1
|
Sau S, Kondalarao K, Naskar P, Sahoo AK. Sulfoximine Aided Ru(II)-Catalyzed Asymmetric Double C(sp 2)-H Hydroarylations of Olefins. Org Lett 2024; 26:9334-9339. [PMID: 39432324 DOI: 10.1021/acs.orglett.4c03524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Presented here is a sulfoximine-directed Ru(II)-catalyzed asymmetric intramolecular double C(sp2)-H hydroarylation of olefins. This process provides a diastereoselective and enantiospecific synthetic route to highly substituted tetrahydrobenzodifurans. Notably, the reaction accommodates labile functional groups and is scalable to gram quantities.
Collapse
Affiliation(s)
- Somratan Sau
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Koneti Kondalarao
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Paushali Naskar
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
2
|
Hao E, Kong X, Xu T, Zeng F. Synthesis of indolines via palladium-catalyzed [4 + 1] annulation of (2-aminophenyl)methanols with sulfoxonium ylides. Org Biomol Chem 2024; 22:6342-6351. [PMID: 39041823 DOI: 10.1039/d4ob00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
A facile strategy for the synthesis of valuable indolines has been developed, involving a palladium(II)/Brønsted acid co-catalyzed annulation of readily available (2-aminophenyl)methanols and sulfoxonium ylides. This protocol allows for the direct utilization of the OH group as a leaving group, tolerates alkyl and aryl groups on the N atom of the aniline moiety, operates under mild reaction conditions, and exhibits good efficiency.
Collapse
Affiliation(s)
- Erxiao Hao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| | - Xiaomei Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi, 710127, P. R. China.
| |
Collapse
|
3
|
Li J, Wang G, Guo W, Jiang J, Wang J. H 8-BINOL-Derived Chiral η 6-Benzene Ligands: New Opportunities for the Ruthenium-Catalyzed Asymmetric C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202405782. [PMID: 38679580 DOI: 10.1002/anie.202405782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Given the tremendous success of (p-cymene)RuII-catalyzed C-H activation over the past 20 years, the community has long been aware that the development of chiral η6-benzene (Ben) ligands should be a potent strategy for achieving the attractive but incredibly underdeveloped ruthenium(II)-catalyzed asymmetric C-H activation. However, it has rarely been achieved due to the severe difficulty in developing proper chiral Ben ligands. In particular, designing chiral Ben ligands by connecting a benzene fragment to a chiral framework including benzene rings remained an unsolved challenge until this effort. Here we present a novel class of axially chiral Ben ligands derived from readily available (S)-5,5',6,6',7,7',8,8'-octahydro-1,1'-bi-2-naphthol ((S)-H8-BINOL) in 4-8 steps. Notably, when coordinated with ruthenium, such chiral Ben ligand containing three benzene rings only forms one of the three possible isomeric BenRuII complexes. The related chiral BenRuII catalysts could effectively catalyze the asymmetric C-H activation of N-sulfonyl ketimines with alkynes, affording a range of chiral spirocyclic sultams in up to 99 % yield with up to >99 % ee. These catalysts are expected to find broad applications in future.
Collapse
Affiliation(s)
- Junxuan Li
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, and Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Guodong Wang
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, and Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Weicong Guo
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, and Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jijun Jiang
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, and Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun Wang
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, and Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Ojea V, Ruiz M. DLPNO-CCSD(T) and DFT study of the acetate-assisted C-H activation of benzaldimine at [RuCl 2( p-cymene)] 2: the relevance of ligand exchange processes at ruthenium(II) complexes in polar protic media. Dalton Trans 2024; 53:8662-8679. [PMID: 38695752 DOI: 10.1039/d4dt00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To gain mechanistic insights into the acetate-assisted cyclometallations of arylimines promoted by [RuCl2(p-cymene)]2 in polar protic media, DFT geometry optimizations (with M06 and ωB97X-D3 functionals and the cc-pVDZ-PP[Ru] basis set) followed by DLPNO-CCSD(T)/CBS energy evaluations were performed using benzaldimine as a model substrate and methanol as the solvent (with CPCM or SMD models). The calculation results show that coordination of the imine to an acetate ruthenium precursor is followed by anion (chloride or acetate) dissociation as the rate-determining step of the process. H-Bonding of two explicit MeOH to the anion reduces the calculated activation energy to ca. 23 kcal mol-1, in good agreement with the experimental half-life at room temperature. Subsequent AMLA/CMD C-H activation of the intermediate cationic complexes is a faster, reversible process. Alternative reaction pathways involving neutral diacetate ruthenium complexes offer AMLA/CMD transition state structures of lower energy but are precluded due to higher energy barriers for the initial ligand exchange processes at ruthenium. Solvent assistance accelerates the final chloride/acetate exchange processes on the cycloruthenate intermediates, particularly when compression in the condensed phase is taken into consideration. The performance of six DFT functionals (with the aug-pVTZ-PP[Ru] basis set) was assessed using the DLPNO-CCSD(T)/CBS reference energies. Neutral diacetate ruthenium complexes were incorrectly predicted as being kinetically relevant when using hybrid DFT methods (PBE0-D3(BJ), M06-2X or ωB97M-V). Good agreement between the calculated barrier heights and our benchmark energy results was obtained by using double-hybrid DFT methods. PWPB95 with D3(BJ) or D4 dispersion energy corrections was found to be the most accurate (ΔG≠ MUE of ca. 1 kcal mol-1). This study may aid our understanding of and help with further experimental investigations of synthetically useful carboxylate-assisted C-H bond functionalizations involving (N,C)-cyclometallated (p-cymene)Ru(II) intermediate complexes in sustainable polar protic solvents.
