1
|
Liu Y, Harnden KA, Van Stappen C, Dikanov SA, Lu Y. A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase. Proc Natl Acad Sci U S A 2023; 120:e2308286120. [PMID: 37844252 PMCID: PMC10614608 DOI: 10.1073/pnas.2308286120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/03/2023] [Indexed: 10/18/2023] Open
Abstract
The "Histidine-brace" (His-brace) copper-binding site, composed of Cu(His)2 with a backbone amine, is found in metalloproteins with diverse functions. A primary example is lytic polysaccharide monooxygenase (LPMO), a class of enzymes that catalyze the oxidative depolymerization of polysaccharides, providing not only an energy source for native microorganisms but also a route to more effective industrial biomass conversion. Despite its importance, how the Cu His-brace site performs this unique and challenging oxidative depolymerization reaction remains to be understood. To answer this question, we have designed a biosynthetic model of LPMO by incorporating the Cu His-brace motif into azurin, an electron transfer protein. Spectroscopic studies, including ultraviolet-visible (UV-Vis) absorption and electron paramagnetic resonance, confirm copper binding at the designed His-brace site. Moreover, the designed protein is catalytically active towards both cellulose and starch, the native substrates of LPMO, generating degraded oligosaccharides with multiturnovers by C1 oxidation. It also performs oxidative cleavage of the model substrate 4-nitrophenyl-D-glucopyranoside, achieving a turnover number ~9% of that of a native LPMO assayed under identical conditions. This work presents a rationally designed artificial metalloenzyme that acts as a structural and functional mimic of LPMO, which provides a promising system for understanding the role of the Cu His-brace site in LPMO activity and potential application in polysaccharide degradation.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Kevin A. Harnden
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Sergei A. Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
2
|
Lee J, Dalton RA, Dennison C. Copper delivery to an endospore coat protein of Bacillus subtilis. Front Cell Dev Biol 2022; 10:916114. [PMID: 36133923 PMCID: PMC9484137 DOI: 10.3389/fcell.2022.916114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
A family of cytosolic copper (Cu) storage proteins (the Csps) bind large quantities of Cu(I) via their Cys-lined four-helix bundles, and the majority are cytosolic (Csp3s). The presence of Csp3s in many bacteria appears inconsistent with the current dogma that bacteria, unlike eukaryotes, have evolved not to maintain intracellular pools of Cu due to its potential toxicity. Sporulation in Bacillus subtilis has been used to investigate if a Csp3 binds Cu(I) in the cytosol for a target enzyme. The activity of the Cu-requiring endospore multi-Cu oxidase BsCotA (a laccase) increases under Cu-replete conditions in wild type B. subtilis. In the strain lacking BsCsp3 lower BsCotA activity is observed and is unaffected by Cu levels. BsCsp3 loaded with Cu(I) readily activates apo-BsCotA in vitro. Experiments with a high affinity Cu(I) chelator demonstrate that Cu(I) transfer from Cu(I)-BsCsp3 must occur via an associative mechanism. BsCsp3 and BsCotA are both upregulated during late sporulation. We hypothesise that BsCsp3 acquires cuprous ions in the cytosol of B. subtilis for BsCotA.
Collapse
|
3
|
Płonka D, Kotuniak R, Dąbrowska K, Bal W. Electrospray-Induced Mass Spectrometry Is Not Suitable for Determination of Peptidic Cu(II) Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2766-2776. [PMID: 34738801 PMCID: PMC8640992 DOI: 10.1021/jasms.1c00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The toolset of mass spectrometry (MS) is still expanding, and the number of metal ion complexes researched this way is growing. The Cu(II) ion forms particularly strong peptide complexes of biological interest which are frequent objects of MS studies, but quantitative aspects of some reported results are at odds with those of experiments performed in solution. Cu(II) complexes are usually characterized by fast ligand exchange rates, despite their high affinity, and we speculated that such kinetic lability could be responsible for the observed discrepancies. In order to resolve this issue, we selected peptides belonging to the ATCUN family characterized with high and thoroughly determined Cu(II) binding constants and re-estimated them using two ESI-MS techniques: standard conditions in combination with serial dilution experiments and very mild conditions for competition experiments. The sample acidification, which accompanies the electrospray formation, was simulated with the pH-jump stopped-flow technique. Our results indicate that ESI-MS should not be used for quantitative studies of Cu(II)-peptide complexes because the electrospray formation process compromises the entropic contribution to the complex stability, yielding underestimations of complex stability constants.
