1
|
Williams CA, Stone DJ, Joshi SY, Yilmaz G, Farzeen P, Jeon S, Harris-Ryden Z, Becer CR, Deshmukh SA, Callmann CE. Systematic Evaluation of Macromolecular Carbohydrate-Lectin Recognition Using Precision Glycopolymers. Biomacromolecules 2024; 25:7985-7994. [PMID: 39503854 DOI: 10.1021/acs.biomac.4c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The precise modulation of protein-carbohydrate interactions is critical in glycobiology, where multivalent binding governs key cellular processes. As such, synthetic glycopolymers are useful for probing these interactions. Herein, we developed precision glycopolymers (PGPs) with unambiguous local chemical composition and well-defined global structure and systematically evaluated the effect of polymer length, hydrophobicity, and backbone hybridization as well as glycan density and identity on the binding to both mammalian and plant lectins. Our studies identified glycan density as a critical factor, with PGPs below 50% grafting density showing significantly weaker lectin interactions. Coarse-grained molecular dynamics simulations suggest that the observed phenomena may be due to a decrease in carbohydrate-carbohydrate interactions in fully grafted PGPs, leading to improved solvent accessibility. In functional assays, these PGPs reduced the cell viability and migration in 4T1 breast cancer cells. Our findings establish a structure-activity relationship in glycopolymers, providing new strategies for designing synthetic glycomacromolecules for a myriad of applications.
Collapse
Affiliation(s)
- Cole A Williams
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel J Stone
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Soumil Y Joshi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Parisa Farzeen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sungjin Jeon
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zamira Harris-Ryden
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Cassandra E Callmann
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Kong H, Valverde-González A, Maruchenko R, Bouteiller L, Raynal M. Enhanced Stability and Properties of Benzene-1,3,5-Tricarboxamide Supramolecular Copolymers through Engineered Coupled Equilibria. Angew Chem Int Ed Engl 2024:e202421991. [PMID: 39569591 DOI: 10.1002/anie.202421991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/22/2024]
Abstract
Improving the stability of multi-component and functional assemblies such as supramolecular copolymers without impeding their dynamicity is key for their implementation as innovative materials. Up to now, this has been achieved by a trial-and-error approach, requiring the time-consuming characterization of a series of supramolecular coassemblies. We report herein that this is possible to significantly enhance the stability of supramolecular copolymers by a minimal change in the chemical nature of one of the interacting monomers. This is achieved by replacing an ester function by an ether function in the structure of a chiral benzene-1,3,5-tricarboxamide (BTA) monomer, used as "sergeant", coassembled with achiral monomers, the "soldiers". Pseudo-phase diagrams, constructed by probing the nature of the coassemblies with multifarious analytical techniques, confirm that the greater stability of the resulting copolymers is mainly due to the minimization of competing species. This leads to better rheological and catalytic properties of the corresponding supramolecular copolymers. Favouring coassembly over undesired assembly pathways must be considered as a blueprint for the development of better-performing supramolecular multi-component systems.
Collapse
Affiliation(s)
- Huanjun Kong
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Antonio Valverde-González
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Régina Maruchenko
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
3
|
Duijs H, Kumar M, Dhiman S, Su L. Harnessing Competitive Interactions to Regulate Supramolecular "Micelle-Droplet-Fiber" Transition and Reversibility in Water. J Am Chem Soc 2024; 146:29759-29766. [PMID: 39405510 PMCID: PMC11528417 DOI: 10.1021/jacs.4c11285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
The supramolecular assembly of proteins into irreversible fibrils is often associated with diseases in which aberrant phase transitions occur. Due to the complexity of biological systems and their surrounding environments, the mechanism underlying phase separation-mediated supramolecular assembly is poorly understood, making the reversal of so-called irreversible fibrillization a significant challenge. Therefore, it is crucial to develop simple model systems that provide insights into the mechanistic process of monomers to phase-separated droplets and ordered supramolecular assemblies. Such models can help in investigating strategies to either reverse or modulate these states. Herein, we present a simple synthetic model system composed of three components, including a benzene-1,3,5-tricarboxamide-based supramolecular monomer, a surfactant, and water, to mimic the condensate pathway observed in biological systems. This highly dynamic system can undergo "micelle-droplet-fiber" transition over time and space with a concentration gradient field, regulated by competitive interactions. Importantly, manipulating these competitive interactions through guest molecules, temperature changes, and cosolvents can reverse ordered fibers into a disordered liquid or micellar state. Our model system provides new insights into the critical balance between various interactions among the three components that determine the pathway and reversibility of the process. Extending this "competitive interaction" approach from a simple model system to complex macromolecules, e.g., proteins, could open new avenues for biomedical applications, such as condensate-modifying therapeutics.
Collapse
Affiliation(s)
- Heleen Duijs
- Division
of Biotherapeutics, Leiden Academic Centre
for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mohit Kumar
- Department
of Chemistry, Johannes Gutenberg University
in Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Shikha Dhiman
- Department
of Chemistry, Johannes Gutenberg University
in Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Lu Su
- Division
of Biotherapeutics, Leiden Academic Centre
for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
4
|
Rijns L, Rutten MGTA, Vrehen AF, Aldana AA, Baker MB, Dankers PYW. Mimicking the extracellular world: from natural to fully synthetic matrices utilizing supramolecular biomaterials. NANOSCALE 2024; 16:16290-16312. [PMID: 39161293 DOI: 10.1039/d4nr02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Annika F Vrehen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Rijns L, Duijs H, Lafleur RP, Cardinaels R, Palmans ARA, Dankers PYW, Su L. Molecularly Engineered Supramolecular Thermoresponsive Hydrogels with Tunable Mechanical and Dynamic Properties. Biomacromolecules 2024; 25:4686-4696. [PMID: 39059106 PMCID: PMC11323010 DOI: 10.1021/acs.biomac.3c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Synthetic supramolecular polymers and hydrogels in water are emerging as promising biomaterials due to their modularity and intrinsic dynamics. Here, we introduce temperature sensitivity into the nonfunctionalized benzene-1,3,5-tricarboxamide (BTA-EG4) supramolecular system by incorporating a poly(N-isopropylacrylamide)-functionalized (BTA-PNIPAM) moiety, enabling 3D cell encapsulation applications. The viscous and structural properties in the solution state as well as the mechanical and dynamic features in the gel state of BTA-PNIPAM/BTA-EG4 mixtures were investigated and modulated. In the dilute state (c ∼μM), BTA-PNIPAM acted as a chain capper below the cloud point temperature (Tcp = 24 °C) but served as a cross-linker above Tcp. At higher concentrations (c ∼mM), weak or stiff hydrogels were obtained, depending on the BTA-PNIPAM/BTA-EG4 ratio. The mixture with the highest BTA-PNIPAM ratio was ∼100 times stiffer and ∼10 times less dynamic than BTA-EG4 hydrogel. Facile cell encapsulation in 3D was realized by leveraging the temperature-sensitive sol-gel transition, opening opportunities for utilizing this hydrogel as an extracellular matrix mimic.
Collapse
Affiliation(s)
- Laura Rijns
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Heleen Duijs
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Wassenaarseweg
76, Leiden 2333 AL, The Netherlands
| | - René P.