Collapse
Affiliation(s)
- Vicente Ojea
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| | - María Ruiz
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| |
Collapse
|
5
|
Boym MA, Pototskiy RA, Podyacheva ES, Chusov DA, Nelyubina YV, Perekalin DS. Planar-chiral arene ruthenium complexes: synthesis, separation of enantiomers, and application for catalytic C-H activation. Chem Commun (Camb) 2024; 60:4491-4494. [PMID: 38567466 DOI: 10.1039/d4cc00181h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Heating tert-butyl-tetraline with [(p-cymene)RuCl2]2 produces the racemic complex [(arene)RuCl2]2, which can be separated into enantiomers by chromatography of its diastereomeric adducts with chiral phosphine ligand. The resolved chiral complex catalyzes C-H activation of N-methoxy-benzamides and their annulation with N-vinyl-pivaloyl amide giving dihydroisoquinolones in 50-80% yields and with 40-80% enantiomeric excess.
Collapse
Affiliation(s)
- Mikhail A Boym
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, 119334, Russia.
- National Research University Higher School of Economics, 7 Vavilova str., Moscow, 117312, Russia
| | - Roman A Pototskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Evgeniya S Podyacheva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, 119334, Russia.
- National Research University Higher School of Economics, 7 Vavilova str., Moscow, 117312, Russia
| | - Denis A Chusov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, 119334, Russia.
- National Research University Higher School of Economics, 7 Vavilova str., Moscow, 117312, Russia
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, 119334, Russia.
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, 141700, Russia
| | - Dmitry S Perekalin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, 119334, Russia.
- National Research University Higher School of Economics, 7 Vavilova str., Moscow, 117312, Russia
| |
Collapse
|
6
|
Chen W, Jiang J, Wang J. Asymmetric Ruthenium-Catalyzed C-H Activation by a Versatile Chiral-Amide-Directing Strategy. Angew Chem Int Ed Engl 2024; 63:e202316741. [PMID: 38102747 DOI: 10.1002/anie.202316741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
A versatile and readily available chiral amide directing group has been developed for the ruthenium(II)-catalyzed asymmetric C-H activation. Asymmetric C-H activation of the related chiral benzamides with various olefins, aldehydes and propargylic alcohols has been accomplished with high stereoselectivities, affording a series of chiral products including 3,4-dihydroisocoumarins (up to 96 % ee), isocoumarins (up to 92 % ee), phthalides (up to 99 % ee), chiral bicyclo[2.2.1]heptanes (>20 : 1 dr), 4-alkylidene-3,4-dihydroisocoumarins (up to 97 % ee) and allenes (>20 : 1 dr). Importantly, our methodologies enabled concise syntheses of many biologically active compounds and natural products (e.g., Montroumarin, Cyclosporone E, Cyclosporone Q, Concentricolide, Chuangxinol, and Eleutherol).
Collapse
Affiliation(s)
- Wenkun Chen
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, 510006, Guangzhou, P. R. China
| | - Jijun Jiang
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, 510006, Guangzhou, P. R. China
| | - Jun Wang
- School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, 510006, Guangzhou, P. R. China
| |
Collapse
|
7
|
Li ZY, Liu F, Li H, Guo X, Jiao L, Hao E. Rhodium-Catalyzed Two-Fold, Regioselective and Enantioselective C-H Activation: an Efficient Strategy to Chiral Single-Benzene-Based Fluorophores. Org Lett 2024. [PMID: 38180822 DOI: 10.1021/acs.orglett.3c03467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
A Rh-catalyzed two-fold, regioselective and enantioselective C-H activation via chiral transient directing group strategy has been demonstrated in moderate to good yields with commendable enantioselectivities. The newly synthesized chiral fluorophores exhibit favorable photophysical properties, including large Stokes shifts, good fluorescence quantum yields, aggregation-induced emission in aqueous solution, and intense emission and circularly polarized luminescence in the solid state, indicating great potential applications as chiral fluorescent probes or optoelectronic materials.
Collapse
Affiliation(s)
- Zhong-Yuan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fang Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Heng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
8
|
Saito Y, Kobayashi S. Continuous-Flow Enantioselective Hydroacylations under Heterogeneous Chiral Rhodium Catalysts. Angew Chem Int Ed Engl 2024; 63:e202313778. [PMID: 37991463 DOI: 10.1002/anie.202313778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 11/23/2023]
Abstract
Transition metal-catalyzed enantioselective C-H bond functionalizations have become efficient methods for the synthesis of complex optically active molecules. Heterogeneous catalysts for this chemistry remain largely unexplored despite the advantages they offer in terms of ease of separation and reuse of catalysts. Herein, we report the development of heterogeneous chiral Rh catalysts for continuous-flow enantioselective hydroacylations. Heterogeneous catalysts could be prepared simply by mixing supports and Rh complexes. The prepared catalysts exhibited excellent activity and enantioselectivity affording optically active ketones in quantitative yields with 99 % ee's. Under the optimized reaction conditions, a turnover number >300 was achieved without the leaching of Rh species. The catalysts exhibited a wide substrate scope and in sequential-flow reactions with other heterogeneous catalysts, the syntheses of biologically active molecules and functional materials were demonstrated.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Udayanga DMN, Le N, Schwirian EN, Donnadieu B, Nash K, Collier W, Webster CE, Cui X. Synthesis of N-Fused Polycyclic Indole Derivatives via Ru(II)-Catalyzed C-H Bond Activation and Intramolecular Hydroarylation. Org Lett 2023. [PMID: 38032145 DOI: 10.1021/acs.orglett.3c03757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A new synthesis of N-fused tetracyclic indole derivatives and their related polycyclic analogues has been developed based on ruthenium(II)-catalyzed C-H activation and intramolecular hydroarylation. A series of polycyclic indoles with a 3-formyl group have been prepared in good to high yields. Various aliphatic and aromatic amines have been studied to form a transient directing group with the aldehyde for the catalytic process. A significant impact of the structures of the aromatic amines was identified, and 1-naphthylamine was shown to enable the catalytic process. DFT computations were performed to gain further insight into the role of the transient directing groups.
