1
|
Yu Y, van der Donk WA. PEARL-Catalyzed Peptide Bond Formation after Chain Reversal by Ureido-Forming Condensation Domains. ACS CENTRAL SCIENCE 2024; 10:1242-1250. [PMID: 38947204 PMCID: PMC11212132 DOI: 10.1021/acscentsci.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
A subset of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are encoded in their biosynthetic gene clusters (BGCs) with enzymes annotated as lantibiotic dehydratases. The functions of these putative lantibiotic dehydratases remain unknown. Here, we characterize an NRPS-PKS BGC with a putative lantibiotic dehydratase from the bacterium Stackebrandtia nassauensis (sna). Heterologous expression revealed several metabolites produced by the BGC, and the omission of selected biosynthetic enzymes revealed the biosynthetic pathway toward these compounds. The final product is a bisarginyl ureidopeptide with an enone electrophile. The putative lantibiotic dehydratase catalyzes peptide bond formation to a Thr that extends the peptide scaffold opposite to the NRPS and PKS biosynthetic direction. The condensation domain of the NRPS SnaA catalyzes the formation of a ureido group, and bioinformatics analysis revealed a distinct active site signature EHHXXHDG of ureido-generating condensation (Curea) domains. This work demonstrates that the annotated lantibiotic dehydratase serves as a separate amide bond-forming machinery in addition to the NRPS, and that the lantibiotic dehydratase enzyme family possesses diverse catalytic activities in the biosynthesis of both ribosomal and nonribosomal natural products.
Collapse
Affiliation(s)
- Yue Yu
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Ramos Figueroa J, Zhu L, van der Donk WA. Unexpected Transformations during Pyrroloiminoquinone Biosynthesis. J Am Chem Soc 2024; 146:14235-14245. [PMID: 38719200 PMCID: PMC11117183 DOI: 10.1021/jacs.4c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Pyrroloiminoquinone-containing natural products have long been known for their biological activities. They are derived from tryptophan, but their biosynthetic pathways have remained elusive. Studies on the biosynthetic gene cluster (BGC) that produces the ammosamides revealed that the first step is attachment of Trp to the C-terminus of a scaffold peptide in an ATP- and tRNA-dependent manner catalyzed by a PEptide Aminoacyl-tRNA Ligase (PEARL). The indole of Trp is then oxidized to a hydroxyquinone. We previously proposed a chemically plausible and streamlined pathway for converting this intermediate to the ammosamides using additional enzymes encoded in the BGC. In this study, we report the activity of four additional enzymes from two gene clusters, which show that the previously proposed pathway is incorrect and that Nature's route toward pyrroloiminoquinones is much more complicated. We demonstrate that, surprisingly, amino groups in pyrroloiminoquinones are derived from (at least) three different sources, glycine, asparagine, and leucine, all introduced in a tRNA-dependent manner. We also show that an FAD-dependent putative glycine oxidase (Amm14) is required for the process that incorporates the nitrogens from glycine and leucine and that a quinone reductase is required for the incorporation of asparagine. Additionally, we provide the first insights into the evolutionary origin of the PEARLs as well as related enzymes, such as the glutamyl-tRNA-dependent dehydratases involved in the biosynthesis of lanthipeptides and thiopeptides. These enzymes appear to all have descended from the ATP-GRASP protein family.
Collapse
Affiliation(s)
- Josseline Ramos Figueroa
- Department of Chemistry and
Howard Hughes Medical Institute, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- Department of Chemistry and
Howard Hughes Medical Institute, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry and
Howard Hughes Medical Institute, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
4
|
Figueroa JR, Zhu L, van der Donk WA. Unexpected transformations during pyrroloiminoquinone biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584671. [PMID: 38559119 PMCID: PMC10979984 DOI: 10.1101/2024.03.12.584671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pyrroloiminoquinone containing natural products have long been known for their biological activities. They are derived from tryptophan, but their biosynthetic pathways have remained elusive. Studies on the biosynthetic gene cluster (BGC) that produces the ammosamides revealed that the first step is attachment of Trp to the C-terminus of a scaffold peptide in an ATP and tRNA dependent manner catalyzed by a PEptide Amino-acyl tRNA ligase (PEARL). The indole of the Trp is then oxidized to a hydroxyquinone. We previously proposed a chemically plausible and streamlined pathway for converting this intermediate to the ammosamides using additional enzymes encoded in the BGC. In this study, we report the activity of four additional enzymes that show that the proposed pathway is incorrect and that Nature's route towards pyrroloiminoquinones is much more complicated. We demonstrate that, surprisingly, the amino groups in pyrroloiminoquinones are derived from three different sources, glycine, asparagine, and leucine, all introduced in a tRNA dependent manner. We also show that an FAD-dependent putative glycine oxidase is required for the process that incorporates the nitrogens from glycine and leucine, and that a quinone reductase is required for the incorporation of the asparagine. Additionally, we provide the first insights into the evolutionary origin of the PEARLs as well as related enzymes such as the glutamyl-tRNA dependent dehydratases involved in the biosynthesis of lanthipeptides and thiopeptides. These enzymes appear to all have descended from the ATP-GRASP protein family.