M. Lafleur
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems (ICMS), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ruth Cardinaels
- Processing
and Performance of Materials, Institute for Complex Molecular Systems
(ICMS), Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Soft
Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium
| | - Anja R. A. Palmans
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems (ICMS), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Patricia Y. W. Dankers
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Lu Su
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Wassenaarseweg
76, Leiden 2333 AL, The Netherlands
| |
Collapse
|
6
|
Wang G, Chen A, Aryal P, Bietsch J. Synthetic approaches of carbohydrate based self-assembling systems. Org Biomol Chem 2024; 22:5470-5510. [PMID: 38904076 DOI: 10.1039/d4ob00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials via a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, glycopeptides, and some glycoconjugate-based systems are discussed. Typically, in each category of systems, the system that can function as low molecular weight gelators (LMWGs) will be discussed first, followed by self-assembling systems that produce micelles and aggregates. The last section of the review discusses stimulus-responsive self-assembling systems, especially those forming gels, including dynamic covalent assemblies, chemical-triggered systems, and photoresponsive systems. The review will be organized based on the sugar structures, and in each category, the synthesis of representative molecular systems will be discussed next, followed by the properties of the resulting molecular assemblies.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Pramod Aryal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
7
|
Rijns L, Baker MB, Dankers PYW. Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel-Cell Interactions. J Am Chem Soc 2024; 146:17539-17558. [PMID: 38888174 PMCID: PMC11229007 DOI: 10.1021/jacs.4c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Hydrogels have emerged as a promising class of extracellular matrix (ECM)-mimicking materials in regenerative medicine. Here, we briefly describe current state-of-the-art of ECM-mimicking hydrogels, ranging from natural to hybrid to completely synthetic versions, giving the prelude to the importance of supramolecular interactions to make true ECM mimics. The potential of supramolecular interactions to create ECM mimics for cell culture is illustrated through a focus on two different supramolecular hydrogel systems, both developed in our laboratories. We use some recent, significant findings to present important design principles underlying the cell-material interaction. To achieve cell spreading, we propose that slow molecular dynamics (monomer exchange within fibers) is crucial to ensure the robust incorporation of cell adhesion ligands within supramolecular fibers. Slow bulk dynamics (stress-relaxation─fiber rearrangements, τ1/2 ≈ 1000 s) is required to achieve cell spreading in soft gels (<1 kPa), while gel stiffness overrules dynamics in stiffer gels. Importantly, this resonates with the findings of others which specialize in different material types: cell spreading is impaired in case substrate relaxation occurs faster than clutch binding and focal adhesion lifetime. We conclude with discussing considerations and limitations of the supramolecular approach as well as provide a forward thinking perspective to further understand supramolecular hydrogel-cell interactions. Future work may utilize the presented guidelines underlying cell-material interactions to not only arrive at the next generation of ECM-mimicking hydrogels but also advance other fields, such as bioelectronics, opening up new opportunities for innovative applications.
Collapse
Affiliation(s)
- Laura Rijns
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Matthew B. Baker
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology
Inspired Regenerative Medicine, Maastricht
University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
8
|
Tang Z, Zhang J, Li W, Wen K, Gu Z, Zhou D, Su H. Supramolecular assembly of isomeric SN-38 prodrugs regulated by conjugation sites. J Mater Chem B 2024; 12:6146-6154. [PMID: 38842181 DOI: 10.1039/d4tb00717d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Supramolecular polymers (SPs) are an emerging class of drug transporters employed to improve drug therapy. Through the rational design of self-assembling monomers, one can optimize the properties of the resulting supramolecular nanostructures, such as size, shape, surface chemistry, release, and, therefore, biological fates. This study highlights the design of isomeric SN38 prodrugs through the conjugation of hydrophilic oligo(ethylene glycol) (OEG) with hydroxyls at positions 10 and 20 on hydrophobic SN-38. Self-assembling prodrug (SAPD) isomers 10-OEG-SN38 and 20-OEG-SN38 can self-assemble into giant nanotubes and filamentous assemblies, respectively, via aromatic associations that dominate self-assembly. Our study reveales the influence of modification sites on the assembly behavior and ability of the SN38 SAPDs, as well as drug release and subsequent in vitro and in vivo antitumor effects. The SAPD modified at position 20 exhibits stronger π-π interactions among SN38 units, leading to more compact packing and enhanced assembly capability, whereas OEG at position 10 poses steric hindrance for aromatic associations. Importantly, owing to its higher chemical and supramolecular stability, 20-OEG-SN38 outperforms 10-OEG-SN38 and irinotecan, a clinically used prodrug of SN38, in a CT26 tumor model, demonstrating enhanced tumor growth inhibition and prolonged animal survival. This study presents a new strategy of using interactions among drug molecules as dominating features to create supramolecular assemblies. It also brings some insights into creating effective supramolecular drug assemblies via the engineering of self-assembling building blocks, which could contribute to the optimization of design principles for supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Zhenhai Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaiying Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Zagorodko O, Melnyk T, Nebot VJ, Dankers PYW, Vicent MJ. An Offset Patterned Cross-β Structure in Assemblies of C 3 -Symmetric Peptide Amphiphiles. Chemistry 2024; 30:e202303194. [PMID: 37967312 DOI: 10.1002/chem.202303194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Developing peptide-based materials with controlled morphology is a critical theme of soft matter research. Herein, we report the formation of a novel, patterned cross-β structure formed by self-assembled C3 -symmetric peptide amphiphiles based on diphenylalanine and benzene-1,3,5-tricarboxamide (BTA). The cross-β motif is an abundant structural element in amyloid fibrils and aggregates of fibril-forming peptides, including diphenylalanine. The incorporation of topological constraints on one edge of the diphenylalanine fragment limits the number of β-strands in β-sheets and leads to the creation of an unconventional offset-patterned cross-β structure consisting of short 3×2 parallel β-sheets stabilized by phenylalanine zippers. In the reported assembly, two patterned cross-β structures bind parallel arrays of BTA stacks in a superstructure within a single-molecule-thick nanoribbon. In addition to a threefold network of hydrogen bonds in the BTA stack, each molecule becomes simultaneously bound by hydrogen bonds from three β-sheets and four phenylalanine zippers. The diffuse layer of alkyl chains with terminal polar groups prevents the nanoribbons from merging and stabilizes cross-β-structure in water. Our results provide a simple approach to the incorporation of novel patterned cross-β motifs into supramolecular superstructures and shed light on the general mechanism of β-sheet formation in C3 -symmetric peptide amphiphiles.
Collapse
Affiliation(s)
- Oleksandr Zagorodko
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, C/d'Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Tetiana Melnyk
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, C/d'Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Centro de Investigación, Biomédica en Red en Oncología (CIBERONC), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Vicent J Nebot
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, C/d'Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Curapath, Av. Benjamín Franklin, 19, 46980, Paterna, Valencia, Spain
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - María J Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, C/d'Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Centro de Investigación, Biomédica en Red en Oncología (CIBERONC), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| |
Collapse
|
10
|
Chen Y, Kuvayskaya A, Pink M, Sellinger A, Flood AH. A library of vinyl phosphonate anions dimerize with cyanostars, form supramolecular polymers and undergo statistical sorting. Chem Sci 2023; 15:389-398. [PMID: 38131081 PMCID: PMC10732014 DOI: 10.1039/d3sc03685e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Supramolecular dimers are elementary units allowing the build-up of multi-molecule architectures. New among these are cyanostar-stabilized dimers of phosphate and phosphonate anions. While the anion dimerization at the heart of these assemblies is reliable, the covalent synthesis leading to this class of designer anions serves as a bottleneck in the pathway to supramolecular assemblies. Herein, we demonstrate the reliable synthesis of 14 diverse anionic monomers by Heck coupling between vinyl phosphonic acid and aryl bromide compounds. When this synthesis is combined with reliable anion dimerization, we show formation of supramolecular dimers and polymers by co-assembly with cyanostar macrocycles. The removal of the covalent bottleneck opened up a seamless synthetic route to iterate through three monomers affording the solubility needed to characterize the mechanism of supramolecular polymerization. We also test the idea that the small size of these vinyl phosphonates provide identical dimer stabilities across the library by showing how mixtures of anions undergo statistical (social) self-sorting. We exploit this property by preparing soluble copolymers from the mixing of different monomers. This multi-anion assembly shows the utility of a library for programming properties.