Collapse
Affiliation(s)
- D M Nirosh Udayanga
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Nghia Le
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Elijah N Schwirian
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kye Nash
- Department of Chemistry, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Willard Collier
- Department of Chemistry, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Xin Cui
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
10
|
Ma Y, Liu QH, Han YP. Palladium-Catalyzed Enantioselective Intramolecular Heck Dearomative Annulation of Indoles with N-Tosylhydrazones. J Org Chem 2023; 88:15881-15893. [PMID: 37922202 DOI: 10.1021/acs.joc.3c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
An elegant Pd(dba)2-catalyzed enantioselective Heck dearomative annulation of indoles and N-tosylhydrazones for the straightforward assembly of structurally diverse optically active indoline scaffolds containing the quaternary carbon centers at the C2 position has been developed. The tandem protocol, which utilized a Pd(dba)2/BINOL-based phosphoramidite ligand as the catalytic system, proceeded smoothly through successive oxidative addition, intramolecular carbon palladation, migratory insertion, and β-elimination sequences, leading to the chiral indoline derivatives in moderate to excellent yields, with excellent enantioselectivities and diastereoselectivities. In addition, the synthetic practicability of the catalytic system was underlined by a scaled-up experiment and the late-stage derivatization of the products, thus highlighting the potential applications in synthetic chemistry, medicinal chemistry, and material science.
Collapse
Affiliation(s)
- Yue Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Qing-Hui Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
11
|
Sau S, Mukherjee K, Kondalarao K, Gandon V, Sahoo AK. Probing Chiral Sulfoximine Auxiliaries in Ru(II)-Catalyzed One-Pot Asymmetric C-H Hydroarylation and Annulations with Alkynes. Org Lett 2023; 25:7667-7672. [PMID: 37844260 DOI: 10.1021/acs.orglett.3c02969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Developed herein is a chiral sulfoximine-enabled Ru(II)-catalyzed asymmetric C-H activation/functionalization involving intramolecular hydroarylation and functionalization/annulation of alkynes. This process constructs dihydrobenzofuran- or indoline-fused isoquinolinones having a tertiary or quaternary stereocenter with good yields and enantioselectivities (up to 97:3 enantiomeric ratio). The chiral sulfoxide precursor used in synthesizing the enantiopure sulfoximines is spontaneously eliminated during the reaction. It can be recovered without losing enantiopurity (∼99% enantiomeric excess) and reused.
Collapse
Affiliation(s)
- Somratan Sau
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Kallol Mukherjee
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Koneti Kondalarao
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 91405 Orsay, France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
12
|
Gul R, Hu L, Liu Y, Xie Y. Synthesis of 1-Aryltetralins via Re 2O 7/HReO 4 Mediated Intramolecular Hydroarylations. J Org Chem 2023; 88:12079-12086. [PMID: 37559373 DOI: 10.1021/acs.joc.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Here, we describe highly efficient intramolecular hydroarylations mediated by Re2O7/HReO4. Styrene derivatives of different electronic properties have been activated to effect a challenging intramolecular hydroarylation for the facile access to various substituted 1-aryltetralin structures. This method is characterized by mild reaction conditions, broad substrate scope, high chemical yields, and 100% atom economy. The potential synthetic application of this methodology was exemplified by the efficient total synthesis of an isoCA-4 analogue.
Collapse
Affiliation(s)
- Rukhsar Gul
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liqun Hu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yibing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
13
|
Mei MS, Zhang Y. Synthesis of Naphthalimides through Tandem Pd(II)-Catalyzed C(sp 3)-H Oxidation and Diels-Alder Reaction Using a Transient Directing Group Strategy. Org Lett 2023. [PMID: 37399131 DOI: 10.1021/acs.orglett.3c01590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Naphthalimides have found extensive applications in materials science and pharmaceuticals. It is still highly desirable to develop efficient methods for the synthesis of naphthalimides with structural diversity. In this work, we developed a new approach for the synthesis of naphthalimides via a tandem reaction of o-methylbenzaldehydes and maleimides. The tandem reaction involves Pd(II)-catalyzed benzylic C(sp3)-H oxidation using an amino acid as the transient directing group and Diels-Alder reaction. The subsequent dehydration forms naphthalimides. The reaction introduces the imide moiety and constructs a benzene ring simultaneously, allowing for easy access to a range of naphthalimides with a variety of substituents.
Collapse
Affiliation(s)
- Ming-Shun Mei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
14
|
Liu S, Prévost S. Palladium-Catalyzed ortho-C-H Alkoxycarbonylation of Aromatic Aldehydes via a Transient Directing Group Strategy. Org Lett 2023; 25:1380-1385. [PMID: 36825848 DOI: 10.1021/acs.orglett.3c00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Transient directing groups (TDGs) can be a powerful strategy for directly functionalizing C-H bonds of aldehydes. We report a palladium-catalyzed o-C-H alkoxycarbonylation of benzaldehydes using a catalytic amount of aromatic amine to form a transient imine that plays the role of a monodentate TDG. The reaction conditions were applied to a broad range of aldehydes, and the corresponding 2-formyl benzoates were used as direct precursors for the synthesis of phthalides and 1-isoindolinones.
