheses of gold (Au) nanoparticles (NPs) that require only HAuCl4, alkaline water and an alcohol, i. e. relatively benign chemicals and mild reaction conditions, are developed. The findings of a comprehensive multi-parameters screening performed in small volumes (<3 mL) over 1000+ experiments pave the way to greener high throughput screenings of large parametric spaces and lead to scalable (100 mL) synthetic strategies. A rational selection of the alcohol is proposed. The influence of lights with defined wavelengths (222-690 nm) is investigated. It is found that lights with lower wavelengths favor the formation of smaller 5 nm NPs. Different kinetics and formation pathways are observed for different alcohols and for lights with different wavelengths. The sensitivity to various experimental parameters increases with the alcohol used in the order glycerol
Collapse
Affiliation(s)
- Ditte Røjkjær Rasmussen
- Biological and Chemical Engineering Department, Aarhus University, 40 Åbogade, Aarhus, 8200, Denmark
| | - Nina Lock
- Biological and Chemical Engineering Department, Aarhus University, 40 Åbogade, Aarhus, 8200, Denmark
| | - Jonathan Quinson
- Biological and Chemical Engineering Department, Aarhus University, 40 Åbogade, Aarhus, 8200, Denmark
| |
Collapse
|
3
|
Sabbioni E, Szabó R, Siri P, Cappelletti D, Lente G, Bibbona E. Final nanoparticle size distribution under unusual parameter regimes. J Chem Phys 2024; 161:014111. [PMID: 38953442 DOI: 10.1063/5.0210992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
We explore the large-scale behavior of a stochastic model for nanoparticle growth in an unusual parameter regime. This model encompasses two types of reactions: nucleation, where n monomers aggregate to form a nanoparticle, and growth, where a nanoparticle increases its size by consuming a monomer. Reverse reactions are disregarded. We delve into a previously unexplored parameter regime. Specifically, we consider a scenario where the growth rate of the first newly formed particle is of the same order of magnitude as the nucleation rate, in contrast to the classical scenario where, in the initial stage, nucleation dominates over growth. In this regime, we investigate the final size distribution as the initial number of monomers tends to infinity through extensive simulation studies utilizing state-of-the-art stochastic simulation methods with an efficient implementation and supported by high-performance computing infrastructure. We observe the emergence of a deterministic limit for the particle's final size density. To scale up the initial number of monomers to approximate the magnitudes encountered in real experiments, we introduce a novel approximation process aimed at faster simulation. Remarkably, this approximating process yields a final size distribution that becomes very close to that of the original process when the available monomers approach infinity. Simulations of the approximating process further support the conjecture of the emergence of a deterministic limit.
Collapse
Affiliation(s)
- Elena Sabbioni
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Rebeka Szabó
- Department of Physical Chemistry and Materials Science, University of Pécs, Pécs, Hungary
| | - Paola Siri
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | | | - Gábor Lente
- Department of Physical Chemistry and Materials Science, University of Pécs, Pécs, Hungary
| | - Enrico Bibbona
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| |
Collapse
|
4
|
Mallette AJ, Shilpa K, Rimer JD. The Current Understanding of Mechanistic Pathways in Zeolite Crystallization. Chem Rev 2024; 124:3416-3493. [PMID: 38484327 DOI: 10.1021/acs.chemrev.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Zeolite catalysts and adsorbents have been an integral part of many commercial processes and are projected to play a significant role in emerging technologies to address the changing energy and environmental landscapes. The ability to rationally design zeolites with tailored properties relies on a fundamental understanding of crystallization pathways to strategically manipulate processes of nucleation and growth. The complexity of zeolite growth media engenders a diversity of crystallization mechanisms that can manifest at different synthesis stages. In this review, we discuss the current understanding of classical and nonclassical pathways associated with the formation of (alumino)silicate zeolites. We begin with a brief overview of zeolite history and seminal advancements, followed by a comprehensive discussion of different classes of zeolite precursors with respect to their methods of assembly and physicochemical properties. The following two sections provide detailed discussions of nucleation and growth pathways wherein we emphasize general trends and highlight specific observations for select zeolite framework types. We then close with conclusions and future outlook to summarize key hypotheses, current knowledge gaps, and potential opportunities to guide zeolite synthesis toward a more exact science.
Collapse
Affiliation(s)
- Adam J Mallette
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Kumari Shilpa
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
5
|
Saenz N, Hamachi LS, Wolock A, Goodge BH, Kuntzmann A, Dubertret B, Billinge I, Kourkoutis LF, Muller DA, Crowther AC, Owen JS. Synthesis of graded CdS 1-xSe x nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity. Chem Sci 2023; 14:12345-12354. [PMID: 37969574 PMCID: PMC10631235 DOI: 10.1039/d3sc03384h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
A mixture of N,N,N'-trisubstituted thiourea and cyclic N,N,N',N'-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS1-xSex nanoplatelets in a single synthetic step. The microstructure of the nanoplatelets could be tuned from homogeneous alloys, to graded alloys to core/crown heterostructures depending on the relative conversion reactivity of the sulfur and selenium precursors. UV-visible absorption and photoluminescence spectroscopy and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) images demonstrate that the elemental distribution is governed by the relative precursor conversion kinetics. Slow conversion kinetics produced nanoplatelets with larger lateral dimensions, behavior that is characteristic of precursor conversion limited growth kinetics. Across a 10-fold range of reactivity, CdS nanoplatelets have 4× smaller lateral dimensions than CdSe nanoplatelets grown under identical conversion kinetics. The difference in size is consistent with a rate of CdSe growth that is 4× greater than the rate of CdS. The influence of the relative sulfide and selenide growth rates, the duration of the nucleation phase, and the solute composition on the nanoplatelet microstructure are discussed.