Collapse
Affiliation(s)
- Yusheng Chen
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Anastasia Kuvayskaya
- Department of Chemistry, Colorado School of Mines 1012 14th Street Golden Colorado 80401 USA
| | - Maren Pink
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Alan Sellinger
- Department of Chemistry, Colorado School of Mines 1012 14th Street Golden Colorado 80401 USA
- National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden Colorado 80401 USA
| | - Amar H Flood
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| |
Collapse
|
11
|
Contreras-Montoya R, Smith JP, Boothroyd SC, Aguilar JA, Mirzamani M, Screen MA, Yufit DS, Robertson M, He L, Qian S, Kumari H, Steed JW. Pathway complexity in fibre assembly: from liquid crystals to hyper-helical gelmorphs. Chem Sci 2023; 14:11389-11401. [PMID: 37886106 PMCID: PMC10599479 DOI: 10.1039/d3sc03841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Pathway complexity results in unique materials from the same components according to the assembly conditions. Here a chiral acyl-semicarbazide gelator forms three different gels of contrasting fibre morphology (termed 'gelmorphs') as well as lyotropic liquid crystalline droplets depending on the assembly pathway. The gels have morphologies that are either hyperhelical (HH-Gel), tape-fibre (TF-Gel) or thin fibril derived from the liquid crystalline phase (LC-Gels) and exhibit very different rheological properties. The gelator exists as three slowly interconverting conformers in solution. All three gels are comprised of an unsymmetrical, intramolecular hydrogen bonded conformer. The kinetics show that formation of the remarkable HH-Gel is cooperative and is postulated to involve association of the growing fibril with a non-gelling conformer. This single molecule dynamic conformational library shows how very different materials with different morphology and hence very contrasting materials properties can arise from pathway complexity as a result of emergent interactions during the assembly process.
Collapse
Affiliation(s)
| | - James P Smith
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | | | - Juan A Aguilar
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | - Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati 231 Albert Sabin Way, Medical Science Building 3109C Cincinnati OH 45267-0514 USA
| | - Martin A Screen
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | - Dmitry S Yufit
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | - Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi 118 College Dr. Hattiesburg MS 39406 USA
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory 1 Bethel Valley Rd. Oak Ridge TN 37831 USA
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory 1 Bethel Valley Rd. Oak Ridge TN 37831 USA
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati 231 Albert Sabin Way, Medical Science Building 3109C Cincinnati OH 45267-0514 USA
| | | |
Collapse
|
12
|
Ricardo MG, Seeberger PH. Merging Solid-Phase Peptide Synthesis and Automated Glycan Assembly to Prepare Lipid-Peptide-Glycan Chimeras. Chemistry 2023; 29:e202301678. [PMID: 37358020 DOI: 10.1002/chem.202301678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Biomaterials with improved biological features can be obtained by conjugating glycans to nanostructured peptides. Creating peptide-glycan chimeras requires superb chemoselectivity. We expedite access to such chimeras by merging peptide and glycan solid-phase syntheses employing a bifunctional monosaccharide. The concept was explored in the context of the on-resin generation of a model α(1→6)tetramannoside linked to peptides, lipids, steroids, and adamantane. Chimeras containing a β(1→6)tetraglucoside and self-assembling peptides such as FF, FFKLVFF, and the amphiphile palmitoyl-VVVAAAKKK were prepared in a fully automated manner. The robust synthetic protocol requires a single purification step to obtain overall yields of about 20 %. The β(1→6)tetraglucoside FFKLVFF chimera produces micelles rather than nanofibers formed by the peptide alone as judged by microscopy and circular dichroism. The peptide amphiphile-glycan chimera forms a disperse fiber network, creating opportunities for new glycan-based nanomaterials.
Collapse
Affiliation(s)
- Manuel G Ricardo
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
13
|
Hafeez S, Aldana AA, Duimel H, Ruiter FAA, Decarli MC, Lapointe V, van Blitterswijk C, Moroni L, Baker MB. Molecular Tuning of a Benzene-1,3,5-Tricarboxamide Supramolecular Fibrous Hydrogel Enables Control over Viscoelasticity and Creates Tunable ECM-Mimetic Hydrogels and Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207053. [PMID: 36858040 DOI: 10.1002/adma.202207053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/13/2023] [Indexed: 06/16/2023]
Abstract
Traditional synthetic covalent hydrogels lack the native tissue dynamics and hierarchical fibrous structure found in the extracellular matrix (ECM). These dynamics and fibrous nanostructures are imperative in obtaining the correct cell/material interactions. Consequently, the challenge to engineer functional dynamics in a fibrous hydrogel and recapitulate native ECM properties remains a bottle-neck to biomimetic hydrogel environments. Here, the molecular tuning of a supramolecular benzene-1,3,5-tricarboxamide (BTA) hydrogelator via simple modulation of hydrophobic substituents is reported. This tuning results in fibrous hydrogels with accessible viscoelasticity over 5 orders of magnitude, while maintaining a constant equilibrium storage modulus. BTA hydrogelators are created with systematic variations in the number of hydrophobic carbon atoms, and this is observed to control the viscoelasticity and stress-relaxation timescales in a logarithmic fashion. Some of these BTA hydrogels are shear-thinning, self-healing, extrudable, and injectable, and can be 3D printed into multiple layers. These hydrogels show high cell viability for chondrocytes and human mesenchymal stem cells, establishing their use in tissue engineering applications. This simple molecular tuning by changing hydrophobicity (with just a few carbon atoms) provides precise control over the viscoelasticity and 3D printability in fibrillar hydrogels and can be ported onto other 1D self-assembling structures. The molecular control and design of hydrogel network dynamics can push the field of supramolecular chemistry toward the design of new ECM-mimicking hydrogelators for numerous cell-culture and tissue-engineering applications and give access toward highly biomimetic bioinks for bioprinting.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hans Duimel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Monize Caiado Decarli
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Vanessa Lapointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
14
|
Yao Y, Meng X, Li C, Bernaerts KV, Zhang K. Tuning the Chiral Structures from Self-Assembled Carbohydrate Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208286. [PMID: 36918751 DOI: 10.1002/smll.202208286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Carbohydrates have been regarded as one of the most ideally suited candidates for chirality study via self-assembly owning to their unique chemical structures, abundance, and sustainability. Much efforts have been devoted to design and synthesize diverse carbohydrate derivatives and self-assemble them into various supermolecular morphologies. Nevertheless, still inadequate attention is paid to deeply and comprehensively understand how the carbohydrate structures and self-assembly approaches affect the final morphologies and properties for future demands. Herein, to fulfill the need, a range of recently published studies relating to the chirality of carbohydrates is reviewed and discussed. Furthermore, to tune the chirality of carbohydrate-based structures on both molecular and superstructural levels via chirality transfer and chirality expression, the designing of the molecules and choosing of the proper approaches for self-assembly are elucidated.