Collapse
Affiliation(s)
- Shanshan Liu
- Laboratoire de Synthèse Organique (LSO - UMR 7652), CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 828 boulevard des Maréchaux, 91120 Palaiseau, France
| | - Sébastien Prévost
- Laboratoire de Synthèse Organique (LSO - UMR 7652), CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 828 boulevard des Maréchaux, 91120 Palaiseau, France
| |
Collapse
|
15
|
Liang H, Wang J. Enantioselective C-H Bond Functionalization Involving Arene Ruthenium(II) Catalysis. Chemistry 2023; 29:e202202461. [PMID: 36300688 DOI: 10.1002/chem.202202461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Abstract
The p-Cymene ruthenium(II) complex is one of the most widely used catalysts in C-H activation. However, enantioselective C-H activation promoted by arene ruthenium(II) complexes has not been realized until recently. The revealed strategies include intramolecular nitrene C-H insertion, the use of chiral transient directing groups, chiral carboxylic acid, relay catalysis, and chiral arene ligands. In this minireview, these advances are summarized and discussed in the hope of spurring further developments.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
16
|
CuxPd1-xO nanoparticle-reduced graphene oxide nanocomposite catalyzed direct ortho-C–H acylation of 2-aryl pyridines. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Li Y, Liou Y, Oliveira JCA, Ackermann L. Ruthenium(II)/Imidazolidine Carboxylic Acid-Catalyzed C-H Alkylation for Central and Axial Double Enantio-Induction. Angew Chem Int Ed Engl 2022; 61:e202212595. [PMID: 36108175 PMCID: PMC9828380 DOI: 10.1002/anie.202212595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Enantioselective C-H activation has surfaced as a transformative toolbox for the efficient assembly of chiral molecules. However, despite of major advances in rhodium and palladium catalysis, ruthenium(II)-catalyzed enantioselective C-H activation has thus far largely proven elusive. In contrast, we herein report on a ruthenium(II)-catalyzed highly regio-, diastereo- and enantioselective C-H alkylation. The key to success was represented by the identification of novel C2-symmetric chiral imidazolidine carboxylic acids (CICAs), which are easily accessible in a one-pot fashion, as highly effective chiral ligands. This ruthenium/CICA system enabled the efficient installation of central and axial chirality, and featured excellent branched to linear ratios with generally >20 : 1 dr and up to 98 : 2 er. Mechanistic studies by experiment and computation were carried out to understand the catalyst mode of action.
Collapse
Affiliation(s)
- Yanjun Li
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Yan‐Cheng Liou
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| |
Collapse
|
18
|
Qian PF, Zhou T, Li JY, Zhou YB, Shi BF. Ru(II)/Chiral Carboxylic Acid-Catalyzed Asymmetric [4 + 3] Annulation of Sulfoximines with α,β-Unsaturated Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi-Bo Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
19
|
Li ZY, Zhang JP, Ying YY, Yan D, Jiao L, Hao E. Rhodium-Catalyzed Tandem C–H Annulation Enabled by Transient Directing Group Strategy and Sequential Nucleophilic Substitution. Org Lett 2022; 24:7888-7893. [DOI: 10.1021/acs.orglett.2c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials; Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Jin-Ping Zhang
- Anhui Laboratory of Molecule-Based Materials; Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yun-Yi Ying
- Anhui Laboratory of Molecule-Based Materials; Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Dong Yan
- Anhui Laboratory of Molecule-Based Materials; Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials; Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials; Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
20
|
Mishra A, Wu P, Cong X, Nishiura M, Luo G, Hou Z. Exo-Selective Intramolecular C–H Alkylation with 1,1-Disubstituted Alkenes by Rare-Earth Catalysts: Construction of Indanes and Tetralins with an All-Carbon Quaternary Center. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Vuagnat M, Tognetti V, Jubault P, Besset T. Ru(II)-Catalyzed Hydroarylation of in situ Generated 3,3,3-Trifluoro-1-propyne by C-H Bond Activation: A Facile and Practical Access to β-Trifluoromethylstyrenes. Chemistry 2022; 28:e202201928. [PMID: 35736795 PMCID: PMC9804422 DOI: 10.1002/chem.202201928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/05/2023]
Abstract
In this study, a practical and straightforward synthesis of β-(E)-trifluoromethylstyrenes by ruthenium-catalyzed C-H bond activation was developed. The readily available and inexpensive 2-bromo-3,3,3-trifluoropropene (BTP), a non-ozone depleting reagent, was used as a reservoir of 3,3,3-trifluoropropyne. With this approach, the monofunctionalization of a panel of heteroarenes was possible in a safe and scalable manner (23 examples, up to 87 % yield). Mechanistic investigations and density functional theory (DFT) calculations were also conducted to get a better understanding of the mechanism of this transformation. These studies suggested that 1) a cyclometallated ruthenium complex enabled the transformation, 2) this complex exhibited high efficiency in this transformation compared to the commercially available [RuCl2 (p-cymene)]2 and 3) the mechanism proceeded through a bis-cyclometallated ruthenium intermediate for the carboruthenation step.
Collapse
Affiliation(s)
- Martin Vuagnat
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Vincent Tognetti
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Philippe Jubault
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Tatiana Besset
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| |
Collapse
|
22
|
Sun X, Lin EZ, Li BJ. Iridium-Catalyzed Branch-Selective and Enantioselective Hydroalkenylation of α-Olefins through C-H Cleavage of Enamides. J Am Chem Soc 2022; 144:17351-17358. [PMID: 36121772 DOI: 10.1021/jacs.2c07477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalytic branch-selective hydrofunctionalization of feedstock α-olefins to form enantioenriched chiral compounds is a particularly attractive yet challenging transformation in asymmetric catalysis. Herein we report an iridium-catalyzed asymmetric hydroalkenylation of α-olefins through directed C-H cleavage of enamides. This atom-economical addition process is highly branch-selective and enantioselective, delivering trisubstituted alkenes with an allylic stereocenter. DFT calculations reveal the origin of regio- and enantioselectivity.
