1
|
Muta K, Okamoto K, Nakayama H, Wada S, Nagaki A. Defluorinative functionalization approach led by difluoromethyl anion chemistry. Nat Commun 2025; 16:416. [PMID: 39774136 PMCID: PMC11707236 DOI: 10.1038/s41467-024-52842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 01/11/2025] Open
Abstract
Organofluorine compounds have greatly benefited the pharmaceutical, agrochemical, and materials sectors. However, they are plagued by concerns associated with Per- and Polyfluoroalkyl Substances. Additionally, the widespread use of the trifluoromethyl group is facing imminent regulatory scrutiny. Defluorinative functionalization, which converts the trifluoromethyl to the difluoromethyl motifs, represents the most efficient synthetic strategy. However, general methods for robust C(sp3)-F bond transformations remain elusive due to challenges in selectivity and functional group tolerance. Here, we present a method for C(sp3)-F bond defluorinative functionalization of the trifluoromethyl group via difluoromethyl anion in flow. This new approach tames the reactive difluoromethyl anion, enabling diverse functional group transformations. Our methodology offers a versatile platform for drug and agrochemical discovery, overcoming the limitations associated with fluorinated motifs.
Collapse
Affiliation(s)
- Kensuke Muta
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
- Central Glass Co. Ltd., New-STEP Research Center, Kawagoe City, Saitama, Japan
| | - Kazuhiro Okamoto
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Hiroki Nakayama
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Shuto Wada
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Zhu M, Wang QL, Huang H, Mao G, Deng GJ. General Defluoroalkylation of Trifluoromethylarenes with Both Electron-Donating and -Withdrawing Alkenes. J Org Chem 2024; 89:12591-12609. [PMID: 39141011 DOI: 10.1021/acs.joc.4c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The incorporation of gem-difluoromethylene units into organic molecules remains a formidable challenge. Conventional methodologies for constructing aryldifluoromethyl derivatives relied on the use of high-functional fluorinating regents under harsh conditions. Herein, we report general and efficient photoredox catalytic systems for defluoroalkylation of readily available trifluoromethylarenes through selective C-F cleavage to deliver gem-difluoromethyl radicals which proceed through reductive addition to both electron-donating and withdrawing alkenes under transition-metal free conditions. Mechanistic studies reveal that thiol serves as both photocatalyst and HAT reagent under visible light irradiation. This synergistic photocatalysis and HAT catalysis protocol exhibits ample and salient features such as high chemo- and regioselectivity, broad substrate scope, amenable gram-scale synthesis and late-stage modification of bioactive molecules.
Collapse
Affiliation(s)
- Mengqi Zhu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qiao-Lin Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Yuan L, Wang Z, Zhuang W, Li X, Shi C, Li X, Shi D. Visible-Light-Driven Iron-Catalyzed 1,2-Difluoroalkylthiolation of Alkenes. Org Lett 2024; 26:7066-7071. [PMID: 39133198 DOI: 10.1021/acs.orglett.4c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The synthesis of medicinally interesting aryldifluoromethylated compounds has drawn significant research attention in recent years. Herein, we report an unprecedented iron-mediated process for the selective defluorination of trifluoromethylarenes to achieve the 1,2-difluoroalkylthiolation of alkenes. Preliminary mechanistic studies revealed that thiolate anion, trifluoromethylarene, and iron cation could form an electron donor-acceptor (EDA) complex, which induced selective defluorination and then difunctionalization of alkenes to obtain aryldifluoromethylated products. The generated aryldifluoromethylated compounds make it difficult to form an EDA complex again, thus avoiding excessive defluorination. This conversion has concise and ambient reaction conditions and provides an alternative solution for obtaining difluorobenzylic intermediates.
Collapse
Affiliation(s)
- Leifeng Yuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Wenli Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, 168 Weihai Road, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
4
|
An S, Ji H, Park J, Choi Y, Choe JK. Influence of chemical structures on reduction rates and defluorination of fluoroarenes during catalytic reduction using a rhodium-based catalyst. CHEMOSPHERE 2024; 362:142755. [PMID: 38969226 DOI: 10.1016/j.chemosphere.2024.142755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Continuous growth in fluoroarene production has led to environmental pollution and health concerns owing to their persistence, which is attributed to the stable C-F bond in their structures. Herein, we investigated fluoroarene decomposition via hydrodefluorination using a rhodium-based catalyst, focusing on the effects of the chemical structure and functional group on the defluorination yield. Most compounds, except (pentafluoroethyl)benzene, exhibited full or partial reduction with pseudo-first-order rate constants in the range of 0.002-0.396 min-1 and defluorination yields of 0%-100%. Fluoroarenes with hydroxyl, methyl, and carboxylate groups were selected to elucidate how hydrocarbon and oxygen-containing functional groups influence the reaction rate and defluorination. Inhibition of the reaction rate and defluorination yield based on functional groups increased in the order of hydroxyl < methyl < carboxylate, which was identical to the order of the electron-withdrawing effect. Fluoroarenes with polyfluoro groups were also assessed; polyfluoro groups demonstrated a different influence on catalyst activity than non-fluorine functional groups because of fluorine atoms in the substituents undergoing defluorination. The reaction kinetics of (difluoromethyl)fluorobenzenes and their intermediates suggested that hydrogenation and defluorination occurred during degradation. Finally, the effects of the type and position of functional groups on the reaction rate and defluorination yield were investigated via multivariable linear regression analysis. Notably, the electron-withdrawing nature of functional groups appeared to have a greater impact on the defluorination yield of fluoroarenes than the calculated C-F bond dissociation energy.
