1
|
Yang X, Wang T, Li Y, Hu Y, Wang Y, Xie W. Long-lived carriers-promoted photocatalytic deuteration of halides with D 2O as the deuterium source over Cu doped quantum dots. J Colloid Interface Sci 2025; 678:191-199. [PMID: 39293363 DOI: 10.1016/j.jcis.2024.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
Deuterium labeling is a highly valuable yet challenging subject of research in various scientific fields. Conventional deuteration methods often involve harsh reaction conditions and suffer from limited reactivity and selectivity. Herein, we report a visible light-driven C-X (X = halogen) to C-D (D = deuterium) exchange strategy over copper-doped cadmium sulfide quantum dots (Cu-CdS QDs) under mild conditions, eliminating the need for noble metal catalysts and expensive deuterium sources. The conversion of aryl halides into deuterated products using Cu-CdS QDs reaches up to 99%, which is four times higher than that achieved using pristine CdS QDs. The substantial enhancement in the photocatalytic activity of the QDs can be primarily attributed to the generation of long-lived charge carriers (approximately 6 μs) induced by Cu doping. Mechanistic studies reveal that the Cu dopants considerably retard the recombination of photoinduced carriers by creating intermediate energy levels that serve as hole trapping centers in CdS QDs, thereby improving the electron utilization efficiency in energetically demanding photoreduction reactions. Additionally, the introduction of Cu increases the energy offset between the conduction band of CdS QDs and molecular acceptors, facilitating the electron transfer process. Upon visible light irradiation, a series of aryl halides can be efficiently converted into the desired deuterated compounds using D2O as the deuterium source. This work demonstrates that regulating charge carrier dynamics in ultrasmall QD-based photocatalysts is a promising strategy for promoting organic transformations.
Collapse
Affiliation(s)
- Xian Yang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Teng Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yonglong Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanfang Hu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Biosensing & Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Liu C, Wang L, Ge H. Multifunctionalization of Alkenyl Alcohols via a Sequential Relay Process. J Am Chem Soc 2024. [PMID: 39470983 DOI: 10.1021/jacs.4c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Aryl-substituted aliphatic amines are widely recognized as immensely valuable molecules. Consequently, the development of practical strategies for the construction of these molecules becomes increasingly urgent and critical. Here, we have successfully achieved multifunctionalization reactions of alkenyl alcohols in a sequential relay process, which enables transformation patterns of arylamination, deuterated arylamination, and methylenated arylamination to the easy access of multifarious arylalkylamines. Notably, a novel functionalization mode for carbonyl groups has been developed to facilitate the processes of deuterium incorporation and methylene introduction, thereby providing new means for the diverse transformations of carbonyl groups. This methodology displays a wide tolerance toward functional groups, while also exhibiting good applicability across various skeletal structures of alkenols and amines.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ling Wang
- Residual Department, Merieux Testing Technology (Qingdao) Co., Ltd., Qingdao, 266000, China
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
3
|
Saridakis I, Klose I, Jones BT, Maulide N. Hydride Shuttle Catalysis: From Conventional to Inverse Mode. JACS AU 2024; 4:3358-3369. [PMID: 39328743 PMCID: PMC11423322 DOI: 10.1021/jacsau.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
Hydride shuttle catalysis has emerged as a powerful synthetic platform, enabling the selective formation of C-C bonds to yield sp3-rich structures. By virtue of the compelling reactivity of sterically encumbered Lewis acids from the frustrated Lewis pair regime, hydride shuttle catalysis enables the regioselective functionalization of alkyl amines at either the α- or β-position. In contrast to classical Lewis acid reactivity, the increased steric hindrance prevents interaction with the Lewis basic amine itself, instead leading to reversible abstraction of a hydride from the amine α-carbon. The created positive charge facilitates the occurrence of transformations before hydride rebound or a similar capture event happen. In this Perspective, we outline a broad selection of transformations featuring hydride shuttle catalysis, as well as the recently developed approach of inverse hydride shuttle catalysis. Both strategies give rise to a wide array of functionalized amines and offer elegant approaches to otherwise elusive bond formations.
Collapse
Affiliation(s)
- Iakovos Saridakis
- Institute
of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Immo Klose
- Institute
of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Benjamin T. Jones
- Institute
of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Zhang J, Jiao M, Lu Z, Lu H, Wang M, Shi Z. Hydrodeuteroalkylation of Unactivated Olefins Using Thianthrenium Salts. Angew Chem Int Ed Engl 2024; 63:e202409862. [PMID: 38866703 DOI: 10.1002/anie.202409862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Isotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel-catalyzed system that facilitates the synthesis of various deuterium-labeled alkanes through the hydrodeuteroalkylation of d2-labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single-step pH-dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium-labeled compounds, especially those of pharmaceutical relevance.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mengjie Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zheng Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Jiangsu Nata Opto-electronic Material Co., Ltd., Suzhou, 215126, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
5
|
Zhang Z, Lv Y, Ong WQR, Zhao X, Jia Z, Loh TP. Robust Catalytic S EAr H/D Exchange of Arenes with D 2O: Metal-Free Deuteration of Natural Complexes and Drugs. Angew Chem Int Ed Engl 2024:e202408509. [PMID: 39152649 DOI: 10.1002/anie.202408509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
A catalytic metal-free approach for the H/D exchange in aromatic compounds using D2O as the terminal deuterating reagent has been developed. This metal-free protocol employs a triaryl carbenium as the mediator and showcases a wide applicability in the late-stage deuteration of various natural products and small-molecule drugs. Gram-scale deuteration was successfully demonstrated with β-Estradiol, highlighting the method's practicability. Detailed mechanistic insights, supported by DFT calculations, unveiled the essential role of in situ generated acidic species in this electrophilic aromatic substitution process. This newly developed method offers a sustainable and versatile alternative to traditional metal-catalyzed H/D exchange techniques, addressing challenges such as the use of expensive metals, impurity formation, and the necessity for residual metal removal from the final products.