Collapse
Affiliation(s)
- Natalie Saenz
- Department of Chemistry, Columbia University New York NY USA
| | | | - Anna Wolock
- Department of Chemistry, Barnard College, Columbia University New York NY USA
| | - Berit H Goodge
- School of Applied and Engineering Physics, Cornell University Ithaca NY 14853 USA
| | - Alexis Kuntzmann
- Ecole Supérieure de Physique et de Chimie Industrielle Paris France
| | - Benoit Dubertret
- Ecole Supérieure de Physique et de Chimie Industrielle Paris France
| | - Isabel Billinge
- Department of Chemistry, Columbia University New York NY USA
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University Ithaca NY 14853 USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University Ithaca NY 14853 USA
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University Ithaca NY 14853 USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University Ithaca NY 14853 USA
| | - Andrew C Crowther
- Department of Chemistry, Barnard College, Columbia University New York NY USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University New York NY USA
| |
Collapse
|
6
|
Dahl JC, Niblett S, Cho Y, Wang X, Zhang Y, Chan EM, Alivisatos AP. Scientific Machine Learning of 2D Perovskite Nanosheet Formation. J Am Chem Soc 2023; 145:23076-23087. [PMID: 37847242 DOI: 10.1021/jacs.3c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
We apply a scientific machine learning (ML) framework to aid the prediction and understanding of nanomaterial formation processes via a joint spectral-kinetic model. We apply this framework to study the nucleation and growth of two-dimensional (2D) perovskite nanosheets. Colloidal nanomaterials have size-dependent optical properties and can be observed in situ, all of which make them a good model for understanding the complex processes of nucleation, growth, and phase transformation of 2D perovskites. Our results demonstrate that this model nanomaterial can form through two processes at the nanoscale: either via a layer-by-layer chemical exfoliation process from lead bromide nanocrystals or via direct nucleation from precursors. We utilize a phenomenological kinetic analysis to study the exfoliation process and scientific machine learning to study the direct nucleation and growth and discuss the circumstances under which it is more appropriate to use phenomenological or more complex machine learning models. Data for both analysis techniques are collected through in situ spectroscopy in a stopped flow chamber, incorporating over 500,000 spectra taken under more than 100 different conditions. More broadly, our research shows that the ability to utilize and integrate traditional kinetics and machine learning methods will greatly assist in the understanding of complex chemical systems.
Collapse
Affiliation(s)
- Jakob C Dahl
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Samuel Niblett
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Yeongsu Cho
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xingzhi Wang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ye Zhang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emory M Chan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Mazzotti S, Mule AS, Pun AB, Held JT, Norris DJ. Growth Synchronization and Size Control in Magic-Sized Semiconductor Nanocrystals. ACS NANO 2023. [PMID: 37449816 DOI: 10.1021/acsnano.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
"Magic-sized" nanocrystals (MSNCs) grow in discrete jumps between a series of specific sizes. Consequently, MSNCs have been explored as an alternative route to uniform semiconductor particles, potentially with atomic precision. However, because the growth mechanism has been poorly understood, the best strategies to control MSNC syntheses and obtain desired sizes are unknown. Experiments have found that common parameters, such as growth time and temperature, have limited utility. Here, we theoretically and experimentally investigate reactant supersaturation as a tool to control MSNC growth. We compare direct synthesis of CdSe MSNCs with ripening of isolated MSNCs or their mixtures. Surprisingly, we find that MSNCs readily synchronize to the same growth trajectory, even starting from distinct initial conditions, explaining the robustness of MSNC growth. Further, by understanding the synchronization mechanism, we demonstrate methods to control the final MSNC size. These results deepen our knowledge of MSNCs and indicate strategies to tailor their growth.