Collapse
Affiliation(s)
- Seonyoung An
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hojoong Ji
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Yongju Choi
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Uchikura T, Akutsu F, Tani H, Akiyama T. Photoreduction of Trifluoromethyl Group: Lithium Ion Assisted Fluoride-Coupled Electron Transfer from EDA Complex. Chemistry 2024; 30:e202400658. [PMID: 38600038 DOI: 10.1002/chem.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Photoinduced single-electron reduction is an efficient method for the mono-selective activation of the C-F bond on a trifluoromethyl group to construct a difluoroalkyl group. We have developed an electron-donor-acceptor (EDA) complex mediated single-electron transfer (EDA-SET) of α,α,α-trifluoromethyl arenes in the presence of lithium salt to give α,α-difluoroalkylarenes. The C-F bond reduction was realized by lithium iodide and triethylamine, two common feedstock reagents. Mechanistic studies revealed the generation of a α,α-difluoromethyl radical by single-electron reduction and defluorination, followed by the radical addition to alkenes. Lithium salt interacted with the fluorine atom to promote the photoinduced reduction mediated by the EDA complex. Computational studies indicated that the lithium-assisted defluorination and the single-electron reduction occurred concertedly. We call this phenomenon fluoride-coupled electron transfer (FCET). FCET is a novel approach to C-F bond activation for the synthesis of organofluorine compounds.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Fua Akutsu
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Haruna Tani
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| |
Collapse
|
6
|
Jia J, Zhumagazy S, Zhu C, Lee SC, Alsharif S, Yue H, Rueping M. Selective Mono-Defluorinative Cross-Coupling of Trifluoromethyl arenes via Multiphoton Photoredox Catalysis. Chemistry 2024; 30:e202302927. [PMID: 38573029 DOI: 10.1002/chem.202302927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 04/05/2024]
Abstract
A new cross-coupling of trifluoromethyl arenes has been realized via multiphoton photoredox catalysis. Trifluoromethyl arenes were demonstrated to undergo selective mono-defluorinative alkylation under mild reaction conditions providing access to a series of valuable α,α-difluorobenzylic compounds. The reaction shows broad substrate scope and general functional group tolerance. In addition to the electron-deficient trifluoromethyl arenes that are easily reduced to the corresponding radical anion, more challenging electron-rich substrates were also successfully applied. Steady-State Stern-Volmer quenching studies indicated that the trifluoromethyl arenes were reduced by the multiphoton excited Ir-based photocatalyst.
Collapse
Affiliation(s)
- Jiaqi Jia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Serik Zhumagazy
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shao-Chi Lee
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salman Alsharif
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huifeng Yue
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Sugihara N, Nishimoto Y, Osakada Y, Fujitsuka M, Abe M, Yasuda M. Sequential C-F Bond Transformation of the Difluoromethylene Unit in Perfluoroalkyl Groups: A Combination of Fine-Tuned Phenothiazine Photoredox Catalyst and Lewis Acid. Angew Chem Int Ed Engl 2024; 63:e202401117. [PMID: 38380969 DOI: 10.1002/anie.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
A sequential process via photoredox catalysis and Lewis acid mediation for C-F bond transformation of the CF2 unit in perfluoroalkyl groups has been achieved to transform perfluoroalkylarenes into complex fluoroalkylated compounds. A phenothiazine-based photocatalyst promotes the defluoroaminoxylation of perfluoroalkylarenes with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) under visible light irradiation, affording the corresponding aminoxylated products. These products undergo a further defluorinative transformation with various organosilicon reagents mediated by AlCl3 to provide highly functionalized perfluoroalkyl alcohols. Our novel phenothiazine catalyst works efficiently in the defluoroaminoxylation. Transient absorption spectroscopy revealed that the catalyst regeneration step is crucial for the photocatalytic aminoxylation.
Collapse
Affiliation(s)
- Naoki Sugihara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuko Osakada
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Yamadagaoka 1-1, Suita, Osaka, 565-0871, Japan
| | - Mamoru Fujitsuka
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Lye K, Young RD. A review of frustrated Lewis pair enabled monoselective C-F bond activation. Chem Sci 2024; 15:2712-2724. [PMID: 38404400 PMCID: PMC10882520 DOI: 10.1039/d3sc06485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Frustrated Lewis pair (FLP) bond activation chemistry has greatly developed over the last two decades since the seminal report of metal-free reversible hydrogen activation. Recently, FLP systems have been utilized to allow monoselective C-F bond activation (at equivalent sites) in polyfluoroalkanes. The problem of 'over-defluorination' in the functionalization of polyfluoroalkanes (where multiple fluoro-positions are uncontrollably functionalized) has been a long-standing chemical problem in fluorocarbon chemistry for over 80 years. FLP mediated monoselective C-F bond activation is complementary to other solutions developed to address 'over-defluorination' and offers several advantages and unique opportunities. This perspective highlights some of these advantages and opportunities and places the development of FLP mediated C-F bond activation into the context of the wider effort to overcome 'over-defluorination'.
Collapse
Affiliation(s)
- Kenneth Lye
- Department of Chemistry, National University of Singapore 117543 Singapore
| | - Rowan D Young
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia 4072 Australia
| |
Collapse
|
9
|
Guan YQ, Qiao JF, Liang YF. Nickel-catalysed chelation-assisted reductive defluorinative sulfenylation of trifluoropropionic acid derivatives. Chem Commun (Camb) 2024; 60:2405-2408. [PMID: 38323634 DOI: 10.1039/d3cc06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Herein we reported a directing-group assisted strategy for nickel-catalysed reductive defluorinative sulfenylation of trifluoropropionic acid derivatives with disulfides in the presence of Zn, involving triple C-F bond cleavage. This process yielded a diverse array of carbonyl-sulfide di-substituted alkenes in moderate to good yields with good functional group tolerance. Specifically, the reactions exhibited high E-selectivity with E/Z ratio up to >99 : 1.
Collapse
Affiliation(s)
- Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jia-Fan Qiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
10
|
Huang J, Gao Q, Zhong T, Chen S, Lin W, Han J, Xie J. Photoinduced copper-catalyzed C-N coupling with trifluoromethylated arenes. Nat Commun 2023; 14:8292. [PMID: 38092783 PMCID: PMC10719352 DOI: 10.1038/s41467-023-44097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Selective defluorinative functionalization of trifluoromethyl group (-CF3) is an attractive synthetic route to the pharmaceutically privileged fluorine-containing moiety. Herein, we report a strategy based on photoexcited copper catalysis to activate the C-F bond of di- or trifluoromethylated arenes for divergent radical C-N coupling with carbazoles and aromatic amines. The use of different ligands can tune the reaction products diversity. A range of substituted, structurally diverse α,α-difluoromethylamines can be obtained from trifluoromethylated arenes via defluorinative C-N coupling with carbazoles, while an interesting double defluorinative C-N coupling is ready for difluoromethylated arenes. Based on this success, a carbazole-centered PNP ligand is designed to be an optimal ligand, enabling a copper-catalyzed C-N coupling for the construction of imidoyl fluorides from aromatic amines through double C-F bond functionalization. Interestingly, a 1,2-difluoroalkylamination strategy of styrenes is also developed, delivering γ,γ-difluoroalkylamines, a bioisostere to β-aminoketones, in synthetically useful yields. The DFT studies reveal an inner-sphere electron transfer mechanism for Cu-catalyzed selective activation of C(sp3)-F bonds.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tao Zhong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuai Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Lin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Hooker LV, Bandar JS. Synthetic Advantages of Defluorinative C-F Bond Functionalization. Angew Chem Int Ed Engl 2023; 62:e202308880. [PMID: 37607025 PMCID: PMC10843719 DOI: 10.1002/anie.202308880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Much progress has been made in the development of methods to both create compounds that contain C-F bonds and to functionalize C-F bonds. As such, C-F bonds are becoming common and versatile synthetic functional handles. This review summarizes the advantages of defluorinative functionalization reactions for small molecule synthesis. The coverage is organized by the type of carbon framework the fluorine is attached to for mono- and polyfluorinated motifs. The main challenges, opportunities and advances of defluorinative functionalization are discussed for each class of organofluorine. Most of the text focuses on case studies that illustrate how defluorofunctionalization can improve routes to synthetic targets or how the properties of C-F bonds enable unique mechanisms and reactions. The broader goal is to showcase the opportunities for incorporating and exploiting C-F bonds in the design of synthetic routes, improvement of specific reactions and advent of new methods.