Collapse
Affiliation(s)
- Josseline Ramos Figueroa
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lingyang Zhu
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
5
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Yu Y, van der Donk WA. PEARL-catalyzed peptide bond formation after chain reversal during the biosynthesis of non-ribosomal peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573212. [PMID: 38187666 PMCID: PMC10769383 DOI: 10.1101/2023.12.23.573212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A subset of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are encoded in their biosynthetic gene clusters (BGCs) with enzymes annotated as lantibiotic dehydratases. The functions of these putative lantibiotic dehydratases remain unknown. Here, we characterize an NRPS-PKS BGC with a putative lantibiotic dehydratase from the bacterium Stackebrandtia nassauensis (sna). Heterologous expression revealed several metabolites produced by the BGC, and the omission of selected biosynthetic enzymes revealed the biosynthetic sequence towards these compounds. The putative lantibiotic dehydratase catalyzes peptide bond formation that extends the peptide scaffold opposite to the NRPS and PKS biosynthetic direction. The condensation domain of the NRPS catalyzes the formation of a ureido group, and bioinformatics analysis revealed distinct active site residues of ureido-generating condensation (UreaC) domains. This work demonstrates that the annotated lantibiotic dehydratase serves as a separate amide bond-forming machinery in addition to the NRPS, and that the lantibiotic dehydratase enzyme family possesses diverse catalytic activities in the biosynthesis of both ribosomal and non-ribosomal natural products.
Collapse
Affiliation(s)
- Yue Yu
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
7
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Yu Y, van der Donk WA. Biosynthesis of 3-thia-α-amino acids on a carrier peptide. Proc Natl Acad Sci U S A 2022; 119:e2205285119. [PMID: 35787182 PMCID: PMC9303977 DOI: 10.1073/pnas.2205285119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
A subset of natural products, such as polyketides and nonribosomal peptides, is biosynthesized while tethered to a carrier peptide via a thioester linkage. Recently, we reported that the biosyntheses of 3-thiaglutamate and ammosamide, single amino acid-derived natural products, employ a very different type of carrier peptide to which the biosynthetic intermediates are bound via an amide linkage. During their biosyntheses, a peptide aminoacyl-transfer ribonucleic acid (tRNA) ligase (PEARL) first loads an amino acid to the C terminus of the carrier peptide for subsequent modification by other enzymes. Proteolytic removal of the modified C-terminal amino acid yields the mature product. We termed natural products that are biosynthesized using such pathways pearlins. To investigate the diversity of pearlins, in this study we experimentally characterized another PEARL-encoding biosynthetic gene cluster (BGC) from Tistrella mobilis (tmo). The enzymes encoded in the tmo BGC transformed cysteine into 3-thiahomoleucine both in vitro and in Escherichia coli. During this process, a cobalamin-dependent radical S-adenosylmethionine (SAM) enzyme catalyzes C-isopropylation. This work illustrates that the biosynthesis of amino acid-derived natural products on a carrier peptide is a widespread strategy in nature and expands the spectrum of thiahemiaminal analogs of amino acids that may serve a broader, currently unknown function.