Collapse
Affiliation(s)
- Sergio Mazzotti
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Aniket S Mule
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Andrew B Pun
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jacob T Held
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - David J Norris
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
9
|
Mathiesen JK, Quinson J, Blaseio S, Kjær ETS, Dworzak A, Cooper SR, Pedersen JK, Wang B, Bizzotto F, Schröder J, Kinnibrugh TL, Simonsen SB, Theil Kuhn L, Kirkensgaard JJK, Rossmeisl J, Oezaslan M, Arenz M, Jensen KMØ. Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering: Influence of Precursors and Cations on the Reaction Pathway. J Am Chem Soc 2023; 145:1769-1782. [PMID: 36631996 DOI: 10.1021/jacs.2c10814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Iridium nanoparticles are important catalysts for several chemical and energy conversion reactions. Studies of iridium nanoparticles have also been a key for the development of kinetic models of nanomaterial formation. However, compared to other metals such as gold or platinum, knowledge on the nature of prenucleation species and structural insights into the resultant nanoparticles are missing, especially for nanoparticles obtained from IrxCly precursors investigated here. We use in situ X-ray total scattering (TS) experiments with pair distribution function (PDF) analysis to study a simple, surfactant-free synthesis of colloidal iridium nanoparticles. The reaction is performed in methanol at 50 °C with only a base and an iridium salt as precursor. From different precursor salts─IrCl3, IrCl4, H2IrCl6, or Na2IrCl6─colloidal nanoparticles as small as Ir∼55 are obtained as the final product. The nanoparticles do not show the bulk iridium face-centered cubic (fcc) structure but show decahedral and icosahedral structures. The formation route is highly dependent on the precursor salt used. Using IrCl3 or IrCl4, metallic iridium nanoparticles form rapidly from IrxClyn- complexes, whereas using H2IrCl6 or Na2IrCl6, the iridium nanoparticle formation follows a sudden growth after an induction period and the brief appearance of a crystalline phase. With H2IrCl6, the formation of different Irn (n = 55, 55, 85, and 116) nanoparticles depends on the nature of the cation in the base (LiOH, NaOH, KOH, or CsOH, respectively) and larger particles are obtained with larger cations. As the particles grow, the nanoparticle structure changes from partly icosahedral to decahedral. The results show that the synthesis of iridium nanoparticles from IrxCly is a valuable iridium nanoparticle model system, which can provide new compositional and structural insights into iridium nanoparticle formation and growth.
Collapse
Affiliation(s)
- Jette K Mathiesen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark.,Department of Physics, Technical University of Denmark, Fysikvej Bldg. 312, 2800Kgs. Lyngby, Denmark
| | - Jonathan Quinson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark.,Department of Biochemical and Chemical Engineering, Aarhus University, Åbogade 40, 8200Aarhus N, Denmark
| | - Sonja Blaseio
- Institute of Technical Chemistry, Technische Universität Braunschweig, Franz-Liszt Str. 35a, 38106Braunschweig, Germany
| | - Emil T S Kjær
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Alexandra Dworzak
- Institute of Technical Chemistry, Technische Universität Braunschweig, Franz-Liszt Str. 35a, 38106Braunschweig, Germany
| | - Susan R Cooper
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Jack K Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Baiyu Wang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Francesco Bizzotto
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012Bern, Switzerland
| | - Johanna Schröder
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012Bern, Switzerland
| | - Tiffany L Kinnibrugh
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois60439, United States
| | - Søren B Simonsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, 2800Kgs. Lyngby, Denmark
| | - Luise Theil Kuhn
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, 2800Kgs. Lyngby, Denmark
| | - Jacob J K Kirkensgaard
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958Frederiksberg C, Denmark.,Niels-Bohr-Institute, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Mehtap Oezaslan
- Institute of Technical Chemistry, Technische Universität Braunschweig, Franz-Liszt Str. 35a, 38106Braunschweig, Germany
| | - Matthias Arenz
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012Bern, Switzerland
| | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| |
Collapse
|
10
|
Highly accurate and numerical tractable coupling of nanoparticle nucleation, growth and fluid flow. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Wang S, Hu W, Ru Y, Shi Y, Guo X, Sun Y, Pang H. Synthesis Strategies and Electrochemical Research Progress of Nano/Microscale Metal–Organic Frameworks. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shixian Wang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Wenhui Hu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yue Ru
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| |
Collapse
|
12
|
Abécassis B, Greenberg MW, Bal V, McMurtry BM, Campos MP, Guillemeney L, Mahler B, Prevost S, Sharpnack L, Hendricks MP, DeRosha D, Bennett E, Saenz N, Peters B, Owen JS. Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals. Chem Sci 2022; 13:4977-4983. [PMID: 35655873 PMCID: PMC9067564 DOI: 10.1039/d1sc06134h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/25/2022] [Indexed: 01/03/2023] Open
Abstract
Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid "burst of nucleation" (La Mer, JACS, 1950, 72(11), 4847-4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and 13C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (k G) across all three precursors. However, the magnitude of the k G and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results.