Collapse
Affiliation(s)
- Leidy V Hooker
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
12
|
Zhang X, Deng J, Ji Y, Li R, Sivaguru P, Song Q, Karmakar S, Bi X. Defluorinative 1,3-Dienylation of Fluoroalkyl N-Triftosylhydrazones with Homoallenols. Chemistry 2023; 29:e202302562. [PMID: 37695246 DOI: 10.1002/chem.202302562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
A silver-catalyzed regioselective defluorinative 1,3-dienylation of trifluoromethyl phenyl N-triftosylhydrazones using homoallenols as 1,3-dienyl sources provides a variety of α-(di)fluoro-β-vinyl allyl ketones with excellent functional group tolerance in moderate to good yields. The reaction proceeds through a silver carbene-initiated sequential etherification and Claisen type [3,3]-sigmatropic rearrangement cascade. The synthetic utility of this protocol was demonstrated through the downstream synthetic elaboration toward diverse synthetically useful building blocks.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiahua Deng
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yong Ji
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rong Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Swastik Karmakar
- Department of Chemistry, Basirhat College, West Bengal State University, Basirhat, 743412, West Bengal, India
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Tan K, He J, Mu Z, Ammar IM, Che C, Geng J, Xing Q. Visible-Light-Promoted C(sp 3)-C(sp 3) Cross-Coupling of Amino Acids and Aryl Trifluoromethyl Ketones Through Simultaneous Decarboxylation and Defluorination. Org Lett 2023. [PMID: 37991739 DOI: 10.1021/acs.orglett.3c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A photoredox-catalyzed approach for the difluoroalkylation of amino acids was achieved through simultaneous decarboxylation and defluorination processes. This innovative protocol employs commonly available amino acids and trifluoroacetophenones as the primary starting materials, eliminating the necessity for preactivation. This strategy has enabled the synthesis of several difluoroketone functionalized amines in moderate to impressive yields. These synthesized compounds are presented as foundational molecules for subsequent modification. The underlying mechanism for the transformation is anchored in a single electron transfer (SET) radical pathway.
Collapse
Affiliation(s)
- Kui Tan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
- Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaan He
- PolyAdvant, Shenzhen, 518000, China
| | | | - Ibrahim M Ammar
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| | - Chao Che
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055China
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| | - Qi Xing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| |
Collapse
|
14
|
Wang T, Zong YY, Huang T, Jin XL, Wu LZ, Liu Q. Photocatalytic redox-neutral selective single C(sp 3)-F bond activation of perfluoroalkyl iminosulfides with alkenes and water. Chem Sci 2023; 14:11566-11572. [PMID: 37886085 PMCID: PMC10599478 DOI: 10.1039/d3sc03771a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Visible-light-promoted site-selective and direct C-F bond functionalization of polyfluorinated iminosulfides was accomplished with alkenes and water under redox-neutral conditions, affording a diverse array of γ-lactams with a fluoro- and perfluoroalkyl-substituted carbon centre. A variety of perfluoroalkyl units, including C2F5, C3F7, C4F9, and C5F11 underwent site-selective defluorofunctionalization. This protocol allows high chemoselectivity control and shows excellent functional group tolerance. Mechanistic studies reveal that the remarkable changes of the electron geometries during the defluorination widen the redox window between the substrates and the products and ensure the chemoselectivity of single C(sp3)-F bond cleavage.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yuan-Yuan Zong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Tao Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
15
|
Yue WJ, Martin R. α-Difluoroalkylation of Benzyl Amines with Trifluoromethylarenes. Angew Chem Int Ed Engl 2023; 62:e202310304. [PMID: 37596243 DOI: 10.1002/anie.202310304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
An α-difluoroalkylation of benzyl amines with trifluoromethylarenes is disclosed herein. This protocol is characterized by its operational simplicity, excellent chemoselectivity and broad scope-even with advanced synthetic intermediates-, thus offering a new entry point to medicinally-relevant α-difluoroalkylated amines from simple, yet readily accessible, precursors.
Collapse
Affiliation(s)
- Wen-Jun Yue
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
16
|
Zhou Y, Doi R, Ogoshi S. Difluoromethylene insertion into fluoroalkyl copper complexes. Chem Commun (Camb) 2023; 59:11504-11507. [PMID: 37675966 DOI: 10.1039/d3cc03481j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we report the insertion of a difluoromethylene into 1,1,2,2-tetrafluoro-2-arylethyl copper complexes to synthesize extended perfluoroalkyl-bridged compounds that have various functional groups on each edge (ArCF2CF2(CF2)nR, R = arenes, halogens, alkyl, alkenyl, and benzyloxycarbonyl). Further, the one-pot syntheses of perfluoroalkyl-bridged compounds from aryl boronic acid esters were carried out.
Collapse
Affiliation(s)
- Yuyang Zhou
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, 565-0871, Osaka, Japan.
| | - Ryohei Doi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, 565-0871, Osaka, Japan.
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
17
|
Yoshida S. C-F Transformations of Benzotrifluorides by the Activation of Ortho-Hydrosilyl Group. CHEM REC 2023; 23:e202200308. [PMID: 36762730 DOI: 10.1002/tcr.202200308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Single C-F transformations of aromatic trifluoromethyl compounds are challenging issues due to the strong C-F bond. We have recently developed selective methods for single C-F transformations such as allylation of o-hydrosilyl-substituted benzotrifluorides through the hydride abstraction with trityl cations. Single C-F thiolation and azidation of o-(hydrosilyl)benzotrifluorides were achieved using trityl sulfides and trityl azide catalyzed by Yb(OTf)3 . Treatment of o-(hydrosilyl)benzotrifluorides with trityl chloride resulted in single C-F chlorination. The resulting fluorosilyl group served in further transformations including protonation, halogenation, and Hiyama cross-coupling with C-Si cleavage. We also synthesized benzyl fluorides by LiAlH4 -reduction of the resulting fluorosilanes and further C-F transformations. These methods enabled us to prepare a broad range of organofluorines from simple benzotrifluorides through C-F and C-Si transformations.