Collapse
Affiliation(s)
- Zhenguo Zhang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yongheng Lv
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wan Qing Renee Ong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xuefei Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
6
|
Xu J, Huang W, Li M, Kang C, Jiang G, Ji F. Selective Synthesis of Amides and α-Ketoamides via Electrochemical Decarboxylation and Dehydration. J Org Chem 2024; 89:10498-10510. [PMID: 39010800 DOI: 10.1021/acs.joc.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
An electrochemical and selective decarboxylation and dehydration using α-keto acids with amines is accomplished, which leads to the easy accessibility of amides and α-ketoamides, which are not only ubiquitous and valuable structure motifs found in pharmaceuticals, but also versatile building blocks in synthetic chemistry. Notably, for this efficient and green protocol, neither metal catalysts nor external oxidants are required. The process exhibits a broad scope and functional group tolerance to deliver various amides and α-ketoamides. Moreover, these two reactions have also been applied to late-stage derivatization and can be safely conducted on gram scale.
Collapse
Affiliation(s)
- Jiawei Xu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Wenxiu Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Mingzhe Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Chen Kang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
7
|
Jones BT, Maulide N. Lewis Acid-Driven Inverse Hydride Shuttle Catalysis. Angew Chem Int Ed Engl 2024; 63:e202320001. [PMID: 38551113 DOI: 10.1002/anie.202320001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Indexed: 05/30/2024]
Abstract
Inverse hydride shuttle catalysis provides a multicomponent platform for the highly efficient synthesis of alkaloid frameworks with exquisite diastereoselectivity. However, a number of limitations hinder this method, primarily the strict requirement for highly electron-deficient acceptors. Herein, we present a general Lewis acid-driven approach to address this constraint, and have developed two broad strategies enabling the modular synthesis of complex azabicycles that were entirely unattainable using the previous method. The enhanced synthetic flexibility facilitates a streamlined asymmetric cyclization, leading to a concise total synthesis of the alkaloid (-)-tashiromine.
Collapse
Affiliation(s)
- Benjamin T Jones
- Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Nuno Maulide
- Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
8
|
Yang X, Zhang B, Ruan J, Duanmu K, Chen W. Palladium-Catalyzed Allylation of Endocyclic 1-Azaallyl Anions. J Org Chem 2024; 89:8896-8905. [PMID: 38856706 DOI: 10.1021/acs.joc.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Endocyclic 1-azaallyl anions engage allyl acetates in a palladium-catalyzed allylation followed by reduction to give unprotected 2-(hetero)aryl-3-allylpiperidines and 2-allyl-3-arylmorpholines, products not easily accessible by other means. The allyl group is then readily transformed into a variety of functional groups. Preliminary studies on the asymmetric variant of the reaction using an enantiomerically pure BI-DIME-type ligand provide the product with moderate enantioselectivity. Computational studies suggest that energy barriers of inner-sphere reductive elimination and outer-sphere nucleophilic substitution are almost the same, which makes both of them possible reaction pathways. In addition, the inner-sphere mechanism displays an enantiodiscriminating C-C bond forming step, while the outer-sphere mechanism is much less selective, which combined to give the asymmetric variant of the reaction moderate enantioselectivity.
Collapse
Affiliation(s)
- Xiaoyu Yang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Biao Zhang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Junhao Ruan
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Kaining Duanmu
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Weijie Chen
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| |
Collapse
|
9
|
Zhang HH, Chen MZ, Yu X, Bonnesen PV, Wu Z, Chen HL, O'Neill H. Synthesis of Perdeuterated Alkyl Amines/Amides with Pt/C as Catalyst under Mild Conditions. J Org Chem 2024; 89:8262-8266. [PMID: 38741072 DOI: 10.1021/acs.joc.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A convenient method for the synthesis of perdeuterated alkyl amides/amines is disclosed. Perdeuterated acetyl amides can be achieved by a hydrogen-deuterium (H/D) exchange protocol with Pt/C as a catalyst and D2O as a deuterium source under mild conditions. After removal or reduction of the acetyl group, this protocol can provide perdeuterated primary, secondary, and tertiary amines, which are difficult to achieve via other methods.
Collapse
Affiliation(s)
- Hong-Hai Zhang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Meng-Zhe Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Xinbin Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Peter V Bonnesen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hugh O'Neill
- Neutron Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
10
|
Alvarez-Montoya A, Gillions JP, Winfrey L, Hawker RR, Singh K, Ortu F, Fu Y, Li Y, Pulis AP. B(C 6F 5) 3-Catalyzed Dehydrogenation of Pyrrolidines to Form Pyrroles. ACS Catal 2024; 14:4856-4864. [PMID: 38601781 PMCID: PMC11002826 DOI: 10.1021/acscatal.3c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Pyrroles are important N-heterocycles found in medicines and materials. The formation of pyrroles from widely accessible pyrrolidines is a potentially attractive strategy but is an underdeveloped approach due to the sensitivity of pyrroles to the oxidative conditions required to achieve such a transformation. Herein, we report a catalytic approach that employs commercially available B(C6F5)3 in an operationally simple procedure that allows pyrrolidines to serve as direct synthons for pyrroles. Mechanistic studies have revealed insights into borane-catalyzed dehydrogenative processes.