Collapse
Affiliation(s)
- Benjamin Abécassis
- Laboratoire de Chimie, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1 F69342 Lyon France
| | | | - Vivekananda Bal
- Department of Chemical Engineering, University of Illinois Urbana-Champaign Illinois 10027 USA
| | - Brandon M McMurtry
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Michael P Campos
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Lilian Guillemeney
- Laboratoire de Chimie, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1 F69342 Lyon France
| | - Benoit Mahler
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière F-69622 Villeurbanne France
| | - Sylvain Prevost
- Institut Laue-Langevin 71 Avenue des Martyrs 38042 Grenoble France
| | - Lewis Sharpnack
- Department of Earth Science, University of California Santa Barbara CA 93106 USA
| | - Mark P Hendricks
- Department of Chemistry, Columbia University New York New York 10027 USA
- Department of Chemistry, Whitman College Walla Walla WA 99362 USA
| | - Daniel DeRosha
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Ellie Bennett
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Natalie Saenz
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Baron Peters
- Department of Chemical Engineering, University of Illinois Urbana-Champaign Illinois 10027 USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University New York New York 10027 USA
| |
Collapse
|
13
|
Quinson J. Iridium and IrO x nanoparticles: an overview and review of syntheses and applications. Adv Colloid Interface Sci 2022; 303:102643. [PMID: 35334351 DOI: 10.1016/j.cis.2022.102643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Precious metals are key in various fields of research and precious metal nanomaterials are directly relevant for optics, catalysis, pollution management, sensing, medicine, and many other applications. Iridium based nanomaterials are less studied than metals like gold, silver or platinum. A specific feature of iridium nanomaterials is the relatively small size nanoparticles and clusters easily obtained, e.g. by colloidal syntheses. Progress over the years overcomes the related challenging characterization and it is expected that the knowledge on iridium chemistry and nanomaterials will be growing. Although Ir nanoparticles have been preferred systems for the development of kinetic-based models of nanomaterial formation, there is surprisingly little knowledge on the actual formation mechanism(s) of iridium nanoparticles. Following the impulse from the high expectations on Ir nanoparticles as catalysts for the oxygen evolution reaction in electrolyzers, new areas of applications of iridium materials have been reported while more established applications are being revisited. This review covers different synthetic strategies of iridium nanoparticles and provides an in breadth overview of applications reported. Comprehensive Tables and more detailed topic-oriented overviews are proposed in Supplementary Material, covering synthesis protocols, the historical role or iridium nanoparticles in the development of nanoscience and applications in catalysis.
Collapse
|
14
|
Campos MP, De Roo J, Greenberg MW, McMurtry BM, Hendricks MP, Bennett E, Saenz N, Sfeir MY, Abécassis B, Ghose SK, Owen JS. Growth kinetics determine the polydispersity and size of PbS and PbSe nanocrystals. Chem Sci 2022; 13:4555-4565. [PMID: 35656143 PMCID: PMC9019910 DOI: 10.1039/d1sc06098h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
A library of thio- and selenourea derivatives is used to adjust the kinetics of PbE (E = S, Se) nanocrystal formation across a 1000-fold range (k r = 10-1 to 10-4 s-1), at several temperatures (80-120 °C), under a standard set of conditions (Pb : E = 1.2 : 1, [Pb(oleate)2] = 10.8 mM, [chalcogenourea] = 9.0 mM). An induction delay (t ind) is observed prior to the onset of nanocrystal absorption during which PbE solute is observed using in situ X-ray total scattering. Density functional theory models fit to the X-ray pair distribution function (PDF) support a Pb2(μ2-S)2(Pb(O2CR)2)2 structure. Absorption spectra of aliquots reveal a continuous increase in the number of nanocrystals over more than half of the total reaction time at low temperatures. A strong correlation between the width of the nucleation phase and reaction temperature is observed that does not correlate with the polydispersity. These findings are antithetical to the critical concentration dependence of nucleation that underpins the La Mer hypothesis and demonstrates that the duration of the nucleation period has a minor influence on the size distribution. The results can be explained by growth kinetics that are size dependent, more rapid at high temperature, and self limiting at low temperatures.
Collapse
Affiliation(s)
- Michael P Campos
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Jonathan De Roo
- Department of Chemistry, Columbia University New York New York 10027 USA
- Department of Chemistry, University of Basel Basel 4058 Switzerland
| | | | - Brandon M McMurtry
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Mark P Hendricks
- Department of Chemistry, Columbia University New York New York 10027 USA
- Department of Chemistry, Whitman College Walla Walla Washington 99362 USA
| | - Ellie Bennett
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Natalie Saenz
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Matthew Y Sfeir
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton New York 11973 USA
- Photonics Initiative, Advanced Science Research Center, City University of New York New York New York 10031 USA
- Department of Physics, Graduate Center, City University of New York New York New York 10016 USA
| | - Benjamin Abécassis
- ENSL, CNRS, Laboratoire de Chimie UMR 5182 46 allée d'Italie 69364 Lyon France
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides 91405 Orsay France
| | - Sanjit K Ghose
- National Synchrotron Light Source II, Brookhaven National Laboratory Brookhaven New York USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University New York New York 10027 USA
| |
Collapse
|
15
|
Mathiesen J, Cooper SR, Anker AS, Kinnibrugh TL, Jensen KMØ, Quinson J. Simple Setup Miniaturization with Multiple Benefits for Green Chemistry in Nanoparticle Synthesis. ACS OMEGA 2022; 7:4714-4721. [PMID: 35155963 PMCID: PMC8829938 DOI: 10.1021/acsomega.2c00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The development of nanomaterials often relies on wet-chemical synthesis performed in reflux setups using round-bottom flasks. Here, an alternative approach to synthesize nanomaterials is presented that uses glass tubes designed for NMR analysis as reactors. This approach uses less solvent and energy, generates less waste, provides safer conditions, is less prone to contamination, and is compatible with high-throughput screening. The benefits of this approach are illustrated by an in breadth study with the synthesis of gold, iridium, osmium, and copper sulfide nanoparticles.