Collapse
Affiliation(s)
- Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| |
Collapse
|
18
|
Li R, Yang X, Guan W. Photocatalytic C-F alkylation of trifluoromethyls using o-phosphinophenolate: mechanistic insights and substrate prediction. Chem Commun (Camb) 2023; 59:10648-10651. [PMID: 37581000 DOI: 10.1039/d3cc03264g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Density functional theory computations reveal the radical mechanism of photocatalytic defluoroalkylation and hydrodefluorination of N-phenyl-2,2,2-trifluoromethylacetamide with o-phosphinophenolate (PO) cooperative catalysis. The energy gaps between the singlet substrate LUMOs and triplet photocatalyst SOMOs can be used as an effective "chemical descriptor" for predicting catalyst activity. Cesium formate assisted C-F bond activation is the most favorable path. A series of available organic structures are computationally predicted as potential substrates.
Collapse
Affiliation(s)
- Rongrong Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinzheng Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
19
|
Stachowiak-Dłużyńska H, Kuciński K, Broniarz K, Szafoni E, Gruszczyński M, Lewandowski D, Consiglio G, Hreczycho G. Access to germasiloxanes and alkynylgermanes mediated by earth-abundant species. Sci Rep 2023; 13:5618. [PMID: 37024548 PMCID: PMC10079689 DOI: 10.1038/s41598-023-32172-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
The reactions between silanols or terminal acetylenes with alkynylgermanes have been accomplished using potassium bis(trimethylsilyl)amide as the catalyst. This strategy has provided an entry point into various organogermanes including germasiloxanes and alkynylgermanes. Remarkably, not only KHMDS but also simple bases such as KOH can serve as efficient catalysts in this process.
Collapse
Affiliation(s)
- Hanna Stachowiak-Dłużyńska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Krzysztof Kuciński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| | - Konstancja Broniarz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Ewelina Szafoni
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Marcin Gruszczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Dariusz Lewandowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università degli studi di Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| |
Collapse
|
20
|
Hendy CM, Pratt CJ, Jui NT, Blakey SB. Defluoroalkylation of Trifluoromethylarenes with Hydrazones: Rapid Access to Benzylic Difluoroarylethylamines. Org Lett 2023; 25:1397-1402. [PMID: 36848497 PMCID: PMC10012270 DOI: 10.1021/acs.orglett.3c00126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Here, we report an efficient and modular approach toward the formation of difluorinated arylethylamines from simple aldehyde-derived N,N-dialkylhydrazones and trifluoromethylarenes (CF3-arenes). This method relies on selective C-F bond cleavage via reduction of the CF3-arene. We show that a diverse set of CF3-arenes and CF3-heteroarenes react smoothly with a range of aryl and alkyl hydrazones. The β-difluorobenzylic hydrazine product can be selectively cleaved to form the corresponding benzylic difluoroarylethylamines.
Collapse
Affiliation(s)
- Cecilia M Hendy
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Cameron J Pratt
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nathan T Jui
- Loxo Oncology, Boulder, Colorado 80301, United States
| | - Simon B Blakey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
21
|
Guo S, Sun W, Tucker JW, Hesp KD, Szymczak NK. Preparation and Functionalization of Mono- and Polyfluoroepoxides via Fluoroalkylation of Carbonyl Electrophiles. Chemistry 2023; 29:e202203578. [PMID: 36478306 DOI: 10.1002/chem.202203578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
We outline a new synthetic method to prepare mono- and polyfluoroepoxides from a diverse pool of electrophiles (ketones, acyl chlorides, esters) and fluoroalkyl anion equivalents. The initially formed α-fluoro alkoxides undergo subsequent intramolecular ring closure when heated. We demonstrated the versatility of the method through the isolation of 16 mono- and polyfluoroepoxide products. These compounds provide unique entry points for further diversification via either fluoride migration coupled with ring opening, or defluorinative functionalization reactions, the latter of which can be used as a late-stage method to install select bioactive moieties. The reaction sequences described herein provide a pathway to functionalize the commonly observed products formed from 1,2-addition into carbonyl electrophiles.
Collapse
Affiliation(s)
- Shuo Guo
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Wei Sun
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc.: Eastern Point Rd., Groton, CT., 06340, USA
| | - Kevin D Hesp
- Medicine Design, Pfizer Inc.: Eastern Point Rd., Groton, CT., 06340, USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Shen ZJ, Zhu C, Zhang X, Yang C, Rueping M, Guo L, Xia W. Organoboron Reagent-Controlled Selective (Deutero)Hydrodefluorination. Angew Chem Int Ed Engl 2023; 62:e202217244. [PMID: 36525004 DOI: 10.1002/anie.202217244] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
(Deuterium-labeled) CF2 H- and CFH2 -moieties are of high interest in drug discovery. The high demand for the incorporation of these fluoroalkyl moieties into molecular structures has witnessed significant synthetic progress, particularly in the (deutero)hydrodefluorination of CF3 -containing compounds. However, the controllable replacement of fluorine atoms while maintaining high chemoselectivity remains challenging. Herein, we describe the development of a selective (deutero)hydrodefluorination reaction via electrolysis. The reaction exhibits a remarkable chemoselectivity control, which is enabled by the addition of different organoboron sources. The procedure is operationally simple and scalable, and provides access in one step to high-value building blocks for application in medicinal chemistry. Furthermore, density functional theory (DFT) calculations have been carried out to investigate the reaction mechanism and to rationalize the chemoselectivity observed.