Collapse
Affiliation(s)
| | | | - Laura Winfrey
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Rebecca R. Hawker
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Kuldip Singh
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Fabrizio Ortu
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | - Yukang Fu
- School
of Chemical Engineering, Dalian University
of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China
| | - Yang Li
- School
of Chemical Engineering, Dalian University
of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China
| | | |
Collapse
|
11
|
Han G, Li G, Sun Y. Electrocatalytic Hydrogenation Using Palladium Membrane Reactors. JACS AU 2024; 4:328-343. [PMID: 38425903 PMCID: PMC10900496 DOI: 10.1021/jacsau.3c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
Hydrogenation is a crucial chemical process employed in a myriad of industries, often facilitated by metals such as Pd, Pt, and Ni as catalysts. Traditional thermocatalytic hydrogenation usually necessitates high temperature and elevated pressure, making the process energy intensive. Electrocatalytic hydrogenation offers an alternative but suffers from issues such as competing H2 evolution, electrolyte separation, and limited solvent selection. This Perspective introduces the evolution and advantages of the electrocatalytic Pd membrane reactor (ePMR) as a solution to these challenges. ePMR utilizes a Pd membrane to physically separate the electrochemical chamber from the hydrogenation chamber, permitting the use of water as the hydrogen source and eliminating the need for H2 gas. This setup allows for greater control over reaction conditions, such as solvent and electrolyte selection, while mitigating issues such as low Faradaic efficiency and complex product separation. Several representative hydrogenation reactions (e.g., hydrogenation of C=C, C≡C, C=O, C≡N, and O=O bonds) achieved via ePMR over the past 30 years were concisely discussed to highlight the unique advantages of ePMR. Promising research directions along with the advancement of ePMR for more challenging hydrogenation reactions are also proposed. Finally, we provide a prospect for future development of this distinctive hydrogenation strategy using hydrogen-permeable membrane electrodes.
Collapse
Affiliation(s)
| | | | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
12
|
Zhang M, Tang ZL, Luo H, Wang XC. β-C-H Allylation of Trialkylamines with Allenes Promoted by Synergistic Borane/Palladium Catalysis. Angew Chem Int Ed Engl 2023:e202317610. [PMID: 38095883 DOI: 10.1002/anie.202317610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Functionalization of the C(sp3 )-H bonds of trialkylamines is challenging, especially for reactions at positions other than the α position. Herein, we report a method for β-C(sp3 )-H allylation of trialkylamines. In these reactions, which involve synergistic borane/palladium catalysis, an enamine intermediate is first generated from the amine via α,β-dehydrogenation promoted by B(C6 F5 )3 and a base, and then the enamine undergoes palladium-catalyzed reaction with an allene to give the allylation product. Because the hydride and the proton resulting from the initial dehydrogenation are ultimately shuttled to the product by B(C6 F5 )3 and the palladium catalyst, respectively, these reactions show excellent atom economy. The establishment of this method paves the way for future studies of C-H functionalization of trialkylamines by means of synergistic borane/transition-metal catalysis.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zi-Lu Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Heng Luo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiao-Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
13
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
14
|
Russo C, Leech MC, Walsh JM, Higham JI, Giannessi L, Lambert E, Kiaku C, Poole DL, Mason J, Goodall CAI, Devo P, Giustiniano M, Radi M, Lam K. eHydrogenation: Hydrogen-free Electrochemical Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202309563. [PMID: 37540528 DOI: 10.1002/anie.202309563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/05/2023]
Abstract
Hydrogenation reactions are staple transformations commonly used across scientific fields to synthesise pharmaceuticals, natural products, and various functional materials. However, the vast majority of these reactions require the use of a toxic and costly catalyst leading to unpractical, hazardous and often functionally limited conditions. Herein, we report a new, general, practical, efficient, mild and high-yielding hydrogen-free electrochemical method for the reduction of alkene, alkyne, nitro and azido groups. Finally, this method has been applied to deuterium labelling.
Collapse
Affiliation(s)
- Camilla Russo
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Matthew C Leech
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Jamie M Walsh
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Joe I Higham
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Lisa Giannessi
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
- Department of Food and Drug, University of Parma Parco area delle, Scienze 27°, Parma, Italy
| | - Emmanuelle Lambert
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Cyrille Kiaku
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Darren L Poole
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Joseph Mason
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Charles A I Goodall
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Perry Devo
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Marco Radi
- Department of Food and Drug, University of Parma Parco area delle, Scienze 27°, Parma, Italy
| | - Kevin Lam
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| |
Collapse
|
15
|
Zhang B, Ruan J, Seidel D, Chen W. Palladium-Catalyzed Arylation of Endocyclic 1-Azaallyl Anions: Concise Synthesis of Unprotected Enantioenriched cis-2,3-Diarylpiperidines. Angew Chem Int Ed Engl 2023; 62:e202307638. [PMID: 37461285 PMCID: PMC10530244 DOI: 10.1002/anie.202307638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Unprotected cis-2,3-diarylpiperidines are synthesized through an unprecedented palladium-catalyzed cross-coupling reaction between aryl halides and elusive endocyclic 1-azaallyl anions. These intermediates are generated in situ by the deprotonation of 2-aryl-1-piperideines, precursors that are readily prepared in two operations from simple piperidines. An asymmetric version of this reaction with (2R, 3R)-iPr-BI-DIME as the ligand provides products in moderate to good yields and enantioselectivities. This study significantly expands the synthetic utility of endocyclic 1-azaallyl anions.