Collapse
Affiliation(s)
- Jette
K. Mathiesen
- Chemistry
Department, University of Copenhagen, 5 Universitetsparken, 2100 Copenhagen, Denmark
| | - Susan R. Cooper
- Chemistry
Department, University of Copenhagen, 5 Universitetsparken, 2100 Copenhagen, Denmark
| | - Andy S. Anker
- Chemistry
Department, University of Copenhagen, 5 Universitetsparken, 2100 Copenhagen, Denmark
| | - Tiffany L. Kinnibrugh
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Kirsten M. Ø. Jensen
- Chemistry
Department, University of Copenhagen, 5 Universitetsparken, 2100 Copenhagen, Denmark
| | - Jonathan Quinson
- Chemistry
Department, University of Copenhagen, 5 Universitetsparken, 2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Long DK, Bangerth W, Handwerk DR, Whitehead CB, Shipman PD, Finke RG. Estimating reaction parameters in mechanism-enabled population balance models of nanoparticle size distributions: A Bayesian inverse problem approach. J Comput Chem 2022; 43:43-56. [PMID: 34672375 DOI: 10.1002/jcc.26770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
In order to quantitatively predict nano- as well as other particle-size distributions, one needs to have both a mathematical model and estimates of the parameters that appear in these models. Here, we show how one can use Bayesian inversion to obtain statistical estimates for the parameters that appear in recently derived mechanism-enabled population balance models (ME-PBM) of nanoparticle growth. The Bayesian approach addresses the question of "how well do we know our parameters, along with their uncertainties?." The results reveal that Bayesian inversion statistical analysis on an example, prototype Ir 0 n nanoparticle formation system allows one to estimate not just the most likely rate constants and other parameter values, but also their SDs, confidence intervals, and other statistical information. Moreover, knowing the reliability of the mechanistic model's parameters in turn helps inform one about the reliability of the proposed mechanism, as well as the reliability of its predictions. The paper can also be seen as a tutorial with the additional goal of achieving a "Gold Standard" Bayesian inversion ME-PBM benchmark that others can use as a control to check their own use of this methodology for other systems of interest throughout nature. Overall, the results provide strong support for the hypothesis that there is substantial value in using a Bayesian inversion methodology for parameter estimation in particle formation systems.
Collapse
Affiliation(s)
- Danny K Long
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, USA
| | - Wolfgang Bangerth
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, USA.,Department of Geosciences, Colorado State University, Fort Collins, Colorado, USA
| | - Derek R Handwerk
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher B Whitehead
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA.,Department of Chemistry, University of Basel, Basel, Switzerland
| | - Patrick D Shipman
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, USA
| | - Richard G Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
17
|
Geng P, Wang L, Du M, Bai Y, Li W, Liu Y, Chen S, Braunstein P, Xu Q, Pang H. MIL-96-Al for Li-S Batteries: Shape or Size? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107836. [PMID: 34719819 DOI: 10.1002/adma.202107836] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li-S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL-96-Al with various shapes, forming hexagonal platelet crystals (HPC), hexagonal bipyramidal crystals (HBC), and hexagonal prismatic bipyramidal crystals (HPBC) are successfully prepared via cosolvent methods. Density functional theory (DFT) calculations demonstrate that the HBC shape with highly exposed (101) planes can effectively adsorb lithium polysulfides (LPS) during the charge/discharge process. By changing the relative proportion of the cosolvents, HBC samples with different particle sizes are prepared. When these MIL-96-Al crystals are used as sulfur host materials, it is found that those with a smaller size of the HBC shape deliver higher initial capacity. These investigations establish that different crystal planes have different adsorption abilities for LPS, and that the MOF particle size should be considered for a suitable sulfur host. More broadly, this work provides a strategy for designing sulfur hosts in Li-S batteries.