Collapse
Affiliation(s)
- Yawen Yao
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
- Sustainable Polymer Synthesis, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| | - Xintong Meng
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Cheng Li
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Katrien V Bernaerts
- Sustainable Polymer Synthesis, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| |
Collapse
|
15
|
Rijns L, Su L, Maxeiner K, Morgese G, Ng DYW, Weil T, Dankers PYW. Introducing carbohydrate patterning in mannose-decorated supramolecular assemblies and hydrogels. Chem Commun (Camb) 2023; 59:2090-2093. [PMID: 36723198 PMCID: PMC9933453 DOI: 10.1039/d2cc06064g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Benzene-1,3,5-tricarboxamide (BTA) glyco-monomers containing one, two or three mannose units are synthesized and formulated into differently patterned supramolecular glycopolymers through homo-assembly or co-assembly with non-functionalized BTAs. Unfortunately, no cellular activity could be detected. Excitingly, these glyco-BTA monomers could be formulated into hydrogels, paving the way for (immune) cell culture.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands. .,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.,Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Lu Su
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| | - Konrad Maxeiner
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz 55128Germany
| | - Giulia Morgese
- ZHAW Zurich University of Applied Sciences, School of Engineering, Forschungsbereich Polymere Beschichtungen, Technikumstrasse 9Winterthur 8400Switzerland
| | - David Y. W. Ng
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz 55128Germany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz 55128Germany
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyPO Box 513Eindhoven 5600 MBThe Netherlands,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of TechnologyPO Box 513Eindhoven 5600 MBThe Netherlands,Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of TechnologyPO Box 513Eindhoven 5600 MBThe Netherlands
| |
Collapse
|
16
|
Bera S, Basu S, Jana B, Dastidar P. Real-time Observation of Macroscopic Helical Morphologies under Optical Microscope: A Curious Case of π-π Stacking Driven Molecular Self-assembly of an Organic Gelator Devoid of Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202216447. [PMID: 36479962 DOI: 10.1002/anie.202216447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Supramolecular assemblies such as tubules/helix/double helix/helical tape etc. are usually submicron objects preventing direct observation under optical microscope. Chiral-pure form of these assemblies is important for potential applications. Herein, we report a rare phenomenon wherein a DMSO gel of a simple terpyridine derivative [(4-CNPhe)4PyTerp] produced macroscopic helical morphologies (μm length scale) which could be observed under optical microscope, formation of which could be monitored by optical videography, stable enough to withstand acidic vapour, robust enough to display reversible gel↔sol in response to acidic and ammonia vapour and sturdy enough to be maneuvered with a needle. These properties appeared to be unique to the title compound as the other related derivatives failed to display such assembly structures. SXRD and MD simulation studies suggested that weak interactions (π-π stacking) played a crucial role in the self-assembly process.
Collapse
Affiliation(s)
- Sourabh Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sushmita Basu
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
17
|
Xiao W, Huang W, Chen C, Wang X, Liao S, Xia S, Fang P, Xiao S, Fang L. Porcine deltacoronavirus uses heparan sulfate as an attachment receptor. Vet Microbiol 2023; 276:109616. [PMID: 36495740 DOI: 10.1016/j.vetmic.2022.109616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerging swine enteropathogenic coronavirus with extensive tissue tropism and cross-species transmission potential. Heparan sulfate (HS) is a complex polysaccharide ubiquitously expressed on cell surfaces and the extracellular matrix and acts as an attachment factor for many viruses. However, whether PDCoV uses HS as an attachment receptor is unclear. In this study, we found that treatment with heparin sodium or heparinase Ⅱ significantly inhibited PDCoV binding and infection among LLC-PK1 and IPI-2I cells. Attenuation of HS sulfuration by sodium chlorate also impeded PDCoV binding and infection. Moreover, we demonstrated that HS functioned independently of amino peptidase N (APN), a functional PDCoV receptor, in PDCoV infection. Molecular docking revealed that the S1 subunit of the PDCoV spike protein might be a putative region for HS binding. Taken together, these results firstly confirmed that HS is an attachment receptor for PDCoV infection, providing new insight into better understanding the mechanisms of PDCoV-host interactions.
Collapse
Affiliation(s)
- Wenwen Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wen Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chaoqun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shusen Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
18
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
19
|
Schnitzer T, Preuss MD, van Basten J, Schoenmakers SMC, Spiering AJH, Vantomme G, Meijer EW. How Subtle Changes Can Make a Difference: Reproducibility in Complex Supramolecular Systems. Angew Chem Int Ed Engl 2022; 61:e202206738. [PMID: 36062929 PMCID: PMC9825988 DOI: 10.1002/anie.202206738] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 01/11/2023]
Abstract
The desire to construct complex molecular systems is driven by the need for technological (r)evolution and our intrinsic curiosity to comprehend the origin of life. Supramolecular chemists tackle this challenge by combining covalent and noncovalent reactions leading to multicomponent systems with emerging complexity. However, this synthetic strategy often coincides with difficult preparation protocols and a narrow window of suitable conditions. Here, we report on unsuspected observations of our group that highlight the impact of subtle "irregularities" on supramolecular systems. Based on the effects of pathway complexity, minute amounts of water in organic solvents or small impurities in the supramolecular building block, we discuss potential pitfalls in the study of complex systems. This article is intended to draw attention to often overlooked details and to initiate an open discussion on the importance of reporting experimental details to increase reproducibility in supramolecular chemistry.
Collapse
Affiliation(s)
- Tobias Schnitzer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Marco D. Preuss
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Jule van Basten
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Sandra M. C. Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - A. J. H. Spiering
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Ghislaine Vantomme
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
20
|
Schnitzer T, Preuss MD, van Basten J, Schoenmakers SMC, Spiering AJH, Vantomme G, Meijer EW. How Subtle Changes Can Make a Difference: Reproducibility in Complex Supramolecular Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tobias Schnitzer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Marco D. Preuss
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jule van Basten
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Sandra M. C. Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - A. J. H. Spiering
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Ghislaine Vantomme
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
21
|
Hafeez S, Passanha FR, Feliciano AJ, Ruiter FAA, Malheiro A, Lafleur RPM, Matsumoto NM, van Blitterswijk C, Moroni L, Wieringa P, LaPointe VLS, Baker MB. Modular mixing of benzene-1,3,5-tricarboxamide supramolecular hydrogelators allows tunable biomimetic hydrogels for control of cell aggregation in 3D. Biomater Sci 2022; 10:4740-4755. [PMID: 35861034 PMCID: PMC9400794 DOI: 10.1039/d2bm00312k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022]
Abstract
Few synthetic hydrogels can mimic both the viscoelasticity and supramolecular fibrous structure found in the naturally occurring extracellular matrix (ECM). Furthermore, the ability to control the viscoelasticity of fibrous supramolecular hydrogel networks to influence cell culture remains a challenge. Here, we show that modular mixing of supramolecular architectures with slow and fast exchange dynamics can provide a suitable environment for multiple cell types and influence cellular aggregation. We employed modular mixing of two synthetic benzene-1,3,5-tricarboxamide (BTA) architectures: a small molecule water-soluble BTA with slow exchange dynamics and a telechelic polymeric BTA-PEG-BTA with fast exchange dynamics. Copolymerisation of these two supramolecular architectures was observed, and all tested formulations formed stable hydrogels in water and cell culture media. We found that rational tuning of mechanical and viscoelastic properties is possible by mixing BTA with BTA-PEG-BTA. These hydrogels showed high viability for both chondrocyte (ATDC5) and human dermal fibroblast (HDF) encapsulation (>80%) and supported neuronal outgrowth (PC12 and dorsal root ganglion, DRG). Furthermore, ATDC5s and human mesenchymal stem cells (hMSCs) were able to form spheroids within these viscoelastic hydrogels, with control over cell aggregation modulated by the dynamic properties of the material. Overall, this study shows that modular mixing of supramolecular architectures enables tunable fibrous hydrogels, creating a biomimetic environment for cell encapsulation. These materials are suitable for the formation and culture of spheroids in 3D, critical for upscaling tissue engineering approaches towards cell densities relevant for physiological tissues.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Fiona R Passanha
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Antonio J Feliciano
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Afonso Malheiro
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - René P M Lafleur
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nicholas M Matsumoto
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Paul Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
22
|
Su L, Hendrikse SIS, Meijer EW. Supramolecular glycopolymers: How carbohydrates matter in structure, dynamics, and function. Curr Opin Chem Biol 2022; 69:102171. [PMID: 35749930 DOI: 10.1016/j.cbpa.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Supramolecular glycopolymers exhibiting inherent dynamicity, tunability, and adaptivity allow us to arrive at a deeper understanding of multivalent carbohydrate-carbohydrate interactions and carbohydrate-protein interactions, both being essential to key biological events. The impacts of the carbohydrate segments in these supramolecular glycopolymers towards their structure, dynamics, and function as biomaterials are addressed in this minireview. Bottlenecks and challenges are discussed, and we speculate about possible future directions.