Collapse
Affiliation(s)
- Zheng-Jia Shen
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiao Zhang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
23
|
Shigeno M, Shishido Y, Soga A, Nozawa-Kumada K, Kondo Y. Defluorinative Transformation of (2,2,2-Trifluoroethyl)arenes Catalyzed by the Phosphazene Base t-Bu-P2. J Org Chem 2023; 88:1796-1802. [PMID: 36689669 DOI: 10.1021/acs.joc.2c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, we demonstrated that 1-tert-butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene) (t-Bu-P2) catalyzes the defluorinative functionalization reactions of (2,2,2-trifluoroethyl)arenes with alkanenitriles to produce monofluoroalkene products. The reaction proceeds through HF elimination from a (2,2,2-trifluoroethyl)arene to form a gem-difluorostyrene intermediate, which is followed by nucleophilic addition of an alkanenitrile and elimination of a fluoride anion. The catalysis is compatible with a variety of functional groups.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Amane Soga
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
24
|
Louis-Goff T, Trinh HV, Chen E, Rheingold AL, Hyvl J. Synthesis of Chiral Hypervalent Trifluoromethyl Organobismuth Complexes and Enantioselective Olefin Difluorocarbenation Screenings. Chempluschem 2023; 88:e202200450. [PMID: 36782373 DOI: 10.1002/cplu.202200450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Two hypervalent trifluoromethyl organobismuth complexes were prepared from commercially available chiral amines, (R)-1-cyclohexylethylamine and (1R, 2R, 3R, 5S)-(-)-isopinocampheylamine; however, only the complex from the latter amine was prepared as a single stereoisomer. Both organobismuth complexes were fully characterized by NMR spectroscopy and single-crystal X-ray crystallography, revealing that the structures were similar to previously reported complexes with a hypervalent Bi-N bond. The complexes were catalytically active in olefin difluorocarbenation with Ruppert-Prakash reagent (TMS-CF3 ) used as a terminal source of CF2 . The catalyst derived from isopinocampheylamine was screened with three prochiral olefins of various reactivity in DCM and toluene. All reactions afforded the 1,1-difluorocyclopropanes in good yields, but no enantiomeric excess was observed.
Collapse
Affiliation(s)
- Thomas Louis-Goff
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA
| | - Huu Vinh Trinh
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA.,Present Address: Chemical Engineering in Advanced Materials and Renewable Energy Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Eileen Chen
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA.,Present Address: John A. Burns School of Medicine, 651 Ilalo St, Honolulu, HI, 96813, USA
| | - Arnold L Rheingold
- Department of Chemistry, University of California, San Diego La Jolla, California, 92093, USA
| | - Jakub Hyvl
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA
| |
Collapse
|
25
|
Gupta R, Csókás D, Lye K, Young RD. Experimental and computational insights into the mechanism of FLP mediated selective C-F bond activation. Chem Sci 2023; 14:1291-1300. [PMID: 36756325 PMCID: PMC9891352 DOI: 10.1039/d2sc05632a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Frustrated Lewis pairs (FLP) comprising of B(C6F5)3 (BCF) and 2,4,6-triphenylpyridine (TPPy), P(o-Tol)3 or tetrahydrothiophene (THT) have been shown to mediate selective C-F activation in both geminal and chemically equivalent distal C-F sites. In comparison to other reported attempts of C-F activation using BCF, these reactions appear surprisingly facile. We investigate this reaction through a combination of experimental and computational chemistry to understand the mechanism of the initial C-F activation event and the origin of the selectivity that prevents subsequent C-F activation in the monoactivated salts. We find that C-F activation likely occurs via a Lewis acid assisted SN1 type pathway as opposed to a concerted FLP pathway (although the use of an FLP is important to elevate the ground state energy), where BCF is sufficiently Lewis acidic to overcome the kinetic barrier for C-F activation in benzotrifluorides. The resultant intermediate salts of the form [ArCF2(LB)][BF(C6F5)3] (LB = Lewis base) are relatively thermodynamically unstable, and an equilibrium operates between the fluorocarbon/FLP and their activation products. As such, the use of a fluoride sequestering reagent such as Me3SiNTf2 is key to the realisation of the forward C-F activation reaction in benzotrifluorides. Selectivity in this reaction can be attributed to both the installation of bulky Lewis bases geminal to residual C-F sites and from electronic re-ordering of kinetic barriers (of C-F sites in products and starting materials) arising from the electron withdrawing nature of the pyridinium, phosphonium and sulfonium groups.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Dániel Csókás
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Kenneth Lye
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Rowan D. Young
- Department of Chemistry, National University of Singapore3 Science Drive 3117543Singapore,School of Chemistry and Molecular Biosciences, The University of QueenslandSt Lucia, 4072QueenslandAustralia
| |
Collapse
|
26
|
Kynman AE, Elghanayan LK, Desnoyer AN, Yang Y, Sévery L, Di Giuseppe A, Tilley TD, Maron L, Arnold PL. Controlled monodefluorination and alkylation of C(sp 3)-F bonds by lanthanide photocatalysts: importance of metal-ligand cooperativity. Chem Sci 2022; 13:14090-14100. [PMID: 36540817 PMCID: PMC9728647 DOI: 10.1039/d2sc04192h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/05/2022] [Indexed: 08/01/2023] Open
Abstract
The controlled functionalization of a single fluorine in a CF3 group is difficult and rare. Photochemical C-F bond functionalization of the sp3-C-H bond in trifluorotoluene, PhCF3, is achieved using catalysts made from earth-abundant lanthanides, (CpMe4)2Ln(2-O-3,5- t Bu2-C6H2)(1-C{N(CH)2N(iPr)}) (Ln = La, Ce, Nd and Sm, CpMe4 = C5Me4H). The Ce complex is the most effective at mediating hydrodefluorination and defluoroalkylative coupling of PhCF3 with alkenes; addition of magnesium dialkyls enables catalytic C-F bond cleavage and C-C bond formation by all the complexes. Mechanistic experiments confirm the essential role of the Lewis acidic metal and support an inner-sphere mechanism of C-F activation. Computational studies agree that coordination of the C-F substrate is essential for C-F bond cleavage. The unexpected catalytic activity for all members is made possible by the light-absorbing ability of the redox non-innocent ligands. The results described herein underscore the importance of metal-ligand cooperativity, specifically the synergy between the metal and ligand in both light absorption and redox reactivity, in organometallic photocatalysis.