Collapse
Affiliation(s)
- Xin Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
24
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
25
|
Lu P, Zhuang W, Lu L, Liu A, Chen Y, Wu C, Zhang X, Huang Q. Chemodivergent Synthesis of Indeno[1,2- b]indoles and Isoindolo[2,1- a]indoles via Mn(III)-Mediated or Electrochemical Intramolecular Radical Cross-Dehydrogenative Coupling. J Org Chem 2022; 87:10967-10981. [PMID: 35901234 DOI: 10.1021/acs.joc.2c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chemodivergent synthesis of indeno[1,2-b]indoles and isoindolo[2,1-a]indoles from the same starting materials involving radical cross-dehydrogenative couplings have been developed. Mn(OAc)3·2H2O selectively promoted an intramolecular radical C-H/C-H dehydrogenative coupling reaction to provide indeno[1,2-b]indoles, while an intramolecular radical C-H/N-H dehydrogenative coupling reaction could proceed via electrochemistry to deliver isoindolo[2,1-a]indoles. Plausible mechanisms of the chemodivergent reactions were proposed.
Collapse
Affiliation(s)
- Piao Lu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Weihui Zhuang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Leipeng Lu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Anyi Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Yixi Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Chenmeng Wu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| |
Collapse
|
26
|
Hu G, Brenner-Moyer SE. Design and synthesis of novel pyrrolidine-bipyridine structures. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Guang Hu
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
27
|
Zhang J, Fan J, Wu Y, Guo Z, Wu J, Xie M. Pd-Catalyzed Atroposelective C–H Acyloxylation Enabling Access to an Axially Chiral Biaryl Phenol Organocatalyst. Org Lett 2022; 24:5143-5148. [DOI: 10.1021/acs.orglett.2c01981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jian Fan
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yehe Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ziyi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
28
|
Yoshino T. Enantioselective C–H Functionalization Using High-Valent Group 9 Metal Catalysts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812
| |
Collapse
|
29
|
Niu J, Wu H, Niu C, Huang G, Zhang C. Palladium and Amino Acid Co-Catalyzed Highly Regio- and Enantioselective Hydroarylation of Unbiased Alkenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiapan Niu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Hongli Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Changhao Niu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Genping Huang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Liang H, Guo W, Li J, Jiang J, Wang J. Chiral Arene Ligand as Stereocontroller for Asymmetric C-H Activation. Angew Chem Int Ed Engl 2022; 61:e202204926. [PMID: 35445516 DOI: 10.1002/anie.202204926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 12/20/2022]
Abstract
Development of chiral ligands is the most fundamental task in metal-catalyzed asymmetric synthesis. In the last 60 years, various kinds of ligands have been sophisticatedly developed. However, it remains a long-standing challenge to develop practically useful chiral η6 -arene ligands, thereby seriously hampering the asymmetric synthesis promoted by arene-metal catalysts. Herein, we report the design and synthesis of a class of readily tunable, C2 -symmetric chiral arene ligands derived from [2.2]paracyclophane. Its ruthenium(II) complexes have been prepared and successfully applied in the enantioselective C-H activation to afford a series of axially chiral isoquinolones (up to 99 % yield and 96 % ee). This study not only lays chemists' longstanding doubts about whether it is possible to use chiral arene ligands to stereocontrol ruthenium(II)-catalyzed asymmetric C-H activation, but also opens up a new avenue to achieve asymmetric C-H activation.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Weicong Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Junxuan Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
31
|
Liang H, Guo W, Li J, Jiang J, Wang J. Chiral Arene Ligand as Stereocontroller for Asymmetric C−H Activation**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Weicong Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Junxuan Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
32
|
Dethe DH, Beeralingappa NC, Siddiqui SA, Chavan PN. Asymmetric Ru/Cinchonine Dual Catalysis for the One-Pot Synthesis of Optically Active Phthalides from Benzoic Acids and Acrylates. J Org Chem 2022; 87:4617-4630. [PMID: 35266689 DOI: 10.1021/acs.joc.1c02961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein, we report the asymmetric Ru/cinchonine dual catalysis that provides straightforward access to enantioselective synthesis of C-3 substituted phthalides via tandem C-H activation/Michael addition cascade. The use of readily accessible and less expensive [RuCl2(p-cym)]2 and cinchonine catalyst for the one-pot assembly of chiral phthalides greatly overcomes the present trend of using highly sophisticated catalysts. The developed method provides access to both enantiomers of a product using pseudoenantiomeric cinchona alkaloids as catalysts streamlining the synthesis of phthalide in both the optically active forms.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Salman A Siddiqui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prakash N Chavan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
33
|
Zhang L, Wang LL, Fang DC. DFT Case Study on the Comparison of Ruthenium-Catalyzed C-H Allylation, C-H Alkenylation, and Hydroarylation. ACS OMEGA 2022; 7:6133-6141. [PMID: 35224376 PMCID: PMC8867598 DOI: 10.1021/acsomega.1c06584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Density functional calculations at the B3LYP-D3+IDSCRF/TZP-DKH(-dfg) level of theory have been performed to understand the mechanism of ruthenium-catalyzed C-H allylation reported in the literature in depth. The plausible pathway consisted of four sequential processes, including C-H activation, migratory insertion, amide extrusion, and recovery of the catalyst, in which C-H activation was identified as the rate-determining step. The amide extrusion step could be promoted kinetically by trifluoroacetic acid since its mediation lowered the free-energy barrier from 32.1 to 12.2 kcal/mol. Additional calculations have been performed to explore other common pathways between arenes and alkenes, such as C-H alkenylation and hydroarylation. A comparison of the amide extrusion and β-H elimination steps established the following reactivity sequence of the leaving groups: protonated amide group > β-H group > unprotonated amide group. The suppression of hydroarylation was attributed to the sluggishness of the Ru-C protonation step as compared to the amide extrusion step. This study can unveil factors favoring the C-H allylation reaction.