Collapse
Affiliation(s)
- Lu Su
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Simone I S Hendrikse
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; School of Chemistry and UNSW RNA Institute, The University of New South Wales Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Tong C, Wondergem JAJ, van den Brink M, Kwakernaak MC, Chen Y, Hendrix MMRM, Voets IK, Danen EHJ, Le Dévédec S, Heinrich D, Kieltyka RE. Spatial and Temporal Modulation of Cell Instructive Cues in a Filamentous Supramolecular Biomaterial. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17042-17054. [PMID: 35403421 PMCID: PMC9026256 DOI: 10.1021/acsami.1c24114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales.
Collapse
Affiliation(s)
- Ciqing Tong
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Joeri A. J. Wondergem
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Marijn van den Brink
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Markus C. Kwakernaak
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ying Chen
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marco M. R. M. Hendrix
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MD Eindhoven, The Netherlands
| | - Ilja K. Voets
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MD Eindhoven, The Netherlands
| | - Erik H. J. Danen
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2333 CC Leiden, The Netherlands
| | - Sylvia Le Dévédec
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2333 CC Leiden, The Netherlands
| | - Doris Heinrich
- Biological
and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
- Institute
for Bioprocessing and Analytical Measurement Techniques, Rosenhof 1, 37308 Heilbad Heiligenstadt, Germany
- Faculty for
Mathematics and Natural Sciences, Technische
Universität Ilmenau, 98693 Ilmenau, Germany
| | - Roxanne E. Kieltyka
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
24
|
Sasikumar D, Vinod K, Sunny J, Hariharan M. Exciton interactions in helical crystals of a hydrogen-bonded eumelanin monomer. Chem Sci 2022; 13:2331-2338. [PMID: 35310511 PMCID: PMC8864807 DOI: 10.1039/d1sc06755a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Eumelanin, a naturally occurring group of heterogeneous polymers/aggregates providing photoprotection to living organisms, consist of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) building blocks. Despite their prevalence in the animal world, the structure and therefore the mechanism behind the photoprotective broadband absorption and non-radiative decay of eumelanin remain largely unknown. As a small step towards solving the incessant mystery, DHI is crystallized in a non-protic solvent environment to obtain DHI crystals having a helical packing motif. The present approach reflects the solitary directional effect of hydrogen bonds between the DHI chromophores for generating the crystalline assembly and filters out any involvement of the surrounding solvent environment. The DHI single crystals having an atypical chiral packing motif (P212121 Sohncke space group) incorporate enantiomeric zig-zag helical stacks arranged in a herringbone fashion with respect to each other. Each of the zig-zag helical stacks originates from a bifurcated hydrogen bonding interaction between the hydroxyl substituents in adjacent DHI chromophores which act as the backbone structure for the helical assembly. Fragment-based excited state analysis performed on the DHI crystalline assembly demonstrates exciton delocalization along the DHI units that connect each enantiomeric helical stack while, within each stack, the excitons remain localized. Fascinatingly, over the time evolution for generation of single-crystals of the DHI-monomer, mesoscopic double-helical crystals are formed, possibly attributed to the presence of covalently connected DHI trimers in chloroform solution. The oligomeric DHI (in line with the chemical disorder model) along with the characteristic crystalline packing observed for DHI provides insights into the broadband absorption feature exhibited by the chromophore.
Collapse
Affiliation(s)
- Devika Sasikumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Jeswin Sunny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
25
|
Hafeez S, Ooi HW, Suylen D, Duimel H, Hackeng TM, van Blitterswijk C, Baker MB. Desymmetrization via Activated Esters Enables Rapid Synthesis of Multifunctional Benzene-1,3,5-tricarboxamides and Creation of Supramolecular Hydrogelators. J Am Chem Soc 2022; 144:4057-4070. [PMID: 35196454 PMCID: PMC8915260 DOI: 10.1021/jacs.1c12685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Supramolecular materials based on the self-assembly of benzene-1,3,5-tricarboxamide (BTA) offer an approach to mimic fibrous self-assembled proteins found in numerous natural systems. Yet, synthetic methods to rapidly build complexity, scalability, and multifunctionality into BTA-based materials are needed. The diversity of BTA structures is often hampered by the limited flexibility of existing desymmetrization routes and the purification of multifunctional BTAs. To alleviate this bottleneck, we have developed a desymmetrization method based on activated ester coupling of a symmetric synthon. We created a small library of activated ester synthons and found that a pentafluorophenol benzene triester (BTE) enabled effective desymmetrization and creation of multifunctional BTAs in good yield with high reaction fidelity. This new methodology enabled the rapid synthesis of a small library of BTA monomers with hydrophobic and/or orthogonal reactive handles and could be extended to create polymeric BTA hydrogelators. These BTA hydrogelators self-assembled in water to create fiber and fibrous sheet-like structures as observed by cryo-TEM, and the identity of the BTA conjugated can tune the mechanical properties of the hydrogel. These hydrogelators display high cytocompatibility for chondrocytes, indicating potential for the use of these systems in 3D cell culture and tissue engineering applications. This newly developed synthetic strategy facilitates the simple and rapid creation of chemically diverse BTA supramolecular polymers, and the newly developed and scalable hydrogels can unlock exploration of BTA based materials in a wider variety of tissue engineering applications.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Huey Wen Ooi
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Dennis Suylen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hans Duimel
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
26
|
Qiu Y, Cao S, Sun C, Jiang Q, Xie C, Wang H, Liao Y, Xie X. Thermotropic chirality enhancement of nanoparticles constructed from foldamer/bis(amino acid) complexes. Polym Chem 2022. [DOI: 10.1039/d2py00722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, chiral nanoparticles are constructed by mixing an artificial foldamer bearing aza-18-crown-6 pendants with l-homocystine perchlorate salt, showing a thermotropic chirality enhancement due to the binding mode changes in the heating process.
Collapse
Affiliation(s)
- Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang Cao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenchen Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chongmo Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
27
|
Vleugels MEJ, Varela-Aramburu S, de Waal BFM, Schoenmakers SMC, Maestro B, Palmans ARA, Sanz JM, Meijer EW. Choline-Functionalized Supramolecular Copolymers: Toward Antimicrobial Activity against Streptococcus pneumoniae. Biomacromolecules 2021; 22:5363-5373. [PMID: 34846847 PMCID: PMC8672346 DOI: 10.1021/acs.biomac.1c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic binding events are key to arrive at functionality in nature, and these events are often governed by electrostatic or hydrophobic interactions. Synthetic supramolecular polymers are promising candidates to obtain biomaterials that mimic this dynamicity. Here, we created four new functional monomers based on the benzene-1,3,5-tricarboxamide (BTA) motif. Choline or atropine groups were introduced to obtain functional monomers capable of competing with the cell wall of Streptococcus pneumoniae for binding of essential choline-binding proteins (CBPs). Atropine-functionalized monomers BTA-Atr and BTA-Atr3 were too hydrophobic to form homogeneous assemblies, while choline-functionalized monomers BTA-Chol and BTA-Chol3 were unable to form fibers due to charge repulsion. However, copolymerization of BTA-Chol3 with non-functionalized BTA-(OH)3 yielded dynamic fibers, similar to BTA-(OH)3. These copolymers showed an increased affinity toward CBPs compared to free choline due to multivalent effects. BTA-based supramolecular copolymers are therefore a versatile platform to design bioactive and dynamic supramolecular polymers with novel biotechnological properties.
Collapse
Affiliation(s)
- Marle E J Vleugels
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Silvia Varela-Aramburu
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bas F M de Waal
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sandra M C Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Beatriz Maestro
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid Spain
| | - Anja R A Palmans
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jesús M Sanz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
28
|
Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chem Soc Rev 2021; 51:28-42. [PMID: 34846055 DOI: 10.1039/d1cs00896j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The building blocks of life - nucleotides, amino acids and saccharides - give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs.