Collapse
Affiliation(s)
- Amy E Kynman
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Luca K Elghanayan
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Addison N Desnoyer
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Yan Yang
- LPCNO, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Laurent Sévery
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Andrea Di Giuseppe
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
| | - Laurent Maron
- LPCNO, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Polly L Arnold
- Department of Chemistry, University of California, Berkeley Berkeley CA 94720-1460 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
27
|
Li XX, Wang JS, You XX, Zhong RL, Su ZM. Theoretical Insight into the Multiple Roles of LiHMDS in Pd-Catalyzed Borylation of Fluorobenzene. J Org Chem 2022; 87:16039-16046. [PMID: 36379013 DOI: 10.1021/acs.joc.2c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pd-catalyzed borylation of fluorobenzene was theoretically studied. DFT calculations revealed that the reaction occurs through an unprecedented 3 + 6-membered ring transition state, in which one LiHMDS (HMDS = hexamethyldisilazane) acts as a ligand and another LiHMDS is essential to provide Li···N and Li···F interactions, overcoming the large destabilization of the strong phenyl-F bond distortion. The characteristic feature of LiHMDS was elucidated by comparing it with HMDS and NaHMDS analogues.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Jian-Sen Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Xiao-Xia You
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Rong-Lin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Zhong-Min Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
28
|
Matsuo B, Granados A, Majhi J, Sharique M, Levitre G, Molander GA. 1,2-Radical Shifts in Photoinduced Synthetic Organic Transformations: A Guide to the Reactivity of Useful Radical Synthons. ACS ORGANIC & INORGANIC AU 2022; 2:435-454. [PMID: 36510615 PMCID: PMC9732885 DOI: 10.1021/acsorginorgau.2c00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
The exploration of 1,2-radical shift (RS) mechanisms in photoinduced organic reactions has provided efficient routes for the generation of important radical synthons in many chemical transformations. In this Review, the basic concepts involved in the traditional 1,2-spin-center shift (SCS) mechanisms in recently reported studies are discussed. In addition, other useful 1,2-RSs are addressed, such as those proceeding through 1,2-group migrations in carbohydrate chemistry, via 1,2-boron shifts, and by the generation of α-amino radicals. The discussion begins with a general overview of the basic aspects of 1,2-RS mechanisms, followed by a demonstration of their applicability in photoinduced transformations. The sections that follow are organized according to the mechanisms operating in combination with the 1,2-radical migration event. This contribution is not a comprehensive review but rather aims to provide an understanding of the topic, focused on the more recent advances in the field, and establishes a definition for the nomenclature that has been used to describe such mechanisms.
Collapse
|
29
|
Wright SE, Bandar JS. A Base-Promoted Reductive Coupling Platform for the Divergent Defluorofunctionalization of Trifluoromethylarenes. J Am Chem Soc 2022; 144:13032-13038. [PMID: 35833781 PMCID: PMC9817215 DOI: 10.1021/jacs.2c05044] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a trifluoromethylarene reductive coupling method that dramatically expands the scope of difluorobenzylic substructures accessible via C-F bond functionalization. Catalytic quantities of a Lewis base, combined with a disilane reagent in formamide solvent, promotes the replacement of a single trifluoromethyl fluorine atom with a silylated hemiaminal functional group. The reaction proceeds through a difluorobenzyl silane intermediate that can also be isolated. Together, these defluorinated products are shown to provide rapid access to over 20 unique difluoroalkylarene scaffolds.
Collapse
Affiliation(s)
- Shawn E. Wright
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
30
|
Li L, Zhang X, Ning Y, Zhang X, Liu B, Zhang Z, Sivaguru P, Zanoni G, Li S, Anderson EA, Bi X. Carbodefluorination of fluoroalkyl ketones via a carbene-initiated rearrangement strategy. Nat Commun 2022; 13:4280. [PMID: 35879307 PMCID: PMC9314321 DOI: 10.1038/s41467-022-31976-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
The C-F bond cleavage and C-C bond formation (i.e., carbodefluorination) of readily accessible (per)fluoroalkyl groups constitutes an atom-economical and efficient route to partially fluorinated compounds. However, the selective mono-carbodefluorination of trifluoromethyl (CF3) groups remains a challenge, due to the notorious inertness of C-F bond and the risk of over-defluorination arising from C-F bond strength decrease as the defluorination proceeds. Herein, we report a carbene-initiated rearrangement strategy for the carbodefluorination of fluoroalkyl ketones with β,γ-unsaturated alcohols to provide skeletally and functionally diverse α-mono- and α,α-difluoro-γ,δ-unsaturated ketones. The reaction starts with the formation of silver carbenes from fluoroalkyl N-triftosylhydrazones, followed by nucleophilic attack of a β,γ-unsaturated alcohol to form key silver-coordinated oxonium ylide intermediates, which triggers selective C-F bond cleavage by HF elimination and C-C bond formation through Claisen rearrangement of in situ generated difluorovinyl ether. The origin of chemoselectivity and the reaction mechanism are determined by experimental and DFT calculations. Collectively, this strategy by an intramolecular cascade process offers significant advances over existing stepwise strategies in terms of selectivity, efficiency, functional group tolerance, etc.
Collapse
Affiliation(s)
- Linxuan Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Binbin Liu
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Zhansong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
31
|
Zhang X, Ning Y, Liu Z, Li S, Zanoni G, Bi X. Defluorinative Carboimination of Trifluoromethyl Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Ye Y, Qi X, Xu B, Lin Y, Xiang H, Zou L, Ye XY, Xie T. Nickel-catalyzed cross-electrophile allylation of vinyl bromides and the modification of anti-tumour natural medicine β-elemene. Chem Sci 2022; 13:6959-6966. [PMID: 35774167 PMCID: PMC9200125 DOI: 10.1039/d2sc02054h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022] Open
Abstract
Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant. This Ni-catalyzed modular approach displays excellent functional group tolerance and a broad substrate scope, which the creation of a series of 1,4-dienes including several structurally complex natural products and pharmaceutical motifs. Moreover, the coupling strategy has the potential to realize enantiomeric control. The practicality of this transformation is demonstrated through the potent modification of the naturally antitumor active molecule β-elemene. Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant.![]()
Collapse
Affiliation(s)
- Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang Qi
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Bing Xu
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Ying Lin
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Liang Zou
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| |
Collapse
|
33
|
Li S, Davies PW, Shu W. Modular synthesis of α-arylated carboxylic acids, esters and amides via photocatalyzed triple C-F bond cleavage of methyltrifluorides. Chem Sci 2022; 13:6636-6641. [PMID: 35756515 PMCID: PMC9172449 DOI: 10.1039/d2sc01905a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
α-Arylated carboxylic acids, esters and amides are widespread motifs in bioactive molecules and important building blocks in chemical synthesis. Thus, straightforward and rapid access to such structures is highly desirable. Here we report an organophotocatalytic multicomponent synthesis of α-arylated carboxylic acids, esters and amides from exhaustive defluorination of α-trifluoromethyl alkenes in the presence of alkyltrifluoroborates, water and nitrogen/oxygen nucleophiles. This operationally simple strategy features a unified access to functionally diverse α-arylated carboxylic acids, esters, and primary, secondary, and tertiary amides through backbone assembly from simple starting materials enabled by consecutive C–F bond functionalization at room temperature. Preliminary mechanistic investigations reveal that the reaction operates through a radical-triggered three-step cascade process, which involves distinct mechanisms for each defluorinative functionalization of the C–F bond. Here we report an organophotocatalytic synthesis of α-arylated carboxylic acids, esters and amides from exhaustive defluorination of α-trifluoromethyl alkenes in the presence of alkyltrifluoroborates, water and nitrogen/oxygen nucleophiles.![]()
Collapse
Affiliation(s)
- Sifan Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China .,School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Paul W Davies
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China
| |
Collapse
|
34
|
Jakubczyk M, Mkrtchyan S, Shkoor M, Lanka S, Budzák Š, Iliaš M, Skoršepa M, Iaroshenko VO. Mechanochemical Conversion of Aromatic Amines to Aryl Trifluoromethyl Ethers. J Am Chem Soc 2022; 144:10438-10445. [PMID: 35652785 PMCID: PMC9204773 DOI: 10.1021/jacs.2c02611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Increased interest
in the trifluoromethoxy group in organic synthesis
and medicinal chemistry has induced a demand for new, selective, general,
and faster methods applicable to natural products and highly functionalized
compounds at a later stage of hit-to-lead campaigns. Applying pyrylium
tetrafluoroborate, we have developed a mechanochemical protocol to
selectively substitute the aromatic amino group with the OCF3 functionality. The scope of our method includes 31 examples of ring-substituted
anilines, including amides and sulfonamides. Expected SNAr products were obtained in excellent yields. The presented concise
method opens a pathway to new chemical spaces for the pharmaceutical
industry.