Collapse
Affiliation(s)
- Biao Zhang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. of China
| | - Junhao Ruan
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. of China
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Weijie Chen
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. of China
| |
Collapse
|
16
|
Okamoto K, Higuma R, Muta K, Fukumoto K, Tsuchihashi Y, Ashikari Y, Nagaki A. External Flash Generation of Carbenoids Enables Monodeuteration of Dihalomethanes. Chemistry 2023; 29:e202301738. [PMID: 37300319 DOI: 10.1002/chem.202301738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In this study, incorporation of one deuterium atom was achieved by H-D exchange of one of the two identical methylene protons in various dihalomethanes (halogen=Cl, Br, and I) through a rapid-mixing microflow reaction of lithium diisopropylamide as a strong base and deuterated methanol as a deuteration reagent. Generation of highly unstable carbenoid intermediate and suppression of its decomposition were successfully controlled under high flow-rate conditions. Monofunctionalization of diiodomethane afforded various building blocks composed of boryl, stannyl, and silyl groups. The monodeuterated diiodomethane, which served as a deuterated C1 source, was subsequently subjected to diverted functionalization methods to afford various products including biologically important molecules bearing isotope labelling at specific positions and homologation products with monodeuteration.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ryosuke Higuma
- Department of Synthetic and Biological Chemistry Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kensuke Muta
- Fundamental Chemical Research Center, Central Glass Co., Ltd., 17-5, Nakadai 2-chome, Kawagoe City, Saitama, 350-1159, Japan
| | - Keita Fukumoto
- Department of Synthetic and Biological Chemistry Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Tsuchihashi
- Taiyo Nippon Sanso Corp., 10 Okubo, Tsukuba-shi, Ibaraki, 300-2611, Japan
| | - Yosuke Ashikari
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
17
|
Damont A, Legrand A, Cao C, Fenaille F, Tabet JC. Hydrogen/deuterium exchange mass spectrometry in the world of small molecules. MASS SPECTROMETRY REVIEWS 2023; 42:1300-1331. [PMID: 34859466 DOI: 10.1002/mas.21765] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/07/2023]
Abstract
The combined use of hydrogen/deuterium exchange (HDX) and mass spectrometry (MS), referred to as HDX-MS, is a powerful tool for exploring molecular edifices and has been used for over 60 years. Initially for structural and mechanistic investigation of low-molecular weight organic compounds, then to study protein structure and dynamics, then, the craze to study small molecules by HDX-MS accelerated and has not stopped yet. The purpose of this review is to present its different facets with particular emphasis on recent developments and applications. Reversible H/D exchanges of mobilizable protons as well as stable exchanges of non-labile hydrogen are considered whether they are taking place in solution or in the gas phase, or enzymatically in a biological media. Some fundamental principles are restated, especially for gas-phase processes, and an overview of recent applications, ranging from identification to quantification through the study of metabolic pathways, is given.
Collapse
Affiliation(s)
- Annelaure Damont
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Anaïs Legrand
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Chenqin Cao
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Jean-Claude Tabet
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Sloane S, Vang ZP, Nelson G, Qi L, Sonstrom RE, Alansari IY, Behlow KT, Pate BH, Neufeldt SR, Clark JR. Precision Deuteration Using Cu-Catalyzed Transfer Hydrodeuteration to Access Small Molecules Deuterated at the Benzylic Position. JACS AU 2023; 3:1583-1589. [PMID: 37388686 PMCID: PMC10301681 DOI: 10.1021/jacsau.3c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023]
Abstract
A highly regio- and chemoselective Cu-catalyzed aryl alkyne transfer hydrodeuteration to access a diverse scope of aryl alkanes precisely deuterated at the benzylic position is described. The reaction benefits from a high degree of regiocontrol in the alkyne hydrocupration step, leading to the highest selectivities reported to date for an alkyne transfer hydrodeuteration reaction. Only trace isotopic impurities are formed under this protocol, and analysis of an isolated product by molecular rotational resonance spectroscopy confirms that high isotopic purity products can be generated from readily accessible aryl alkyne substrates.
Collapse
Affiliation(s)
- Samantha
E. Sloane
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United
States
| | - Zoua Pa Vang
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United
States
| | - Genevieve Nelson
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Lihan Qi
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United
States
| | | | - Isabella Y. Alansari
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United
States
| | - Kiera T. Behlow
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United
States
| | - Brooks H. Pate
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United
States
| | - Sharon R. Neufeldt
- Department
of Chemistry & Biochemistry, Montana
State University, Bozeman, Montana 59717, United States
| | - Joseph R. Clark
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United
States
| |
Collapse
|
19
|
Zou CP, Ma T, Qiao XX, Wu XX, Li G, He Y, Zhao XJ. B(C 6F 5) 3-catalyzed β-C(sp 3)-H alkylation of tertiary amines with 2-aryl-3 H-indol-3-ones. Org Biomol Chem 2023; 21:4393-4397. [PMID: 37161837 DOI: 10.1039/d3ob00481c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The β-C-H functionalization of amines is one of the most powerful tools for the synthesis of saturated nitrogen-containing heterocycles in organic synthesis. However, the β-C-H functionalization of amines via redox-neutral addition with cyclic-ketimines is still unprecedented. Herein, the β-C-H functionalization of tertiary amines is described, providing the corresponding 1,3-diamines containing the indolin-3-one moiety in high yields via the B(C6F5)3-catalyzed borrowing hydrogen strategy. According to the experimental results, a possible catalytic cycle has been proposed to rationalize the process of this reaction. Notably, the β-C-H alkylation of amines is external oxidant- and transition-metal-free, which makes a significant contribution to promoting economical chemical synthesis.