Collapse
|
4
|
Pang X, Yuan C, Sun R, Wang K, Tang B. Revealing the Underestimated Anticancer Effect of Azurin by Mechanical Unfolding. ACS Biomater Sci Eng 2021; 7:4809-4818. [PMID: 34558912 DOI: 10.1021/acsbiomaterials.1c00934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a potential anticancer agent, azurin has attracted extensive attraction among chemists, physicists, and material scientists. Its structural and unfolding/folding information has been partially understood, but some detailed information, such as the difference in the unfolding processes between apo-azurin and holo-azurin, the mechanical stability, and the role of the copper cluster in its stability, has not been addressed adequately, especially at the single-molecule level. Here, we employed AFM-based single-molecule force spectroscopy to investigate the unfolding process of azurin in the apo and holo forms under an external force. The results indicated that the unfolding processes of apo-azurin and holo-azurin are different, and holo-azurin requires a stronger force to unfold than does apo-azurin. The copper cluster exhibited a more significant impact on the stability and the folding process of holo-azurin: the copper cluster was completely broken, and the copper ion left the unfolded azurin during the unfolding process of azurin. We suspected that the presence of the disulfide bond in azurin made the unfolding of the copper cluster different from that in pseudoazurin, which is also a type I copper protein like azurin. Rarely reported in previous studies, the mechanical strength of the Cu-N(His) bond of the copper cluster was obtained in this study, which is weaker than that of most metal-S(Cys) bonds but higher than that of the Fe-N(His) bond. Altogether, our results offer a possible new scenario for azurin to widely extend its anticancer activity.
Collapse
Affiliation(s)
- Xiangchao Pang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.,Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Caijie Yuan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Rui Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Kui Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.,Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, Guangdong P.R. China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| |
Collapse
|
5
|
Di Rocco G, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Principles and practice of determining metal-protein affinities. Biochem J 2021; 478:1085-1116. [PMID: 33710331 PMCID: PMC7959690 DOI: 10.1042/bcj20200838] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 01/02/2023]
Abstract
Metal ions play many critical roles in biology, as structural and catalytic cofactors, and as cell regulatory and signalling elements. The metal–protein affinity, expressed conveniently by the metal dissociation constant, KD, describes the thermodynamic strength of a metal–protein interaction and is a key parameter that can be used, for example, to understand how proteins may acquire metals in a cell and to identify dynamic elements (e.g. cofactor binding, changing metal availabilities) which regulate protein metalation in vivo. Here, we outline the fundamental principles and practical considerations that are key to the reliable quantification of metal–protein affinities. We review a selection of spectroscopic probes which can be used to determine protein affinities for essential biological transition metals (including Mn(II), Fe(II), Co(II), Ni(II), Cu(I), Cu(II) and Zn(II)) and, using selected examples, demonstrate how rational probe selection combined with prudent experimental design can be applied to determine accurate KD values.
Collapse
|
7
|
Roskamp KW, Azim S, Kassier G, Norton-Baker B, Sprague-Piercy MA, Miller RJD, Martin RW. Human γS-Crystallin-Copper Binding Helps Buffer against Aggregation Caused by Oxidative Damage. Biochemistry 2020; 59:2371-2385. [PMID: 32510933 DOI: 10.1021/acs.biochem.0c00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Divalent metal cations can play a role in protein aggregation diseases, including cataract. Here we compare the aggregation of human γS-crystallin, a key structural protein of the eye lens, via mutagenesis, ultraviolet light damage, and the addition of metal ions. All three aggregation pathways result in globular, amorphous-looking structures that do not elongate into fibers. We also investigate the molecular mechanism underlying copper(II)-induced aggregation. This work was motivated by the observation that zinc(II)-induced aggregation of γS-crystallin is driven by intermolecular bridging of solvent-accessible cysteine residues, while in contrast, copper(II)-induced aggregation of this protein is exacerbated by the removal of solvent-accessible cysteines via mutation. Here we find that copper(II)-induced aggregation results from a complex mechanism involving multiple interactions with the protein. The initial protein-metal interactions result in the reduction of Cu(II) to Cu(I) with concomitant oxidation of γS-crystallin. In addition to the intermolecular disulfides that represent a starting point for aggregation, intramolecular disulfides also occur in the cysteine loop, a region of the N-terminal domain that was previously found to mediate the early stages of cataract formation. This previously unobserved ability of γS-crystallin to transfer disulfides intramolecularly suggests that it may serve as an oxidation sink for the lens after glutathione levels have become depleted during aging. γS-Crystallin thus serves as the last line of defense against oxidation in the eye lens, a result that underscores the chemical functionality of this protein, which is generally considered to play a purely structural role.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sana Azim
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Günther Kassier
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - R J Dwyane Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, Hamburg 22761, Germany.,Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
8
|
Stability constants of bio-relevant, redox-active metals with amino acids: The challenges of weakly binding ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|