Collapse
Affiliation(s)
- Michał Jakubczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łodź PL-90-363, Poland
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Suneel Lanka
- Lodz University of Technology, Stefana Żeromskiego 116, Lodz 90-924, Poland
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Marek Skoršepa
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 97401, Slovakia.,Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 00014, Finland
| |
Collapse
|
35
|
Zhou FY, Jiao L. Asymmetric Defluoroallylation of 4-Trifluoromethylpyridines Enabled by Umpolung C-F Bond Activation. Angew Chem Int Ed Engl 2022; 61:e202201102. [PMID: 35274435 DOI: 10.1002/anie.202201102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 12/30/2022]
Abstract
Carbon-fluorine bond activation of the trifluoromethyl group represents an important approach to fluorine-containing molecules. While selective defluorinative functionalization reactions of CF3 -containing substrates have been achieved by invoking difluorocarbocation, difluorocarboradical, or difluoroorganometallic species as the key intermediates, the transformations via fluorocarbanion mechanism only achieved limited success. Furthermore, the enantioselective defluorinative transformation of the CF3 group remained a formidable challenge. Here we report a defluorinative functionalization reaction of 4-trifluoromethylpyridines involving difluoro(pyrid-4-yl)methyl anion as the key intermediate, which was developed based upon our previous studies on the N-boryl pyridyl anion chemistry. In particular, asymmetric defluoroallylation of 4-trifluoromethylpyridines and -pyrimidines could be achieved by using Ir-catalysis to forge a difluoroalkyl-substituted chiral center.
Collapse
Affiliation(s)
- Fei-Yu Zhou
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
36
|
Fu Y, Shi H, Lei S, Shi L, Li H. Cu catalyzed [4 + 2] cycloaddition for the synthesis of highly substituted 3-fluoropyridines. Org Biomol Chem 2022; 20:3731-3736. [PMID: 35467681 DOI: 10.1039/d2ob00133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper catalyzed annulation-aromatization of benzyl trifluoromethyl ketimines with 3-acryloyloxazolidin-2-ones for the synthesis of 3-fluoropyridines through double C-F bond cleavages has been developed. In this approach, the annulation occurred between the in situ formed dienes from trifluoromethyl ketimines via the first C-F bond cleavage and 3-acryloyloxazolidin-2-ones. Then the aromatization afforded 3-fluoropyridines in moderate yields through the second C-F bond cleavage. The 3-fluoropyridine products could be further hydrolyzed to multi-substituted 3-pyridinecarboxylic acids.
Collapse
Affiliation(s)
- Yiwei Fu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Haoyu Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Shengshu Lei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Shi
- Huabao Flavours & Fragrances Co., Ltd., 1299 Yecheng Road, Shanghai 201822, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
37
|
Liu C, Li K, Shang R. Arenethiolate as a Dual Function Catalyst for Photocatalytic Defluoroalkylation and Hydrodefluorination of Trifluoromethyls. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Can Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kang Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rui Shang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
38
|
Zhou FY, Jiao L. Asymmetric Defluoroallylation of 4‐Trifluoromethylpyridines Enabled by Umpolung C‐F Bond Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fei-Yu Zhou
- Tsinghua University Department of Chemistry CHINA
| | - Lei Jiao
- Tsinghua University Department of Chemistry Meng Man Wai Building of Science and Technology, RM S-907Tsinghua University 100084 Beijing CHINA
| |
Collapse
|
39
|
Niu Y, Cao CK, Ge C, Qu H, Chen C. The Pd-catalyzed synthesis of difluoroethyl and difluorovinyl compounds with a chlorodifluoroethyl iodonium salt (CDFI). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Simur TT, Ye T, Yu YJ, Zhang FL, Wang YF. C–F bond functionalizations of trifluoromethyl groups via radical intermediates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Li S, Shu W. Recent advances in radical enabled selective C sp3-F bond activation of multifluorinated compounds. Chem Commun (Camb) 2022; 58:1066-1077. [PMID: 34981805 DOI: 10.1039/d1cc06446k] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fluorine-containing molecules have found broad applications in pharmaceutical and agrochemical industries as introducing fluorine into a molecule could significantly tune the biological activities of parent molecules. Thus, the synthesis of fluorine-containing molecules has received substantial attention over the past few decades. As a complementary strategy for the synthesis of fluorinated compounds through new Csp3-F bonds formation, selective cleavage of inert Csp3-F bonds from easily-available and cost-effective multifluorinated molecules, such as fluoroalkylaromatics, α-trifluoromethyl alkenes and α-multifluorinated carbonyl compounds, has been emerging as an attractive alternative to access fluorine-containing molecules. Moreover, the inherent nature of radical reactions offers the opportunity for the selective Csp3-F functionalizations to occur under mild conditions. In this regard, the development of photoredox catalysis, transition-metal catalysis, or electrochemistry to enable radical species generation via selective Csp3-F cleavage has gained broad attention and substantial progress has been made over recent years. This highlight summerizes the recent advances in the single-electron-transfer enabled selective functionalizations of Csp3-F bonds in multifluorinated compounds via radical pathways.