Collapse
Affiliation(s)
- Simone I S Hendrikse
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia. .,School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | |
Collapse
|
29
|
Varela-Aramburu S, Su L, Mosquera J, Morgese G, Schoenmakers SMC, Cardinaels R, Palmans ARA, Meijer EW. Introducing Hyaluronic Acid into Supramolecular Polymers and Hydrogels. Biomacromolecules 2021; 22:4633-4641. [PMID: 34662095 PMCID: PMC8579400 DOI: 10.1021/acs.biomac.1c00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of supramolecular polymers to construct functional biomaterials is gaining more attention due to the tunable dynamic behavior and fibrous structures of supramolecular polymers, which resemble those found in natural systems, such as the extracellular matrix. Nevertheless, to obtain a biomaterial capable of mimicking native systems, complex biomolecules should be incorporated, as they allow one to achieve essential biological processes. In this study, supramolecular polymers based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) were assembled in the presence of hyaluronic acid (HA) both in solution and hydrogel states. The coassembly of BTAs bearing tetra(ethylene glycol) at the periphery (BTA-OEG4) and HA at different ratios showed strong interactions between the two components that led to the formation of short fibers and heterogeneous hydrogels. BTAs were further covalently linked to HA (HA-BTA), resulting in a polymer that was unable to assemble into fibers or form hydrogels due to the high hydrophilicity of HA. However, coassembly of HA-BTA with BTA-OEG4 resulted in the formation of long fibers, similar to those formed by BTA-OEG4 alone, and hydrogels were produced with tunable stiffness ranging from 250 to 700 Pa, which is 10-fold higher than that of hydrogels assembled with only BTA-OEG4. Further coassembly of BTA-OEG4 fibers with other polysaccharides showed that except for dextran, all polysaccharides studied interacted with BTA-OEG4 fibers. The possibility of incorporating polysaccharides into BTA-based materials paves the way for the creation of dynamic complex biomaterials.
Collapse
Affiliation(s)
- Silvia Varela-Aramburu
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Lu Su
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Jesús Mosquera
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Giulia Morgese
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Sandra M C Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Ruth Cardinaels
- Polymer Technology, Department of Mechanical Engineering, Eindhoven University of Technology, Box 513, Eindhoven 5600 MB, The Netherlands
| | - Anja R A Palmans
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
30
|
Sarkar R, Mishra K, Das PK, Ramakrishnan S. Probing Polymer Chain Folding in Solution Using Second Harmonic Light Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12457-12465. [PMID: 34641685 DOI: 10.1021/acs.langmuir.1c02156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Periodically grafted amphiphilic copolymers (PGACs) were earlier shown by us to adopt a zigzag folded conformation in the solid state, which enabled the backbone and pendant segments to segregate and occupy alternate layers in a lamellar structure. The conformational transition from a random coil to a zigzag folded chain in solution is an interesting problem, which is largely unexplored. To examine this, an orthogonally clickable parent polyester was sequentially clicked with two types of poly(ethylene glycol) (PEG) segments: one is a simple PEG and the other is a PEG that carries a dipolar chromophore. These two hydrophilic PEG segments, installed in a periodic and alternating fashion along the hydrocarbon-rich (HC) polyester backbone, ensure that the Janus folded chains are formed upon folding and carry chromophoric dipoles oriented along the same direction, thereby generating a large net dipole. The folding-induced alignment of chromophores in solution was followed using second harmonic light scattering (SHLS), wherein the intensity of the frequency-doubled scattered light (I2ω) is measured. Folding was induced by adding a polar solvent, like methanol, to a chloroform solution of the polymer; methanol desolvates the HC backbone but solubilizes the pendant PEG segments, thus inducing folding. The second harmonic intensity (I2ω) increased initially with methanol concentration and then saturated; in contrast, I2ω remained invariant with the solvent composition in the case of an analogous model chromophore. Furthermore, in a model PGAC carrying chromophore-bearing PEG segments on every repeat unit, I2ω decreased with increasing methanol composition, revealing the formation of a centrosymmetric folded chain, wherein the chromophoric dipoles on either side cancel each other. Thus, this study clearly reveals that the zigzag chain folding of PGACs can be induced by a segment-selective solvent, resulting in the rather elusive directional ordering of chromophoric dipoles in solution.
Collapse
Affiliation(s)
- Ramkrishna Sarkar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kamini Mishra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Puspendu Kumar Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - S Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
31
|
Hoshing R, Leeber BW, Kuhn H, Caianiello D, Dale B, Saladino M, Lusi R, Palaychuk N, Weingarten S, Basu A. The Chirality of Aggregated Yariv Reagents Correlates with Their AGP-Binding Ability*. Chembiochem 2021; 23:e202100532. [PMID: 34618387 DOI: 10.1002/cbic.202100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 11/10/2022]
Abstract
Yariv reagents are glycosylated triphenylazo dyes that bind to arabinogalactan proteins (AGPs), proteoglycans found in plant cell walls that are integral for plant growth and development. Yariv reagents are widely utilized as imaging, purification, and quantification tools for AGPs and represent the only small molecule probe for interrogating AGP function. The ability of Yariv reagents to bind to AGPs is dependent on the structure of the terminal glycoside on the dye. The reason for this selectivity has not been understood until the present work. Using circular dichroism spectroscopy, we show that the Yariv reagents form supramolecular aggregates with helical chirality. More significantly, the ability of the Yariv reagent to bind AGPs is correlated with this helical chirality. This finding paves the way towards developing a more detailed understanding of the nature of the Yariv-AGP complex, and the design of AGP-binding reagents with higher affinities and selectivities.
Collapse
Affiliation(s)
- Raghuraj Hoshing
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| | - Blaise W Leeber
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| | - Helene Kuhn
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| | - David Caianiello
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| | - Brandon Dale
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| | - Michael Saladino
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| | - Robert Lusi
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| | - Natalie Palaychuk
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| | - Sarah Weingarten
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| | - Amit Basu
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA
| |
Collapse
|
32
|
Schoenmakers SMC, van den Bersselaar BWL, Dhiman S, Su L, Palmans ARA. Facilitating functionalization of benzene-1,3,5-tricarboxamides by switching amide connectivity. Org Biomol Chem 2021; 19:8281-8294. [PMID: 34518862 PMCID: PMC8494077 DOI: 10.1039/d1ob01587g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022]
Abstract
Synthetic water-compatible supramolecular polymers based on benzene-1,3,5-tricarboxamides (BTAs) have attracted a lot of interest in recent years, as they are uniquely suited to generate functional multicomponent biomaterials. Their morphologies and intrinsic dynamic behaviour mimic fibrous structures found in nature. Moreover, their modularity allows control of the density of functionalities presented on the surface of the fibres when using functionalized BTA monomers. However, such moieties generally comprise a functionality on only one of three side chains, resulting in lengthy synthetic protocols and limited yields. In this work, we avert the need for desymmetrization of the core by starting from commercially available 5-aminoisophthalic acid. This approach eliminates the statistical reactions and reduces the number of synthetic steps. It also leads to the inversion of the connectivity of one of the amides to the benzene core. By combining spectroscopy, light scattering and cryogenic transmission electron microscopy, we confirm that the inversed amide BTAs (iBTAs) form intermolecular hydrogen bonds and assemble into supramolecular polymers, like previously used symmetrical BTAs, albeit with a slight decrease in water solubility. Solubility problems were overcome by incorporating iBTAs into conventional BTA-based supramolecular polymers. These two-component mixtures formed supramolecular fibres with a morphology and dynamic behaviour similar to BTA-homopolymers. Finally, iBTAs were decorated with a fluorescent dye to demonstrate the synthesis of functional monomers, and to visualize their co-assembly with BTAs. Our results show that functionality can be introduced into supramolecular polymers with monomers that slightly differ in their core structure while maintaining the structure and dynamics of the fibres.