Collapse
Affiliation(s)
- Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
20
|
Song H, Zhang W, Zhou H, Wei J, Cai X, Yang F, Li W, Xu C. Remote Site-Selective C(sp 3)–H Monodeuteration of Unactivated Alkenes via Chain-Walking Strategy. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Heng Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hu Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Jingjing Wei
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Wei Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| |
Collapse
|
21
|
Suzuki A, Kamei Y, Yamashita M, Seino Y, Yamaguchi Y, Yoshino T, Kojima M, Matsunaga S. Photocatalytic Deuterium Atom Transfer Deuteration of Electron-Deficient Alkenes with High Functional Group Tolerance. Angew Chem Int Ed Engl 2023; 62:e202214433. [PMID: 36394187 DOI: 10.1002/anie.202214433] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Due to its mild reaction conditions and unique chemoselectivity, hydrogen atom transfer (HAT) hydrogenation represents an indispensable method for the synthesis of complex molecules. Its analog using deuterium, deuterium atom transfer (DAT) deuteration, is expected to enable access to complex deuterium-labeled compounds. However, DAT deuteration has been scarcely studied for synthetic purposes, and a method that possesses the favorable characteristics of HAT hydrogenations has remained elusive. Herein, we report a protocol for the photocatalytic DAT deuteration of electron-deficient alkenes. In contrast to the previous DAT deuteration, this method tolerates a variety of synthetically useful functional groups including haloarenes. The late-stage deuteration also allows access to deuterated amino acids as well as donepezil-d2 . Thus, this work demonstrates the potential of DAT chemistry to become the alternative method of choice for preparing deuterium-containing molecules.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuji Kamei
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaaki Yamashita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yusuke Seino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuto Yamaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
22
|
Ramanathan D, Shi Q, Xu M, Chang R, Peñín B, Funes-Ardoiz I, Ye J. Catalytic asymmetric deuterosilylation of exocyclic olefins with mannose-derived thiols and deuterium oxide. Org Chem Front 2023. [DOI: 10.1039/d2qo01979e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-free, photoinduced asymmetric deuterosilylation of exocyclic olefins has been achieved using a mannose-derived thiol catalyst.
Collapse
Affiliation(s)
- Devenderan Ramanathan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz Peñín
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Mondal A, Karattil Suresh A, Sivakumar G, Balaraman E. Sustainable and Affordable Synthesis of (Deuterated) N-Methyl/Ethyl Amines from Nitroarenes. Org Lett 2022; 24:8990-8995. [DOI: 10.1021/acs.orglett.2c03595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Akash Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Abhijith Karattil Suresh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
24
|
He Y, Liu Q, Du Z, Xu Y, Cao L, Zhang X, Fan X. B(C 6F 5) 3-Catalyzed α,β-Difunctionalization and C-N Bond Cleavage of Saturated Amines with Benzo[ c]isoxazoles: Access to Quinoline Derivatives. J Org Chem 2022; 87:14840-14845. [PMID: 36269623 DOI: 10.1021/acs.joc.2c01290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we disclose a strategy to realize α,β-difunctionalization and C-N bond cleavage of saturated amines with benzo[c]isoxazoles via a B(C6F5)3-catalyzed consecutive hydrogen-borrowing and [4 + 2] cycloaddition followed by a C-N bond cleavage process. In general, the reactions proceed efficiently in the absence of any oxidant and metal catalyst to afford a broad range of quinoline derivatives starting from easily accessible substrates in an atom-economical manner.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qimeng Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zihe Du
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanhua Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingyu Cao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
25
|
Tian J, Sun W, Li R, Tian G, Wang X. Borane/Gold(I)‐Catalyzed C−H Functionalization Reactions and Cycloaddition Reactions of Amines and α‐Alkynylenones. Angew Chem Int Ed Engl 2022; 61:e202208427. [DOI: 10.1002/anie.202208427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Jun‐Jie Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Wei Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Rui‐Rui Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Gui‐Xiu Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
26
|
Luo K, Zhao Y, Tang Z, Li W, Lin J, Jin Y. Visible-Light-Induced Dual C(sp 3)-H Bond Functionalization of Tertiary Amine via Hydrogen Transfer to Carbene and Subsequent Cycloaddition. Org Lett 2022; 24:6335-6340. [PMID: 35985018 DOI: 10.1021/acs.orglett.2c02557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe the dual C(sp3)-H bond functionalization of a tertiary amine through hydride-transfer-induced dehydrogenation, followed by cycloaddition, using an easily preparable diazoester as a new type hydride-acceptor precursor under mild, redox-neutral conditions. With carbene as a hydrogen acceptor, this method was demonstrated by the preparation of a broad range of functionalized isoxazoldines in moderate to good yields.
Collapse
Affiliation(s)
- Kaixiu Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yongqiang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhiliang Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Weina Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
27
|
Tian JJ, Sun W, Li RR, Tian GX, Wang XC. Borane/Gold(I)‐Catalyzed C–H Functionalization Reactions and Cycloaddition Reactions of Amines and α‐Alkynylenones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Wei Sun
- Nankai University College of Chemistry CHINA
| | - Rui-Rui Li
- Nankai University College of Chemistry CHINA
| | | | - Xiao-Chen Wang
- Nankai University College of Chemistry 94 Weijin Rd 300071 Tianjin CHINA
| |
Collapse
|
28
|
Miller JL, Lawrence JMIA, Rodriguez Del Rey FO, Floreancig PE. Synthetic applications of hydride abstraction reactions by organic oxidants. Chem Soc Rev 2022; 51:5660-5690. [PMID: 35712818 DOI: 10.1039/d1cs01169c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbon-hydrogen bond functionalizations provide an attractive method for streamlining organic synthesis, and many strategies have been developed for conducting these transformations. Hydride-abstracting reactions have emerged as extremely effective methods for oxidative bond-forming processes due to their mild reaction conditions and high chemoselectivity. This review will predominantly focus on the mechanism, reaction development, natural product synthesis applications, approaches to catalysis, and use in enantioselective processes for hydride abstractions by quinone, oxoammonium ion, and carbocation oxidants. These are the most commonly employed hydride-abstracting agents, but recent efforts illustrate the potential for weaker ketone and triaryl borane oxidants, which will be covered at the end of the review.