Collapse
Affiliation(s)
- Yue Yu
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- HHMI, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- HHMI, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
9
|
Abstract
The past decade has seen impressive advances in understanding the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs). One of the most common modifications found in these natural products is macrocyclization, a strategy also used by medicinal chemists to improve metabolic stability and target affinity and specificity. Another tool of the peptide chemist, modification of the amides in a peptide backbone, has also been observed in RiPPs. This review discusses the molecular mechanisms of biosynthesis of a subset of macrocyclic RiPP families, chosen because of the unusual biochemistry involved: the five classes of lanthipeptides (thioether cyclization by Michael-type addition), sactipeptides and ranthipeptides (thioether cyclization by radical chemistry), thiopeptides (cyclization by [4+2] cycloaddition), and streptide (cyclization by radical C-C bond formation). In addition, the mechanisms of backbone amide methylation, backbone epimerization, and backbone thioamide formation are discussed, as well as an unusual route to small molecules by posttranslational modification.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wilfred A van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
McLaughlin MI, Yu Y, van der Donk WA. Substrate Recognition by the Peptidyl-( S)-2-mercaptoglycine Synthase TglHI during 3-Thiaglutamate Biosynthesis. ACS Chem Biol 2022; 17:930-940. [PMID: 35362960 PMCID: PMC9016710 DOI: 10.1021/acschembio.2c00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3-Thiaglutamate is a recently identified amino acid analog originating from cysteine. During its biosynthesis, cysteinyl-tRNA is first enzymatically appended to the C-terminus of TglA, a 50-residue ribosomally translated peptide scaffold. After hydrolytic removal of the tRNA, this cysteine residue undergoes modification on the scaffold before eventual proteolysis of the nascent 3-thiaglutamyl residue to release 3-thiaglutamate and regenerate TglA. One of the modifications of TglACys requires a complex of two polypeptides, TglH and TglI, which uses nonheme iron and O2 to catalyze the removal of the peptidyl-cysteine β-methylene group, oxidation of this Cβ atom to formate, and reattachment of the thiol group to the α carbon. Herein, we use in vitro transcription-coupled translation and expressed protein ligation to characterize the role of the TglA scaffold in TglHI recognition and determine the specificity of TglHI with respect to the C-terminal residues of its substrate TglACys. The results of these experiments establish a synthetically accessible TglACys fragment sufficient for modification by TglHI and identify the l-selenocysteine analog of TglACys, TglASec, as an inhibitor of TglHI. These insights as well as a predicted structure and native mass spectrometry data set the stage for deeper mechanistic investigation of the complex TglHI-catalyzed reaction.
Collapse
Affiliation(s)
- Martin I. McLaughlin
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yue Yu
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
A biosynthetic pathway to aromatic amines that uses glycyl-tRNA as nitrogen donor. Nat Chem 2022; 14:71-77. [PMID: 34725492 PMCID: PMC8758506 DOI: 10.1038/s41557-021-00802-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/27/2021] [Indexed: 11/12/2022]
Abstract
Aromatic amines in nature are typically installed with Glu or Gln as the nitrogen donor. Here we report a pathway that features glycyl-tRNA instead. During the biosynthesis of pyrroloiminoquinone-type natural products such as ammosamides, peptide-aminoacyl tRNA ligases append amino acids to the C-terminus of a ribosomally synthesized peptide. First, [Formula: see text] adds Trp in a Trp-tRNA-dependent reaction and the flavoprotein AmmC1 then carries out three hydroxylations of the indole ring of Trp. After oxidation to the corresponding ortho-hydroxy para-quinone, [Formula: see text] attaches Gly to the indole ring in a Gly-tRNA dependent fashion. Subsequent decarboxylation and hydrolysis results in an amino-substituted indole. Similar transformations are catalysed by orthologous enzymes from Bacillus halodurans. This pathway features three previously unknown biochemical processes using a ribosomally synthesized peptide as scaffold for non-ribosomal peptide extension and chemical modification to generate an amino acid-derived natural product.
Collapse
|
12
|
A [3Fe-4S] cluster and tRNA-dependent aminoacyltransferase BlsK in the biosynthesis of Blasticidin S. Proc Natl Acad Sci U S A 2021; 118:2102318118. [PMID: 34282016 DOI: 10.1073/pnas.2102318118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blasticidin S is a peptidyl nucleoside antibiotic. Its biosynthesis involves a cryptic leucylation and two leucylated intermediates, LDBS and LBS, have been found in previous studies. Leucylation has been proposed to be a new self-resistance mechanism during blasticidin S biosynthesis, and the leucyl group was found to be important for the methylation of β-amino group of the arginine side chain. However, the responsible enzyme and its associated mechanism of the leucyl transfer process remain to be elucidated. Here, we report results investigating the leucyl transfer step forming the intermediate LDBS in blasticidin biosynthesis. A hypothetical protein, BlsK, has been characterized by genetic and in vitro biochemical experiments. This enzyme catalyzes the leucyl transfer from leucyl-transfer RNA (leucyl-tRNA) to the β-amino group on the arginine side chain of DBS. Furthermore, BlsK was found to contain an iron-sulfur cluster that is necessary for activity. These findings provide an example of an iron-sulfur protein that catalyzes an aminoacyl-tRNA (aa-tRNA)-dependent amide bond formation in a natural product biosynthetic pathway.