Collapse
Affiliation(s)
- Pengbiao Geng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Lei Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Meng Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yang Bai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yanfang Liu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, Jiangsu, 223003, China
| | - Shuangqiang Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, CHIMIE UMR 7177, 4 rue Blaise Pascal, Laboratoire de Chimie de Coordination, Strasbourg Cedex, 67081, France
| | - Qiang Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Department of Materials Science and Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, and SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Xueyuan Ave, Nanshan, Shenzhen, Guangdong, 518055, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
18
|
Watzky MA, Finke RG. Pseudoelementary Steps: A Key Concept and Tool for Studying the Kinetics and Mechanisms of Complex Chemical Systems. J Phys Chem A 2021; 125:10687-10705. [PMID: 34928167 DOI: 10.1021/acs.jpca.1c07851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concept of a pseudoelementary step (PEStep) is reviewed, a key concept for approaching the analysis of kinetics data and associated, underlying mechanisms of complex chemical systems. Following a brief Introduction, a definition of a PEStep is given: a PEStep is an initial building block for more complex reactions, that is a starting point for the initial analysis of the observed kinetics and then constructing initial, deliberately minimalistic mechanistic models for complex reactions. PESteps are, therefore and typically, composites of underlying elementary step reactions and can be very useful if not required for the inverse problem of discovering mechanisms from experimental observables for complex reactions. It is the use of PESteps in the inverse problem of mechanism determination that is a primary focus of this review. After a section detailing the results of a literature search of "pseudoelementary step" and related terms such as "pseudoelementary process", pedagogically illustrative examples are given of the use of the PEStep concept in approaching and elucidating the mechanisms of complex reactions. This review shows how the underlying elementary steps of a catalytic cycle were successfully uncovered via a PEStep approach, addresses the classic case of the use of PESteps in determining the mechanisms of oscillating reactions, and examines a well-studied case of an Ir(0)n nanoparticle formation reaction. This latter example is illustrative in that the Ir(0)n nanoparticle formation reaction consisting of thousands of underlying elementary steps that, however, can be treated initially kinetically as just two PESteps, a reduction in complexity of 3 orders of magnitude. Known weaknesses and caveats of the PEStep approach are also summarized and discussed. A short summary of Horituti's "Stoichiometric Number" concept is provided, a concept that would appear to merit further investigation and use in the study of complex reactions. Finally, a section is provided that lists a few, selected areas where the PEStep concept and methodology are expected to prove especially important in the future, and a Conclusions section is provided that lists 11 bullet points. The latter serves as a summary of this first review of the PEStep concept and its importance in dealing with the kinetics and in elucidating the mechanisms of more complex, multistep reactions.
Collapse
Affiliation(s)
- Murielle A Watzky
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, Colorado 80639, United States
| | - Richard G Finke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
19
|
Parvizian M, De Roo J. Precursor chemistry of metal nitride nanocrystals. NANOSCALE 2021; 13:18865-18882. [PMID: 34779811 PMCID: PMC8615547 DOI: 10.1039/d1nr05092c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Metal nitride nanocrystals are a versatile class of nanomaterials. Depending on their chemical composition, the optical properties vary from those of traditional semiconductor nanocrystals (called quantum dots) to more metallic character (featuring a plasmon resonance). However, the synthesis of colloidal metal nitride nanocrystals is challenging since the underlying precursor chemistry is much less developed compared to the chemistry of metal, metal chalcogenide or metal phosphide nanocrystals. Here, we review chemical approaches that lead (or could lead) to the formation of colloidally stable metal nitride nanocrystals. By systematically comparing different synthetic approaches, we uncover trends and gain insight into the chemistry of these challenging materials. We also discuss and critically evaluate the plausibility of certain suggested mechanisms. This review is meant as a guide for the further development of colloidal nitride nanocrystals.
Collapse
Affiliation(s)
- Mahsa Parvizian
- Department of Chemistry, University of Basel, Basel, Switzerland.
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
20
|
Prins PT, Montanarella F, Dümbgen K, Justo Y, van der Bok JC, Hinterding SOM, Geuchies JJ, Maes J, De Nolf K, Deelen S, Meijer H, Zinn T, Petukhov AV, Rabouw FT, De Mello Donega C, Vanmaekelbergh D, Hens Z. Extended Nucleation and Superfocusing in Colloidal Semiconductor Nanocrystal Synthesis. NANO LETTERS 2021; 21:2487-2496. [PMID: 33661650 DOI: 10.1021/acs.nanolett.0c04813] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hot-injection synthesis is renowned for producing semiconductor nanocolloids with superb size dispersions. Burst nucleation and diffusion-controlled size focusing during growth have been invoked to rationalize this characteristic yet experimental evidence supporting the pertinence of these concepts is scant. By monitoring a CdSe synthesis in-situ with X-ray scattering, we find that nucleation is an extended event that coincides with growth during 15-20% of the reaction time. Moreover, we show that size focusing outpaces predictions of diffusion-limited growth. This observation indicates that nanocrystal growth is dictated by the surface reactivity, which drops sharply for larger nanocrystals. Kinetic reaction simulations confirm that this so-called superfocusing can lengthen the nucleation period and promote size focusing. The finding that narrow size dispersions can emerge from the counteracting effects of extended nucleation and reaction-limited size focusing ushers in an evidence-based perspective that turns hot injection into a rational scheme to produce monodisperse semiconductor nanocolloids.