Collapse
Affiliation(s)
- Jenna L Miller
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | - Jean-Marc I A Lawrence
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | | | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|
29
|
Levernier E, Tatoueix K, Garcia-Argote S, Pfeifer V, Kiesling R, Gravel E, Feuillastre S, Pieters G. Easy-to-Implement Hydrogen Isotope Exchange for the Labeling of N-Heterocycles, Alkylkamines, Benzylic Scaffolds, and Pharmaceuticals. JACS AU 2022; 2:801-808. [PMID: 35557763 PMCID: PMC9088292 DOI: 10.1021/jacsau.1c00503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 06/07/2023]
Abstract
Facilitating access to deuterated and tritiated complex molecules is of paramount importance due to the fundamental role of isotopically labeled compounds in drug discovery and development. Deuterated analogues of drugs are extensively used as internal standards for quantification purposes or as active pharmaceutical ingredients, whereas tritiated drugs are essential for preclinical ADME studies. In this report, we describe the labeling of prevalent substructures in FDA-approved drugs such as azines, indoles, alkylamine moieties, or benzylic carbons by the in situ generation of Rh nanoparticles able to catalyze both C(sp2)-H and C(sp3)-H activation processes. In this easy-to-implement labeling process, Rh nanocatalysts are formed by decomposition of a commercially available rhodium dimer under a deuterium or tritium gas atmosphere (1 bar or less), using the substrate itself as a surface ligand to control the aggregation state of the resulting metallic clusters. It is noteworthy that the size of the nanoparticles observed is surprisingly independent of the substrate used and is homogeneous, as evidenced by transmission electron microscopy experiments. This method has been successfully applied to the one-step synthesis of (1) deuterated pharmaceuticals usable as internal standards for MS quantification and (2) tritiated drug analogues with very high molar activities (up to 113 Ci/mmol).
Collapse
Affiliation(s)
- Etienne Levernier
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Kevin Tatoueix
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Sébastien Garcia-Argote
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Viktor Pfeifer
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Ralf Kiesling
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Edmond Gravel
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Sophie Feuillastre
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Grégory Pieters
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
30
|
Prakash G, Paul N, Oliver GA, Werz DB, Maiti D. C-H deuteration of organic compounds and potential drug candidates. Chem Soc Rev 2022; 51:3123-3163. [PMID: 35320331 DOI: 10.1039/d0cs01496f] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C-H deuteration has been intricately developed to satisfy the urgent need for site-selectively deuterated organic frameworks. Deuteration has been primarily used to study kinetic isotope effects of reactions but recently its significance in pharmaceutical chemistry has been discovered. Deuterium labelled compounds have stolen the limelight since the inception of the first FDA-approved deuterated drug, for the treatment of chorea-associated Huntington's disease, and their pharmacological importance was realised by chemists, although surprisingly very late. Various approaches were developed to carry out site-selective deuteration. However, the most common and efficient method is hydrogen isotope exchange (HIE). This review summarises deuteration methods of various organic motifs containing C(sp2)-H and C(sp3)-H bonds utilizing C-H bond functionalisation as a key step along with a variety of catalysts, and exemplifies their biological relevance.
Collapse
Affiliation(s)
- Gaurav Prakash
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Nilanjan Paul
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Gwyndaf A Oliver
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
31
|
Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. Photoredox-Catalyzed Site-Selective Generation of Carbanions from C(sp 3)–H Bonds in Amines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kathiravan Murugesan
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Karsten Donabauer
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Rok Narobe
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Armin Bauer
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
32
|
Kang QK, Li Y, Chen K, Zhu H, Wu WQ, Lin Y, Shi H. Rhodium-Catalyzed Stereoselective Deuteration of Benzylic C-H Bonds via Reversible η 6 -Coordination. Angew Chem Int Ed Engl 2022; 61:e202117381. [PMID: 35006640 DOI: 10.1002/anie.202117381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/15/2022]
Abstract
We report a convenient method for benzylic H/D exchange of a wide variety of substrates bearing primary, secondary, or tertiary C-H bonds via a reversible η6 -coordination strategy. A doubly cationic [CpCF3 RhIII ]2+ catalyst that serves as an arenophile facilitates deprotonation of inert benzylic hydrogen atoms (pKa >40 in DMSO) without affecting other hydrogen atoms, such as those on aromatic rings or in α-positions of carboxylate groups. Notably, the H/D exchange reactions feature high stereoretention. We demonstrated the potential utility of this method by using it for deuterium labeling of ten pharmaceuticals and their analogues.