Collapse
Affiliation(s)
- Sandra M C Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Bart W L van den Bersselaar
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Shikha Dhiman
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Lu Su
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Anja R A Palmans
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
33
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
34
|
Zhu H, Gu D, Rao Z, Li Y, Liu Y, Hao J. Design of gel-to-sol UCST transition peptides by controlling polypeptide β-sheet nanostructures. Polym J 2021. [DOI: 10.1038/s41428-021-00490-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Shyshov O, Haridas SV, Pesce L, Qi H, Gardin A, Bochicchio D, Kaiser U, Pavan GM, von Delius M. Living supramolecular polymerization of fluorinated cyclohexanes. Nat Commun 2021; 12:3134. [PMID: 34035277 PMCID: PMC8149861 DOI: 10.1038/s41467-021-23370-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
The development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.
Collapse
Affiliation(s)
| | | | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
| | - Haoyuan Qi
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, Dresden, Germany
| | - Andrea Gardin
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Davide Bochicchio
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
- Department of Physics, Università degli studi di Genova, Genova, Italy
| | - Ute Kaiser
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Max von Delius
- Institute of Organic Chemistry, University of Ulm, Ulm, Germany.
| |
Collapse
|
36
|
Liu R, Zhang R, Li L, Kochovski Z, Yao L, Nieh MP, Lu Y, Shi T, Chen G. A Comprehensive Landscape for Fibril Association Behaviors Encoded Synergistically by Saccharides and Peptides. J Am Chem Soc 2021; 143:6622-6633. [PMID: 33900761 DOI: 10.1021/jacs.1c01951] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nature provides us a panorama of fibrils with tremendous structural polymorphism from molecular building blocks to hierarchical association behaviors. Despite recent achievements in creating artificial systems with individual building blocks through self-assembly, molecularly encoding the relationship from model building blocks to fibril association, resulting in controlled macroscopic properties, has remained an elusive goal. In this paper, by employing a designed set of glycopeptide building blocks and combining experimental and computational tools, we report a library of controlled fibril polymorphism with elucidation from molecular packing to fibril association and the related macroscopic properties. The growth of the fibril either axially or radially with right- or left-handed twisting is determined by the subtle trade-off of oligosaccharide and oligopeptide components. Meanwhile, visible evidence for the association process of double-strand fibrils has been experimentally and theoretically proposed. Finally the fibril polymorphs demonstrated significant different macroscopic properties on hydrogel formation and cellular migration control.
Collapse
Affiliation(s)
- Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Lintong Yao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany.,Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
37
|
Xu F, Pfeifer L, Crespi S, Leung FKC, Stuart MCA, Wezenberg SJ, Feringa BL. From Photoinduced Supramolecular Polymerization to Responsive Organogels. J Am Chem Soc 2021; 143:5990-5997. [PMID: 33830767 PMCID: PMC8154511 DOI: 10.1021/jacs.1c01802] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/30/2022]
Abstract
Controlling supramolecular polymerization by external stimuli holds great potential toward the development of responsive soft materials and manipulating self-assembly at the nanoscale. Photochemical switching offers the prospect of regulating the structure and properties of systems in a noninvasive and reversible manner with spatial and temporal control. In addition, this approach will enhance our understanding of supramolecular polymerization mechanisms; however, the control of molecular assembly by light remains challenging. Here we present photoresponsive stiff-stilbene-based bis-urea monomers whose trans isomers readily form supramolecular polymers in a wide range of organic solvents, enabling fast light-triggered depolymerization-polymerization and reversible gel formation. Due to the stability of the cis isomers and the high photostationary states (PSS) of the cis-trans isomerization, precise control over supramolecular polymerization and in situ gelation could be achieved with short response times. A detailed study on the temperature-dependent and photoinduced supramolecular polymerization in organic solvents revealed a kinetically controlled nucleation-elongation mechanism. By application of a Volta phase plate to enhance the phase-contrast method in cryo-EM, unprecedented for nonaqueous solutions, uniform nanofibers were observed in organic solvents.
Collapse
Affiliation(s)
- Fan Xu
- Center for System Chemistry,
Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Stefano Crespi
- Center for System Chemistry,
Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Marc C. A. Stuart
- Center for System Chemistry,
Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Ben L. Feringa
- Center for System Chemistry,
Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
38
|
Bi F, Zhang C, Yang G, Wang J, Zheng W, Hua Z, Li X, Wang Z, Chen G. Photoresponsive glyco-nanostructures integrated from supramolecular metallocarbohydrates for the reversible capture and release of lectins. Polym Chem 2021. [DOI: 10.1039/d1py00146a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photo-controllable capture and release of proteins by glyco-nanostructures.
Collapse
Affiliation(s)
- Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Changwei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Jie Wang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Wei Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Xiaopeng Li
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Zhongkai Wang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
39
|
Varela-Aramburu S, Morgese G, Su L, Schoenmakers SMC, Perrone M, Leanza L, Perego C, Pavan GM, Palmans ARA, Meijer EW. Exploring the Potential of Benzene-1,3,5-tricarboxamide Supramolecular Polymers as Biomaterials. Biomacromolecules 2020; 21:4105-4115. [PMID: 32991162 PMCID: PMC7556542 DOI: 10.1021/acs.biomac.0c00904] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
The
fast dynamics occurring in natural processes increases the
difficulty of creating biomaterials capable of mimicking Nature. Within
synthetic biomaterials, water-soluble supramolecular polymers show
great potential in mimicking the dynamic behavior of these natural
processes. In particular, benzene-1,3,5-tricaboxamide (BTA)-based
supramolecular polymers have shown to be highly dynamic through the
exchange of monomers within and between fibers, but their suitability
as biomaterials has not been yet explored. Herein we systematically
study the interactions of BTA supramolecular polymers bearing either
tetraethylene glycol or mannose units at the periphery with different
biological entities. When BTA fibers were incubated with bovine serum
albumin (BSA), the protein conformation was only affected by the fibers
containing tetraethylene glycol at the periphery (BTA-OEG4). Coarse-grained molecular simulations showed that BSA interacted
with BTA-OEG4 fibers rather than with BTA-OEG4 monomers that are present in solution or that may exchange out of
the fibers. Microscopy studies revealed that, in the presence of BSA,
BTA-OEG4 retained their fiber conformation although their
length was slightly shortened. When further incubated with fetal bovine
serum (FBS), both long and short fibers were visualized in solution.
Nevertheless, in the hydrogel state, the rheological properties were
remarkably preserved. Further studies on the cellular compatibility
of all the BTA assemblies and mixtures thereof were performed in four
different cell lines. A low cytotoxic effect at most concentrations
was observed, confirming the suitability of utilizing functional BTA
supramolecular polymers as dynamic biomaterials.
Collapse
Affiliation(s)
- Silvia Varela-Aramburu
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Giulia Morgese
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Lu Su
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Sandra M C Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Mattia Perrone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.,Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, 6928 Manno, Switzerland
| | - Luigi Leanza
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, 6928 Manno, Switzerland
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.,Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, 6928 Manno, Switzerland
| | - Anja R A Palmans
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
40
|
Lafleur RPM, Herziger S, Schoenmakers SMC, Keizer ADA, Jahzerah J, Thota BNS, Su L, Bomans PHH, Sommerdijk NAJM, Palmans ARA, Haag R, Friedrich H, Böttcher C, Meijer EW. Supramolecular Double Helices from Small C 3-Symmetrical Molecules Aggregated in Water. J Am Chem Soc 2020; 142:17644-17652. [PMID: 32935541 PMCID: PMC7564094 DOI: 10.1021/jacs.0c08179] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Supramolecular fibers
in water, micrometers long and several nanometers
in width, are among the most studied nanostructures for biomedical
applications. These supramolecular polymers are formed through a spontaneous
self-assembly process of small amphiphilic molecules by specific secondary
interactions. Although many compounds do not possess a stereocenter,
recent studies suggest the (co)existence of helical structures, albeit
in racemic form. Here, we disclose a series of supramolecular (co)polymers
based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) that form
double helices, fibers that were long thought to be chains of single
molecules stacked in one dimension (1D). Detailed cryogenic transmission
electron microscopy (cryo-TEM) studies and subsequent three-dimensional-volume
reconstructions unveiled helical repeats, ranging from 15 to 30 nm.