Collapse
Affiliation(s)
| | | | - Kim Dümbgen
- Physics and Chemistry of Nanostructures, Ghent University, B-9000 Gent, Belgium
| | - Yolanda Justo
- Physics and Chemistry of Nanostructures, Ghent University, B-9000 Gent, Belgium
| | | | | | | | - Jorick Maes
- Physics and Chemistry of Nanostructures, Ghent University, B-9000 Gent, Belgium
| | - Kim De Nolf
- Physics and Chemistry of Nanostructures, Ghent University, B-9000 Gent, Belgium
| | | | | | | | - Andrei V Petukhov
- Laboratory of Physical Chemistry, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | | | | | | | - Zeger Hens
- Physics and Chemistry of Nanostructures, Ghent University, B-9000 Gent, Belgium
| |
Collapse
|
21
|
Wang X, Li J, Ha HD, Dahl JC, Ondry JC, Moreno-Hernandez I, Head-Gordon T, Alivisatos AP. AutoDetect-mNP: An Unsupervised Machine Learning Algorithm for Automated Analysis of Transmission Electron Microscope Images of Metal Nanoparticles. JACS AU 2021; 1:316-327. [PMID: 33778811 PMCID: PMC7988451 DOI: 10.1021/jacsau.0c00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 05/27/2023]
Abstract
The synthesis quality of artificial inorganic nanocrystals is most often assessed by transmission electron microscopy (TEM) for which high-throughput advances have dramatically increased both the quantity and information richness of metal nanoparticle (mNP) characterization. Existing automated data analysis algorithms of TEM mNP images generally adopt a supervised approach, requiring a significant effort in human preparation of labeled data that reduces objectivity, efficiency, and generalizability. We have developed an unsupervised algorithm AutoDetect-mNP for automated analysis of TEM images that objectively extracts morphological information on convex mNPs from TEM images based on their shape attributes, requiring little to no human input in the process. The performance of AutoDetect-mNP is tested on two data sets of bright field TEM images of Au nanoparticles with different shapes and further extended to palladium nanocubes and cadmium selenide quantum dots, demonstrating that the algorithm is quantitatively reliable and can thus serve as a generalizable measure of the morphology distributions of any mNP synthesis. The AutoDetect-mNP algorithm will aid in future developments of high-throughput characterization of mNPs and the future advent of time-resolved TEM studies that can investigate reaction mechanisms of mNP synthesis and reactivity.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jie Li
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Theory Center, University of California, Berkeley, California 94720, United States
| | - Hyun Dong Ha
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jakob C. Dahl
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Justin C. Ondry
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Ivan Moreno-Hernandez
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Theory Center, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - A. Paul Alivisatos
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Gaidhani NG, Patra S, Chandwadkar HS, Sen D, Majumder C, Ramagiri SV, Bellare JR. Probing Kinetics and Mechanism of Formation of Mixed Metallic Nanoparticles in a Polymer Membrane by Galvanic Replacement between Two Immiscible Metals: Case Study of Nickel/Silver Nanoparticle Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1637-1650. [PMID: 33496595 DOI: 10.1021/acs.langmuir.0c02311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Galvanic replacement between metals has received notable research interest for the synthesis of heterometallic nanostructures. The growth pattern of the nanostructures depends on several factors such as extent of lattice mismatch, adhesive interaction between the metals, cohesive forces of the individual metals, etc. Due to the difficulties in probing ultrafast kinetics of the galvanic replacement reaction and particle growth in solution, real-time mechanistic investigations are often limited. As a result, the growth mechanism of one metal on the surface of another metal at the nanoscale is poorly understood so far. In the present work, we could successfully probe the galvanic replacement of silver ions with nickel nanoparticles, stabilized in a polymer membrane, using two complementary methods, namely, small-angle X-ray scattering (SAXS) and radiolabeling, and the results are supported by density functional theory (DFT) computations. The silver-nickel system has been chosen for the present investigation because of the high degree of bulk immiscibility caused by the large lattice mismatch (15.9%) and the weak adhesive interaction, which makes it a perfect model system for immiscible metal pairs. Membrane, as a host medium, plays a crucial role in retarding the kinetics of atomic and particle rearrangements (nucleation and growth) due to slower mobility of the atoms (monomers) and particles within the polymer network. This allowed us to examine the real-time concentration of silver monomers during galvanic replacement of silver ions with nickel nanoparticles and evolution of Ni/Ag nanoparticles. From combined experiment and DFT computations, it has been demonstrated, for the first time to the best of our knowledge, that the majority of silver atoms, which are produced on the nickel nanoparticle surface by galvanic reactions, do not form traditional core-shell nanostructures with nickel and undergo a self-governing sequential nucleation and growth of silver nanoparticles via formation of intermediate prenucleation silver clusters, leading to the formation of mixed metallic nanoparticles in the membrane. The surface of NiNPs has a heterogeneous effect on the silver nucleation pathway, which is evident from the reduced critical free energy barrier of nucleation (ΔGcrit). The present work establishes an original mechanistic pathway based on a sequential nucleation model for formation of mixed metallic nanoparticles by the galvanic replacement route, which opens up future possibilities for size-controlled synthesis in mixed systems.