Collapse
Affiliation(s)
- Lei Zhang
- School
of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Ling-Ling Wang
- School
of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - De-Cai Fang
- College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
34
|
Zhang M, Zhong Z, Liao L, Zhang AQ. Application of a transient directing strategy in cyclization reactions via C–H activation. Org Chem Front 2022. [DOI: 10.1039/d2qo00765g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review introduces seven types of cyclization reactions via C–H activation using a transient directing strategy.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China
| | - Zukang Zhong
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China
| | - Lihua Liao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China
| | - Ai Qin Zhang
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
| |
Collapse
|
35
|
Wang Q, Yan Z, Xing D. Nickel(0)-catalysed linear-selective hydroarylation of 2-aminostyrenes with arylboronic acids by a bifunctional temporary directing group strategy. Org Chem Front 2022. [DOI: 10.1039/d2qo00546h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a nickel(0)-catalyzed linear-selective hydroarylation of 2-aminostyrenes with arylboronic acids using a bifunctional temporary directing group strategy. In the presence of a catalytic amount of commercially available 3,5-dibromosalicylaldehyde, an...
Collapse
|
36
|
Kumar R, Chandra D, Sharma U. Pd‐Catalyzed Atropselective C−H Olefination Promoted by a Transient Directing Group. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rohit Kumar
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Devesh Chandra
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Upendra Sharma
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
37
|
La M, Liu D, Chen X, Zhang FL, Zhou Y. Monodentate Transient Directing Group-Assisted Palladium-Catalyzed Direct ortho-C-H Iodination of Benzaldehydes for Total Synthesis of Hernandial. Org Lett 2021; 23:9184-9188. [PMID: 34787425 DOI: 10.1021/acs.orglett.1c03491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first palladium-catalyzed direct o-C-H iodination of benzaldehydes was successfully developed with the assistance of commercially available 2,5-bis(trifluoromethyl)aniline as the optimal monodentate transient directing group (MonoTDG). Moderate to excellent yields and good selectivity were achieved for a broad substrate scope under mild conditions. More importantly, the synthetic application was demonstrated by a concise two-step total synthesis of the natural product hernandial, which was accomplished by merging this new MonoTDG-assisted C-H iodination and subsequent copper-catalyzed cross-coupling.
Collapse
Affiliation(s)
- Ming La
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.,Chemistry and Environment Engineering College, Pingdingshan University, Pingdingshan 475000, People's Republic of China.,School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Dandan Liu
- Chemistry and Environment Engineering College, Pingdingshan University, Pingdingshan 475000, People's Republic of China.,School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Xuerong Chen
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, People's Republic of China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
38
|
Kuang G, Liu D, Chen X, Liu G, Fu Y, Peng Y, Li H, Zhou Y. Transient Directing Group Strategy as a Unified Method for Site Selective Direct C4-H Halogenation of Indoles. Org Lett 2021; 23:8402-8406. [PMID: 34664971 DOI: 10.1021/acs.orglett.1c03131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A unified method for direct C4-H halogenation of indoles has been accomplished with the assistance of anthranilic acids as suitable transient directing groups. Exclusive site selectivity (one out of five potential reactive sites) as well as good functional group tolerance was obtained to install three kinds of halogen atoms (Cl, Br and I, respectively) by using inexpensive N-halosuccinimides (NXS) as halogen sources under mild conditions. Taking advantage of the rich functional groups in the product, a diversity of nitrogen-containing heterocycles were facily constructed via one-step late-stage derivations.
Collapse
Affiliation(s)
- Guanghua Kuang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dandan Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China.,Chemistry and Environment Engineering College, Pingdingshan University, Pingdingshan 475000, China
| | - Xuerong Chen
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yiyuan Peng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
39
|
Perekalin DS, Pototskiy RA, Boym MA, Nelyubina YV. Synthesis of Ruthenium Catalysts with a Chiral Arene Ligand Derived from Natural Camphor. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1668-2075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractA ruthenium complex with a chiral arene ligand [(camphor–arene)RuCl2]2 was synthesized by the reaction of RuCl3·nH2O with a chiral diene which was obtained from natural camphor in three steps. This complex catalyzed the asymmetric hydrogenation of acetophenone (64–85% ee), but decomposed in catalytic reactions involving C–H activation of 2-phenylpyridine or benzoic acid derivatives.