Collapse
|
13
|
Wu C, van der Donk WA. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products. Curr Opin Biotechnol 2021; 69:221-231. [PMID: 33556835 DOI: 10.1016/j.copbio.2020.12.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Natural products have historically been important lead sources for drug development, particularly to combat infectious diseases. Increasingly, their structurally complex scaffolds are also envisioned as leads for applications for which they did not evolve, an approach aided by engineering of new-to-nature analogs. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are promising candidates for bioengineering because they are genetically encoded and their biosynthetic enzymes display significant substrate tolerance. This review highlights recent advances in the discovery of highly unusual new reactions by genome mining and the application of engineering approaches to generate and screen novel RiPP variants. Furthermore, through the use of synthetic biology approaches, hybrid molecules with enhanced or completely new activities have been identified, which opens the door for future advancement of RiPPs as potential next-generation therapeutics.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States; Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States.
| |
Collapse
|
14
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 438] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
15
|
tRNA-dependent amide bond-forming enzymes in peptide natural product biosynthesis. Curr Opin Chem Biol 2020; 59:164-171. [PMID: 32898755 DOI: 10.1016/j.cbpa.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
In the ribosome-independent biosynthesis of peptide natural products, amino acid building blocks are generally activated in the form of phosphoesters, esters, or thioesters prior to amide bond formation. Following the recent discovery of bacterial enzymes that utilize an aminoacyl ester with a transfer ribonucleic acid (tRNA) in primary metabolism, the number of tRNA-dependent enzymes used in biosynthetic studies of peptide natural products has increased steadily. In this review, we summarize the rapidly growing knowledge base regarding two types of tRNA-dependent enzymes, which are structurally and functionally distinct. Initially, we focus on enzymes with the GCN5-related N-acetyltransferase fold and discuss the catalytic function and aminoacyl-tRNA recognition. Next, newly found peptide-amino acyl tRNA ligases and their ATP-dependent reactions are highlighted.
Collapse
|
16
|
Abstract
Bioinformatics-powered discovery of novel ribosomal natural products (RiPPs) has historically been hindered by the lack of a common genetic feature across RiPP classes. Herein, we introduce RRE-Finder, a method for identifying RRE domains, which are present in a majority of prokaryotic RiPP biosynthetic gene clusters (BGCs). RRE-Finder identifies RRE domains 3,000 times faster than current methods, which rely on time-consuming secondary structure prediction. Depending on user goals, RRE-Finder can operate in precision mode to accurately identify RREs present in known RiPP classes or in exploratory mode to assist with novel RiPP discovery. Employing RRE-Finder on the UniProtKB database revealed several high-confidence RREs in novel RiPP-like clusters, suggesting that many new RiPP classes remain to be discovered. Many ribosomally synthesized and posttranslationally modified peptide classes (RiPPs) are reliant on a domain called the RiPP recognition element (RRE). The RRE binds specifically to a precursor peptide and directs the posttranslational modification enzymes to their substrates. Given its prevalence across various types of RiPP biosynthetic gene clusters (BGCs), the RRE could theoretically be used as a bioinformatic handle to identify novel classes of RiPPs. In addition, due to the high affinity and specificity of most RRE-precursor peptide complexes, a thorough understanding of the RRE domain could be exploited for biotechnological applications. However, sequence divergence of RREs across RiPP classes has precluded automated identification based solely on sequence similarity. Here, we introduce RRE-Finder, a new tool for identifying RRE domains with high sensitivity. RRE-Finder can be used in precision mode to confidently identify RREs in a class-specific manner or in exploratory mode to assist in the discovery of novel RiPP classes. RRE-Finder operating in precision mode on the UniProtKB protein database retrieved ∼25,000 high-confidence RREs spanning all characterized RRE-dependent RiPP classes, as well as several yet-uncharacterized RiPP classes that require future experimental confirmation. Finally, RRE-Finder was used in precision mode to explore a possible evolutionary origin of the RRE domain. The results suggest RREs originated from a co-opted DNA-binding transcriptional regulator domain. Altogether, RRE-Finder provides a powerful new method to probe RiPP biosynthetic diversity and delivers a rich data set of RRE sequences that will provide a foundation for deeper biochemical studies into this intriguing and versatile protein domain. IMPORTANCE Bioinformatics-powered discovery of novel ribosomal natural products (RiPPs) has historically been hindered by the lack of a common genetic feature across RiPP classes. Herein, we introduce RRE-Finder, a method for identifying RRE domains, which are present in a majority of prokaryotic RiPP biosynthetic gene clusters (BGCs). RRE-Finder identifies RRE domains 3,000 times faster than current methods, which rely on time-consuming secondary structure prediction. Depending on user goals, RRE-Finder can operate in precision mode to accurately identify RREs present in known RiPP classes or in exploratory mode to assist with novel RiPP discovery. Employing RRE-Finder on the UniProtKB database revealed several high-confidence RREs in novel RiPP-like clusters, suggesting that many new RiPP classes remain to be discovered.
Collapse
|