Collapse
Affiliation(s)
- Nikita G Gaidhani
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Department of Chemistry, Sandip University, Nashik 422213, Maharashtra, India
| | - Sabyasachi Patra
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hemant S Chandwadkar
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Department of Chemistry, Sandip University, Nashik 422213, Maharashtra, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Chiranjib Majumder
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Shobha V Ramagiri
- Department of Chemical Engineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Jayesh R Bellare
- Department of Chemical Engineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
23
|
Nguyen QN, Chen R, Lyu Z, Xia Y. Using Reduction Kinetics to Control and Predict the Outcome of a Colloidal Synthesis of Noble-Metal Nanocrystals. Inorg Chem 2021; 60:4182-4197. [PMID: 33522790 DOI: 10.1021/acs.inorgchem.0c03576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improving the performance of noble-metal nanocrystals in various applications critically depends on our ability to manipulate their synthesis in a rational, robust, and controllable fashion. Different from a conventional trial-and-error approach, the reduction kinetics of a colloidal synthesis has recently been demonstrated as a reliable knob for controlling the synthesis of noble-metal nanocrystals in a deterministic and predictable manner. Here we present a brief Viewpoint on the recent progress in leveraging reduction kinetics for controlling and predicting the outcome of a synthesis of noble-metal nanocrystals. With a focus on Pd nanocrystals, we first offer a discussion on the correlation between the initial reduction rate and the internal structure of the resultant seeds. The kinetic approaches for controlling both nucleation and growth in a one-pot setting are then introduced with an emphasis on manipulation of the reduction pathways taken by the precursor. We then illustrate how to extend the strategy into a bimetallic system for the preparation of nanocrystals with different shapes and elemental distributions. Finally, the influence of speciation of the precursor on reduction kinetics is highlighted, followed by our perspectives on the challenges and future endeavors in achieving a controllable and predictable synthesis of noble-metal nanocrystals.
Collapse
Affiliation(s)
- Quynh N Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Quinson J, Jensen KM. From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Adv Colloid Interface Sci 2020; 286:102300. [PMID: 33166723 DOI: 10.1016/j.cis.2020.102300] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Platinum (Pt) is one of the most studied materials in catalysis today and considered for a wide range of applications: chemical synthesis, energy conversion, air treatment, water purification, sensing, medicine etc. As a limited and non-renewable resource, optimized used of Pt is key. Nanomaterial design offers multiple opportunities to make the most of Pt resources down to the atomic scale. In particular, colloidal syntheses of Pt nanoparticles are well documented and simple to implement, which accounts for the large interest in research and development. For further breakthroughs in the design of Pt nanomaterials, a deeper understanding of the intricate synthesis-structures-properties relations of Pt nanoparticles must be obtained. Understanding how Pt nanoparticles form from molecular precursors is both a challenging and rewarding area of investigation. It is directly relevant to develop improved Pt nanomaterials but is also a source of inspiration to design other precious metal nanostructures. Here, we review the current understanding of Pt nanoparticle formation. This review is aimed at readers with interest in Pt nanoparticles in general and their colloidal syntheses in particular. Readers with a strongest interest on the study of nanomaterial formation will find here the case study of Pt. The preferred model systems and characterization techniques used to perform the study of Pt nanoparticle syntheses are discussed. In light of recent achievements, further direction and areas of research are proposed.
Collapse
|
25
|
Handwerk DR, Shipman PD, Özkar S, Finke RG. Dust Effects on Ir(0) n Nanoparticle Formation Nucleation and Growth Kinetics and Particle Size-Distributions: Analysis by and Insights from Mechanism-Enabled Population Balance Modeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1496-1506. [PMID: 32011887 DOI: 10.1021/acs.langmuir.9b03193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The effects of microfiltration removal of filterable dust on nanoparticle formation kinetics and particle-size distribution, in a polyoxometalate polyanion (P2W15Nb3O629-)-stabilized Ir(0)n nanoparticle formation system, are analyzed by the newly developed method of Mechanism-Enabled Population Balance Modeling (ME-PBM). The [(Bu4N)5Na3(1,5-COD)Ir·P2W15Nb3O62] precatalyst system produces on average Ir(0)∼200 nanoparticles of 1.74 ± 0.33 nm and hence a particle-size distribution (PSD) of ±19% dispersion when the precatalyst is reduced under H2 in unfiltered propylene carbonate solvent. But if the precatalyst is reduced in microfiltered solvent and microfiltered reagent solutions (where the filtered solvent is then also used to rinse dust from the glassware), then larger Ir(0)∼300 1.96 ± 0.16 nm nanoparticles are produced with a remarkable, 2.4-fold lowered ±8% dispersion. The results and effects of the microfiltration reduction of dust are analyzed by the newly developed method of ME-PBM. More specifically, the studies reported herein address eight outstanding questions that are listed in the Introduction. Those questions include: how easy or difficult it is to fit PSD data? What is the ability of the recently discovered alternative termolecular nucleation and two size-dependent growth steps mechanism to account for the effects of dust on the PSD? What types and amount of PSD kinetics data are needed to deconvolute the PSD into the parameters of the ME-PBM? What is the reliability of the resulting rate constants? Additional questions addressed include: if the ME-PBM results offer insights into the remarkable 2.4-fold narrowing of the PSD post simple microfiltration lowering of the dust, and if the results are likely to be more general? The Summary and Conclusions section lists nine specific insights that include comments on needed future studies.
Collapse
Affiliation(s)
- Derek R Handwerk
- Department of Mathematics , Colorado State University , Fort Collins , Colorado 80523-1874 , United States
| | | | - Saim Özkar
- Department of Chemistry , Middle East Technical University , 06800 Ankara , Turkey
| | - Richard G Finke
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|