Collapse
Affiliation(s)
- Sifan Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China.
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China.
| |
Collapse
|
42
|
Ye J, Bellotti P, Heusel C, Glorius F. Photoredox‐katalysierte defluorierende Funktionalisierungen von polyfluorierten aliphatischen Amiden und Estern. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jian‐Heng Ye
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Peter Bellotti
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Corinna Heusel
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
43
|
Idogawa R, Kobayashi A, Kim Y, Shimomori K, Hosoya T, Yoshida S. Hydride reduction of o-(fluorosilyl)benzodifluorides for subsequent C–F transformations. Chem Commun (Camb) 2022; 58:3521-3524. [DOI: 10.1039/d1cc06761c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for sequential C–F transformations of o-hydrosilyl-substituted benzotrifluorides is disclosed. A key to the success is hydride reduction of o-fluorosilyl-substituted difluoromethylenes prepared by a single C–F transformation of...
Collapse
|
44
|
Wade Wolfe MM, Guo S, Yu LS, Vogel TR, Tucker JW, Szymczak NK. Nucleophilic strategies to construct –CF 2– linkages using borazine-CF 2Ar reagents. Chem Commun (Camb) 2022; 58:11705-11708. [DOI: 10.1039/d2cc01938h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using nucleophilic, boron-based –CF2Ar reagents, we demonstrate three methods to form C–CF bonds: (1) nucleophilic aromatic substitution, (2) palladium catalyzed cross-coupling, and (3) nucleophilic substitution.
Collapse
Affiliation(s)
| | - Shuo Guo
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Lucy S. Yu
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Trenton R. Vogel
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Joseph W. Tucker
- Medicine Design, Pfizer Inc., Eastern Point Rd., Groton, CT, 06340, USA
| | | |
Collapse
|
45
|
Zhang Y, Lai GW, Nie LJ, He Q, Lin MJ, Chi R, Lu DL, Fan X. Organocatalytic difluorobenzylation of 1,2-diketones via mild cleavage of carbon–carbon bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01645h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Difluoroacetophenones (DFAPs) are developed as a class of novel and practical reagents for organocatalytic difluorobenzylation reactions.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Guo-Wei Lai
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Long-Jun Nie
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Qifang He
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Mei-Juan Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Rong Chi
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Dong-Liang Lu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
46
|
Yang F, Zhang Q, Guo Q, Pan Q, Wen C, Lv X, Zhu W, Zheng P. Design, synthesis and biological evaluation of 4-phenoxy-pyridine/pyrimidine derivatives as dual VEGFR-2/c-Met inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01561g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A class of 4-phenoxy-pyridine/pyrimidine derivatives (23a–23p and 24a–24h) were designed, synthesized and evaluated as potent dual VEGFR-2/c-Met inhibitors.
Collapse
Affiliation(s)
- Feiyi Yang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qian Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Qiuyan Guo
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qingshan Pan
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Chunping Wen
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Xinya Lv
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Wufu Zhu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Pengwu Zheng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| |
Collapse
|
47
|
Ye JH, Bellotti P, Heusel C, Glorius F. Photoredox-Catalyzed Defluorinative Functionalizations of Polyfluorinated Aliphatic Amides and Esters. Angew Chem Int Ed Engl 2021; 61:e202115456. [PMID: 34890107 DOI: 10.1002/anie.202115456] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 11/08/2022]
Abstract
Selective C-F bond functionalization of perfluoalkyl units has huge potential towards accessing functionalized organofluorinated compounds, but remains chanllenging due to the high C-F bond strength and inherent selectivity challenges. We report a new catalytic approach for the selective functionalization of the strong C-F bonds in polyfluorinated aliphatic esters and amides. This simple reaction proceeds in mild and operationally fashion with divergent conversions, including hydrodefluorination, defluoroalkylation, and defluoroalkenlylation, affording a diverse array of important partially fluorinated motifs. Straightforward downstream chemistry towards fluorinated alcohols, amines and drug derivatives highlights the potential of the protocol.
Collapse
Affiliation(s)
- Jian-Heng Ye
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster, Chemistry, GERMANY
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster, Chemistry, GERMANY
| | - Corinna Heusel
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster, Chemistry, GERMANY
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, GERMANY
| |
Collapse
|
48
|
Zhao F, Zhou W, Zuo Z. Recent Advances in the Synthesis of Difluorinated Architectures from Trifluoromethyl Groups. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101234] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Zhao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| | - Wenlong Zhou
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| | - Zuo Zuo
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| |
Collapse
|
49
|
Campbell MW, Polites VC, Patel S, Lipson JE, Majhi J, Molander GA. Photochemical C-F Activation Enables Defluorinative Alkylation of Trifluoroacetates and -Acetamides. J Am Chem Soc 2021; 143:19648-19654. [PMID: 34793157 DOI: 10.1021/jacs.1c11059] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The installation of gem-difluoromethylene groups into organic structures remains a daunting synthetic challenge despite their attractive structural, physical, and biochemical properties. A very efficient retrosynthetic approach would be the functionalization of a single C-F bond from a trifluoromethyl group. Recent advances in this line of attack have enabled the C-F activation of trifluoromethylarenes, but limit the accessible motifs to only benzylic gem-difluorinated scaffolds. In contrast, the C-F activation of trifluoroacetates would enable their use as a bifunctional gem-difluoromethylene synthon. Herein, we report a photochemically mediated method for the defluorinative alkylation of a commodity feedstock: ethyl trifluoroacetate. A novel mechanistic approach was identified using our previously developed diaryl ketone HAT catalyst to enable the hydroalkylation of a diverse suite of alkenes. Furthermore, electrochemical studies revealed that more challenging radical precursors, namely trifluoroacetamides, could also be functionalized via synergistic Lewis acid/photochemical activation. Finally, this method enabled a concise synthetic approach to novel gem-difluoro analogs of FDA-approved pharmaceutical compounds.
Collapse
Affiliation(s)
- Mark W Campbell
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Viktor C Polites
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shivani Patel
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Juliette E Lipson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
50
|
Zhu C, Sun M, Chen K, Liu H, Feng C. Selective C–F Bond Allylation of Trifluoromethylalkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chuan Zhu
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Meng‐Meng Sun
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Kai Chen
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Haidong Liu
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|