Collapse
Affiliation(s)
- Dmitry S. Perekalin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- National Research University Higher School of Economics
| | - Roman A. Pototskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
| | - Mikhail A. Boym
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- National Research University Higher School of Economics
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
| |
Collapse
|
40
|
Jacob C, Maes BUW, Evano G. Transient Directing Groups in Metal-Organic Cooperative Catalysis. Chemistry 2021; 27:13899-13952. [PMID: 34286873 DOI: 10.1002/chem.202101598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/13/2022]
Abstract
The direct functionalization of C-H bonds is among the most fundamental chemical transformations in organic synthesis. However, when the innate reactivity of the substrate cannot be utilized for the functionalization of a given single C-H bond, this selective C-H bond functionalization mostly relies on the use of directing groups that allow bringing the catalyst in close proximity to the C-H bond to be activated and these directing groups need to be installed before and cleaved after the transformation, which involves two additional undesired synthetic operations. These additional steps dramatically reduce the overall impact and the attractiveness of C-H bond functionalization techniques since classical approaches based on substrate pre-functionalization are sometimes still more straightforward and appealing. During the past decade, a different approach involving both the in situ installation and removal of the directing group, which can then often be used in a catalytic manner, has emerged: the transient directing group strategy. In addition to its innovative character, this strategy has brought C-H bond functionalization to an unprecedented level of usefulness and has enabled the development of remarkably efficient processes for the direct and selective introduction of functional groups onto both aromatic and aliphatic substrates. The processes unlocked by the development of these transient directing groups will be comprehensively overviewed in this review article.
Collapse
Affiliation(s)
- Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium
| |
Collapse
|
41
|
Hu JL, Bauer F, Breit B. Ruthenium-Catalyzed Enantioselective Addition of Carboxylic Acids to Allenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jiang-Lin Hu
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| | - Felix Bauer
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| |
Collapse
|
42
|
Cao X, Dong D, He D, Lin X. Investigating the exceptional adducts of alkoxides with Ru(II)-arene cations in alkyl alcohol solution using electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9148. [PMID: 34151492 DOI: 10.1002/rcm.9148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Exploring the formation mechanism of the exceptional adducts of alkoxides with Ru(II)-arene cations in alkyl alcohol solution using electrospray ionization mass spectrometry (ESI-MS) is crucial for further understanding the physicochemical properties of Ru(II)-arene complexes in solution. METHODS All mass spectra were collected with an AB SCIEX TripleTOF 5600+ mass spectrometer in positive mode. Theoretical calculations were carried out using the density functional theory method at the B3LYP level with a hybrid basis set consisting of 6-31G(d,p) and LanL2DZ in the Gaussian 03 program. RESULTS When ruthenated [15 ]paracyclophanes (Ru-[15 ]PCPs) and Ru(II)-arene dimers were dissolved in alkyl alcohol solvents, the adducts of alkoxides with Ru(II)-arene cations were observed under positive ion mode ESI-MS, which resulted from the coordination of alkyl alcohol molecules with the Ru(II)-arene cations followed by the deprotonation of O-H bonds of the coordinated alcohols. Furthermore, the number of alkoxides binding to Ru-[15 ]PCPs was regulated by the number of ruthenium atoms. Attributed to good solubility and small steric hindrance, the signal intensity of the adducts of methoxides with Ru(II)-arene cations was the strongest among the three alkyl alcohols used in this study. CONCLUSIONS The characteristic adducts of alkoxides with Ru(II)-arene cations were pervasively present in positive ion mode ESI-MS of nine Ru(II)-arene complexes dissolved in alkyl alcohol solvents. Taking into consideration the solubility and signal response, methanol is the most suitable solvent for the ESI-MS experiments with Ru(II)-arene complexes among the solvents studied, where almost only the diagnostic adducts of methoxides with Ru(II)-arene cations are present.
Collapse
Affiliation(s)
- Xiaoji Cao
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Zhejiang, Hangzhou, China
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| | - Danqi Dong
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| | - Dandan He
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| | - Xupin Lin
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| |
Collapse
|
43
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)‐Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| |
Collapse
|
44
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)-Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021; 60:19297-19305. [PMID: 34137152 PMCID: PMC8456945 DOI: 10.1002/anie.202105776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Indexed: 12/29/2022]
Abstract
We report a versatile, highly enantioselective intramolecular hydrocarbonation reaction that provides a direct access to heteropolycyclic systems bearing chiral quaternary carbon stereocenters. The method, which relies on an iridium(I)/bisphosphine chiral catalyst, is particularly efficient for the synthesis of five-, six- and seven-membered fused indole and pyrrole products, bearing one and two stereocenters, with enantiomeric excesses of up to >99 %. DFT computational studies allowed to obtain a detailed mechanistic profile and identify a cluster of weak non-covalent interactions as key factors to control the enantioselectivity.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (CSIC)36080PontevedraSpain
| |
Collapse
|
45
|
Yoshino T, Matsunaga S, Huang LT, Hirata Y, Kato Y, Lin L, Kojima M. Ruthenium(II)/Chiral Carboxylic Acid Catalyzed Enantioselective C–H Functionalization of Sulfoximines. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1588-0072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractRuthenium(II)-catalyzed enantioselective C–H functionalization reactions of sulfoximines with sulfoxonium ylides are described. The combination of [RuCl2(p-cymene)]2 and a pseudo-C
2-symmetric binaphthyl monocarboxylic acid furnished the S-chiral products in 76:24 to 92:8 er.
Collapse
Affiliation(s)
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University
| | | | - Yuki Hirata
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Yoshimi Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Luqing Lin
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University
- Zhang Dayu School of Chemistry, Dalian University of Technology
| | | |
Collapse
|
46
|
Transient directing ligands for selective metal-catalysed C–H activation. Nat Rev Chem 2021; 5:646-659. [PMID: 37118417 DOI: 10.1038/s41570-021-00311-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/08/2023]
Abstract
C-H activation is a 'simple-to-complex' transformation that nature has perfected over millions of years of evolution. Transition-metal-catalysed C-H activation has emerged as an expeditious means to expand the chemical space by introducing diverse functionalities. Notably, among the strategies to selectively cleave a particular C-H bond, the catalytic use of a small molecule as co-catalyst to generate a transient directing group, which provides a balance between step economy and chemical productivity, has gained immense attention in recent years. This allows one to convert a desired C-H bond irrespective of its geometrical or stereochemical configuration. This Review describes the various transient directing groups used in C-H activation and explains their mechanistic significance.