Most remarkable, the pitch can be tuned through the composition of
the copolymers, where two different monomers with the same core but
different peripheries are mixed in various ratios. Like in lipid bilayers,
the hydrophobic shielding in the aggregates of these disc-shaped molecules
is proposed to be best obtained by dimer formation, promoting supramolecular
double helices. It is anticipated that many of the supramolecular
polymers in water will have a thermodynamic stable structure, such
as a double helix, although small structural changes can yield single
stacks as well. Hence, it is essential to perform detailed analyses
prior to sketching a molecular picture of these 1D fibers.
Collapse
Affiliation(s)
- René P M Lafleur
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Svenja Herziger
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.,Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraβe 36a, Berlin 14195, Germany
| | - Sandra M C Schoenmakers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Arthur D A Keizer
- Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Jahaziel Jahzerah
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Bala N S Thota
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Lu Su
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Paul H H Bomans
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.,Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Nico A J M Sommerdijk
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.,Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Heiner Friedrich
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.,Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Christoph Böttcher
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraβe 36a, Berlin 14195, Germany
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
41
|
Particle engineering enabled by polyphenol-mediated supramolecular networks. Nat Commun 2020; 11:4804. [PMID: 32968077 PMCID: PMC7511334 DOI: 10.1038/s41467-020-18589-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
We report a facile strategy for engineering diverse particles based on the supramolecular assembly of natural polyphenols and a self-polymerizable aromatic dithiol. In aqueous conditions, uniform and size-tunable supramolecular particles are assembled through π–π interactions as mediated by polyphenols. Owing to the high binding affinity of phenolic motifs present at the surface, these particles allow for the subsequent deposition of various materials (i.e., organic, inorganic, and hybrid components), producing a variety of monodisperse functional particles. Moreover, the solvent-dependent disassembly of the supramolecular networks enables their removal, generating a wide range of corresponding hollow structures including capsules and yolk–shell structures. The versatility of these supramolecular networks, combined with their negligible cytotoxicity provides a pathway for the rational design of a range of particle systems (including core–shell, hollow, and yolk–shell) with potential in biomedical and environmental applications. Monodisperse colloidal particles with tunable properties show promise for biomedical, energy, and environmental applications and simple routes for fabricating these particles are of interest. Here, the authors report a facile strategy for fabrication of diverse particles based on the supramolecular assembly of phenols and self-polymerizable thiols
Collapse
|
42
|
Morgese G, de Waal BFM, Varela‐Aramburu S, Palmans ARA, Albertazzi L, Meijer EW. Anchoring Supramolecular Polymers to Human Red Blood Cells by Combining Dynamic Covalent and Non-Covalent Chemistries. Angew Chem Int Ed Engl 2020; 59:17229-17233. [PMID: 32584462 PMCID: PMC7540258 DOI: 10.1002/anie.202006381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Indexed: 01/13/2023]
Abstract
Understanding cell/material interactions is essential to design functional cell-responsive materials. While the scientific literature abounds with formulations of biomimetic materials, only a fraction of them focused on mechanisms of the molecular interactions between cells and material. To provide new knowledge on the strategies for materials/cell recognition and binding, supramolecular benzene-1,3,5-tricarboxamide copolymers bearing benzoxaborole moieties are anchored on the surface of human erythrocytes via benzoxaborole/sialic-acid binding. This interaction based on both dynamic covalent and non-covalent chemistries is visualized in real time by means of total internal reflection fluorescence microscopy. Exploiting this imaging method, we observe that the functional copolymers specifically interact with the cell surface. An optimal fiber affinity towards the cells as a function of benzoxaborole concentration demonstrates the crucial role of multivalency in these cell/material interactions.
Collapse
Affiliation(s)
- Giulia Morgese
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
| | - Bas F. M. de Waal
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
| | - Silvia Varela‐Aramburu
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical EngineeringInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 15–2108028BarcelonaSpain
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5600MBEindhovenThe Netherlands
| |
Collapse
|
43
|
Sasselli IR, Syrgiannis Z. Small Molecules Organic Co‐Assemblies as Functional Nanomaterials. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ivan R. Sasselli
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Zois Syrgiannis
- Centre of Excellence for Nanostructured Materials (CENMAT) INSTM, unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste via L. Giorgieri 1 34127 Trieste Italy
- Simpson Querrey Institute Northwestern University 303 East Superior Street 60611 Chicago IL USA
| |
Collapse
|
44
|
Morgese G, Waal BFM, Varela‐Aramburu S, Palmans ARA, Albertazzi L, Meijer EW. Anchoring Supramolecular Polymers to Human Red Blood Cells by Combining Dynamic Covalent and Non‐Covalent Chemistries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Giulia Morgese
- Laboratory of Macromolecular and Organic Chemistry Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
| | - Bas F. M. Waal
- Laboratory of Macromolecular and Organic Chemistry Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
| | - Silvia Varela‐Aramburu
- Laboratory of Macromolecular and Organic Chemistry Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic Chemistry Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Baldiri Reixac 15–21 08028 Barcelona Spain
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5600MB Eindhoven The Netherlands
| |
Collapse
|
45
|
Jamadar A, Karan CK, Roy L, Das A. Structurally Tunable pH-Responsive Luminescent Assemblies from Halogen Bonded Supra-π-amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3089-3095. [PMID: 32164411 DOI: 10.1021/acs.langmuir.0c00443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supra-amphiphiles constituted of noncovalent bonds have emerged as attractive systems for fabrication of stimuli-responsive self-assembled nanostructures. A unique supramolecular strategy utilizing halogen (X)-bonding interaction has been demonstrated for constructing emissive supra-π-amphiphiles in water from a hydrophobic pyridyl functionalized naphthalene monoimide (NMI-Py) based X-bond acceptor and hydrophilic iodotetrafluorophenyl functionalized polyethylene glycol (PEG-I) or triethylene glycol (TEG-I) based X-bond donors, while their luminescent higher ordered assemblies were governed by orthogonal dipole-dipole interaction and π-stacking of the NMI-Py fluorophore as probed by SCXRD and DFT calculations. Control molecules lacking iodotetrafluorophenyl moiety at the polyethylene glycol chain end failed to create any defined morphology from the NMI-Py, suggesting X-bonding is prerequisite for the nanostructure formation. Variation in the chain length of the X-bond donors leads to different morphologies (fiber vs vesicle) for PEG-I and TEG-I. Acid triggered denaturing of the X-bonds caused pH responsive disassembly of the thermally robust nanostructures. This strategy paves the way for facile fabrication of structurally diverse smart and adaptive luminescent functional materials with tunable morphology.
Collapse
Affiliation(s)
- Akshoy Jamadar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Chandan Kumar Karan
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar-751013, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
46
|
González-Cuesta M, Ortiz Mellet C, García Fernández JM. Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chem Commun (Camb) 2020; 56:5207-5222. [DOI: 10.1039/d0cc01135e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Hetero)multivalency acts as a multichannel switch that shapes the supramolecular properties of carbohydrates in an intrinsically multifactorial biological context.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | | |
Collapse
|
47
|
Su H, Wang F, Wang Y, Cheetham AG, Cui H. Macrocyclization of a Class of Camptothecin Analogues into Tubular Supramolecular Polymers. J Am Chem Soc 2019; 141:17107-17111. [DOI: 10.1021/jacs.9b09848] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hao Su
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Yuzhu Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Andrew G. Cheetham
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|