Collapse
Affiliation(s)
- Qi-Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Kai Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hui Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Wen-Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
33
|
Liu J, Yu Y, Huang X. Selective Access of Deuterated Dibenzo‐Fused ε‐Lactones and ε‐Lactams via Palladium Carbene Migratory Insertion Enabled 1,4‐Pd Shift. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinling Liu
- FIRSM: Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Fujian Institute of Research on the Structure of Matter CHINA
| | - Yinghua Yu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Fujian Institute of Research on the Structure of Matter CHINA
| | - Xueliang Huang
- Hunan Normal University - Erliban Campus: Hunan Normal University College of Chemistry and Chemical Engineerring Lushan Road 36Yuelu district 410081 Changsha CHINA
| |
Collapse
|
34
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
35
|
Kang QK, Li Y, Chen K, Zhu H, Wu WQ, Lin Y, Shi H. Rhodium‐Catalyzed Stereoselective Deuteration of Benzylic C–H Bonds via Reversible η6‐Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi-Kai Kang
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Yuntong Li
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Kai Chen
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Hui Zhu
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Wen-Qiang Wu
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Yunzhi Lin
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Hang Shi
- Westlake University School of Science 18 Shilongshan Road 310024 Hangzhou CHINA
| |
Collapse
|
36
|
Zhang BB, Peng S, Wang F, Lu C, Nie J, Chen Z, Yang G, Ma C. Borane-catalyzed cascade Friedel–Crafts alkylation/[1,5]-hydride transfer/Mannich cyclization to afford tetrahydroquinolines. Chem Sci 2022; 13:775-780. [PMID: 35173942 PMCID: PMC8768868 DOI: 10.1039/d1sc05629h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
We report a redox-neutral annulation reaction of tertiary amines with electron-deficient alkynes under metal-free and oxidant-free conditions.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Shuo Peng
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Feiyi Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Cuifen Lu
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Junqi Nie
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Zuxing Chen
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Guichun Yang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Chao Ma
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
37
|
Wasa M, Yesilcimen A. Enantioselective Cooperative Catalysis within Frustrated Lewis Pair Complexes. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College
| | | |
Collapse
|
38
|
Yang X, Ben H, Ragauskas AJ. Recent Advances in the Synthesis of Deuterium‐Labeled Compounds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoli Yang
- State Key Laboratory of BioFibers and Eco-textiles Qingdao University Qingdao 266071 P. R. China
| | - Haoxi Ben
- State Key Laboratory of BioFibers and Eco-textiles Qingdao University Qingdao 266071 P. R. China
| | - Arthur J. Ragauskas
- Center for Renewable Carbon Department of Forestry Wildlife and Fisheries University of Tennessee Institute of Agriculture Knoxville TN 37996 USA
- Department of Chemical and Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
- Joint Institute for Biological Science Biosciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- The Center for Bioenergy Innovation (CBI) Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
39
|
Lecomte M, Lahboubi M, Thilmany P, El Bouzakhi A, Evano G. A general, versatile and divergent synthesis of selectively deuterated amines. Chem Sci 2021; 12:11157-11165. [PMID: 34522313 PMCID: PMC8386668 DOI: 10.1039/d1sc02622d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Deuterated organic molecules are of utmost importance in many areas of science and have been recently intensively investigated in medicinal chemistry due to their enhanced metabolic stability. The development of efficient and broadly applicable methods for the selective incorporation of deuterium atoms into organic molecules from readily available starting materials and reagents is therefore of extreme importance. Such methods however often lack generality and selectivity, notably in the nitrogen series. With nitrogen-containing molecules being indeed ubiquitous in medicinal chemistry, there is a strong need for efficient methods enabling the selective synthesis of deuterated amines. In this perspective, we report herein a general, versatile, divergent and metal-free synthesis of amines selectively deuterated at their α and/or β positions. Upon simple treatment of readily available ynamides with a mixture of triflic acid and triethylsilane, either deuterated or not, a range of amines can be smoothly obtained with high levels of deuterium incorporation by a unique sequence involving a domino keteniminium/iminium activation. A general, versatile, divergent and metal-free synthesis of amines selectively deuterated at their α and/or β positions and relying on a simple treatment of ynamides with triflic acid and triethylsilane, either deuterated or not, is reported.![]()
Collapse
Affiliation(s)
- Morgan Lecomte
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Mounsef Lahboubi
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Pierre Thilmany
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Adil El Bouzakhi
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
40
|
Dutta S, Li B, Rickertsen DRL, Valles DA, Seidel D. C-H Bond Functionalization of Amines: A Graphical Overview of Diverse Methods. SYNOPEN 2021; 5:173-228. [PMID: 34825124 PMCID: PMC8612105 DOI: 10.1055/s-0040-1706051] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This Graphical Review provides a concise overview of the manifold and mechanistically diverse methods that enable the functionalization of sp3 C-H bonds in amines and their derivatives.
Collapse
Affiliation(s)
- Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Bowen Li
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dillon R L Rickertsen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel A Valles
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
41
|
Zhang M, Wang XC. Bifunctional Borane Catalysis of a Hydride Transfer/Enantioselective [2+2] Cycloaddition Cascade. Angew Chem Int Ed Engl 2021; 60:17185-17190. [PMID: 34037295 DOI: 10.1002/anie.202106168] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 02/04/2023]
Abstract
Herein, we present a mild and efficient method for synthesizing enantioenriched tetrahydroquinoline-fused cyclobutenes through a cascade reaction between 1,2-dihydroquinolines and alkynones with catalysis by chiral spiro-bicyclic bisboranes. The bisboranes served two functions: first they catalyzed a hydride transfer to convert the 1,2-dihydroquinoline substrate to a 1,4-dihydroquinoline, and then they activated the alkynone substrate for an enantioselective [2+2] cycloaddition reaction with the 1,4-dihydroquinoline generated in situ.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiao-Chen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
42
|
Stereodefined rhodium-catalysed 1,4-H/D delivery for modular syntheses and deuterium integration. Nat Catal 2021. [DOI: 10.1038/s41929-021-00643-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
43
|
Bifunctional Borane Catalysis of a Hydride Transfer/Enantioselective [2+2] Cycloaddition Cascade. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Xu J, Fan J, Lou Y, Xu W, Wang Z, Li D, Zhou H, Lin X, Wu Q. Light-driven decarboxylative deuteration enabled by a divergently engineered photodecarboxylase. Nat Commun 2021; 12:3983. [PMID: 34172745 PMCID: PMC8233396 DOI: 10.1038/s41467-021-24259-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/10/2021] [Indexed: 12/05/2022] Open
Abstract
Despite the well-established chemical processes for C-D bond formation, the toolbox of enzymatic methodologies for deuterium incorporation has remained underdeveloped. Here we describe a photodecarboxylase from Chlorella variabilis NC64A (CvFAP)-catalyzed approach for the decarboxylative deuteration of various carboxylic acids by employing D2O as a cheap and readily available deuterium source. Divergent protein engineering of WT-CvFAP is implemented using Focused Rational Iterative Site-specific Mutagenesis (FRISM) as a strategy for expanding the substrate scope. Using specific mutants, several series of substrates including different chain length acids, racemic substrates as well as bulky cyclic acids are successfully converted into the deuterated products (>40 examples). In many cases WT-CvFAP fails completely. This approach also enables the enantiocomplementary kinetic resolution of racemic acids to afford chiral deuterated products, which can hardly be accomplished by existing methods. MD simulations explain the results of improved catalytic activity and stereoselectivity of WT CvFAP and mutants.