Collapse
|
47
|
Kopf S, Ye F, Neumann H, Beller M. Ruthenium-Catalyzed Deuteration of Aromatic Carbonyl Compounds with a Catalytic Transient Directing Group. Chemistry 2021; 27:9768-9773. [PMID: 33844338 PMCID: PMC8361678 DOI: 10.1002/chem.202100468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 12/18/2022]
Abstract
A novel ruthenium-catalyzed C-H activation methodology for hydrogen isotope exchange of aromatic carbonyl compounds is presented. In the presence of catalytic amounts of specific amine additives, a transient directing group is formed in situ, which directs selective deuteration. A high degree of deuteration is achieved for α-carbonyl and aromatic ortho-positions. In addition, appropriate choice of conditions allows for exclusive labeling of the α-carbonyl position while a procedure for the preparation of merely ortho-deuterated compounds is also reported. This methodology proceeds with good functional group tolerance and can be also applied for deuteration of pharmaceutical drugs. Mechanistic studies reveal a kinetic isotope effect of 2.2, showing that the C-H activation is likely the rate-determining step of the catalytic cycle. Using deuterium oxide as a cheap and convenient source of deuterium, the methodology presents a cost-efficient alternative to state-of-the-art iridium-catalyzed procedures.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
| | - Fei Ye
- Leibniz-Institut für Katalyse e. V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang ProvinceHangzhou Normal UniversityNo. 2318, Yuhangtang Road311121HangzhouP. R. China
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e. V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
48
|
Nishimura T. Iridium-Catalyzed Hydroarylation via C-H Bond Activation. CHEM REC 2021; 21:3532-3545. [PMID: 34101981 DOI: 10.1002/tcr.202100109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/15/2021] [Indexed: 01/02/2023]
Abstract
Hydroarylation reactions via C-H activation, which compensate for shortcomings of classical methods based on the Friedel-Crafts reaction, is one of the most attractive methods to synthesize substituted arenes. This Personal Account reviews our recent studies on iridium-catalyzed intermolecular hydroarylation of vinyl ethers, alkynes, bicycloalkenes, and 1,3-dienes, and intramolecular hydroarylation of m-allyloxyphenyl ketones, where asymmetric addition reactions are included. A cationic iridium catalyst, which is generated from chloroiridium [IrCl] and NaBArF 4 [ArF =3,5-(CF3 )2 C6 H3 ], or a hydroxoiridium [Ir(OH)] complex is effective in catalyzing the hydroarylation depending on the substrates. 1,5-Cyclooctadiene (cod), chiral dienes, and conventional bisphosphines function as ligands controlling the high reactivity and selectivity of the catalysts in the hydroarylation. H/D exchange reaction of alkenes by use of a key intermediate of the hydroarylation reaction is also described.
Collapse
Affiliation(s)
- Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka, 558-8585, Japan
| |
Collapse
|
49
|
Bower JF, Aldhous TP, Chung RWM, Dalling AG. Enantioselective Intermolecular Murai-Type Alkene Hydroarylation Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1720406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AbstractStrategies that enable the efficient assembly of complex building blocks from feedstock chemicals are of paramount importance to synthetic chemistry. Building upon the pioneering work of Murai and co-workers in 1993, C–H-activation-based enantioselective hydroarylations of alkenes offer a particularly promising framework for the step- and atom-economical installation of benzylic stereocenters. This short review presents recent intermolecular enantioselective Murai-type alkene hydroarylation methodologies and the mechanisms by which they proceed.1 Introduction2 Enantioselective Hydroarylation Reactions of Strained Bicyclic Alkenes3 Enantioselective Hydroarylation Reactions of Electron-Rich Acyclic Alkenes4 Enantioselective Hydroarylation Reactions of Electron-Poor Acyclic Alkenes5 Enantioselective Hydroarylation Reactions of Minimally Polarized Acyclic Alkenes6 Conclusion and Outlook
Collapse
Affiliation(s)
| | - Timothy P. Aldhous
- School of Chemistry, University of Bristol
- Department of Chemistry, University of Liverpool
| | | | | |
Collapse
|
50
|
Zhou T, Qian PF, Li JY, Zhou YB, Li HC, Chen HY, Shi BF. Efficient Synthesis of Sulfur-Stereogenic Sulfoximines via Ru(II)-Catalyzed Enantioselective C-H Functionalization Enabled by Chiral Carboxylic Acid. J Am Chem Soc 2021; 143:6810-6816. [PMID: 33909436 DOI: 10.1021/jacs.1c03111] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ru(II)-catalyzed enantioselective C-H functionalization involving an enantiodetermining C-H cleavage step remains undeveloped. Here we describe a Ru(II)-catalyzed enantioselective C-H activation/annulation of sulfoximines with α-carbonyl sulfoxonium ylides using a novel class of chiral binaphthyl monocarboxylic acids as chiral ligands, which can be easily and modularly prepared from 1,1'-binaphthyl-2,2'-dicarboxylic acid. A broad range of sulfur-stereogenic sulfoximines were prepared in high yields with excellent enantioselectivities (up to 99% yield and 99% ee) via desymmetrization, kinetic resolution, and parallel kinetic resolution. Furthermore, the resolution products can be easily transformed to chiral sulfoxides and key intermediates for kinase inhibitors.
Collapse
Affiliation(s)
- Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi-Bo Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hao-Chen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hao-Yu Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|