Collapse
Affiliation(s)
- Jian Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Jiajie Fan
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Yujiao Lou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
| | - Danyang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Haonan Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Xianfu Lin
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
45
|
Organophotocatalytic selective deuterodehalogenation of aryl or alkyl chlorides. Nat Commun 2021; 12:2894. [PMID: 34001911 PMCID: PMC8129137 DOI: 10.1038/s41467-021-23255-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
Development of practical deuteration reactions is highly valuable for organic synthesis, analytic chemistry and pharmaceutic chemistry. Deuterodehalogenation of organic chlorides tends to be an attractive strategy but remains a challenging task. We here develop a photocatalytic system consisting of an aryl-amine photocatalyst and a disulfide co-catalyst in the presence of sodium formate as an electron and hydrogen donor. Accordingly, many aryl chlorides, alkyl chlorides, and other halides are converted to deuterated products at room temperature in air (>90 examples, up to 99% D-incorporation). The mechanistic studies reveal that the aryl amine serves as reducing photoredox catalyst to initiate cleavage of the C-Cl bond, at the same time as energy transfer catalyst to induce homolysis of the disulfide for consequent deuterium transfer process. This economic and environmentally-friendly method can be used for site-selective D-labeling of a number of bioactive molecules and direct H/D exchange of some drug molecules. Deuterodehalogenation of organic chlorides is a useful strategy to install deuterium atoms at specific positions, however, it has several drawbacks. In this study, the authors report an organophotocatalytic system consisting of an aryl-amine-based photocatalyst and a common disulfide co-catalyst, for efficient deuteration of a wide range of aryl chlorides, alkyl chlorides and other halides, at room temperature in air.
Collapse
|
46
|
Wu R, Gao K. B(C 6F 5) 3-catalyzed tandem protonation/deuteration and reduction of in situ-formed enamines. Org Biomol Chem 2021; 19:4032-4036. [PMID: 33871498 DOI: 10.1039/d1ob00316j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient B(C6F5)3-catalyzed tandem protonation/deuteration and reduction of in situ-formed enamines in the presence of water and pinacolborane was developed. Regioselective β-deuteration of tertiary amines was achieved with high chemo- and regioselectivity. D2O was used as a readily available and cheap source of deuterium. Mechanistic studies indicated that B(C6F5)3 could activate water to promote the protonation and reduction of enamines.
Collapse
Affiliation(s)
- Rongpei Wu
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, P.R. China.
| | - Ke Gao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, P.R. China.
| |
Collapse
|
47
|
Wicker G, Schoch R, Paradies J. Diastereoselective Synthesis of Dihydro-quinolin-4-ones by a Borane-Catalyzed Redox-Neutral endo-1,7-Hydride Shift. Org Lett 2021; 23:3626-3630. [PMID: 33843243 DOI: 10.1021/acs.orglett.1c01018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The borane-catalyzed synthesis of dihydroquinoline-4-ones is developed. The amino-substituted chalcones undergo a 1,7-hydride shift upon Lewis acid activation to form a zwitterionic iminium enolate, which collapses to the dihydroquinoline-4-one scaffold. The reaction proceeds in high yields (75-99%) with an excellent diastereoselectivity of up to >99:1 (cis:trans). The reaction mechanism is investigated by kinetic, isotope labeling, and computational experiments.
Collapse
Affiliation(s)
- Garrit Wicker
- Paderborn University, Chemistry Department, Warburger-Strasse 100, D-33098 Paderborn, Germany
| | - Roland Schoch
- Paderborn University, Chemistry Department, Warburger-Strasse 100, D-33098 Paderborn, Germany
| | - Jan Paradies
- Paderborn University, Chemistry Department, Warburger-Strasse 100, D-33098 Paderborn, Germany
| |
Collapse
|
48
|
Zhang Q, Li Y, Zhang L, Luo S. Catalytic Asymmetric Disulfuration by a Chiral Bulky Three‐Component Lewis Acid‐Base. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qi Zhang
- Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry University of Chinese Academy of Sciences Beijing 100490 China
| | - Yao Li
- Center of Basic Molecular Science Department of Chemistry Tsinghua University Beijing China
| | - Long Zhang
- Center of Basic Molecular Science Department of Chemistry Tsinghua University Beijing China
| | - Sanzhong Luo
- Center of Basic Molecular Science Department of Chemistry Tsinghua University Beijing China
| |
Collapse
|
49
|
Arisawa M, Ohno S, Miyoshi M, Murai K. Non-Directed β- or γ-C(sp3)–H Functionalization of Saturated Nitrogen-Containing Heterocycles. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1483-4575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractReactions that take place via C–H functionalization are valuable tools in organic synthesis because they can be used for the synthesis of target compounds and for the late-stage functionalization of bioactive compounds. Among these, non-directed C(sp3)–H functionalization reactions of saturated nitrogen-containing heterocycles have been developed in recent years. However, most of these lead to functionalization at the α-position relative to the heteroatom, and reactions at the β- or γ-positions are limited since these bonds are stronger and less electron-rich. Hence, in this review, we will discuss non-directed β- or γ-C(sp3)–H functionalization reactions of saturated nitrogen-containing heterocycles, which are of recent interest to medicinal chemists. These methods are attractive in order to avoid the pre-functionalization of substrates, and to reduce the number of synthetic steps and the formation of byproducts. Such non-directed β- and γ-C(sp3)–H functionalization reactions can be divided into enamine-intermediate-mediated processes and other reaction types described in this review. 1 Introduction2 Non-Directed β-C(sp3)–H Functionalization of Saturated Nitrogen-Containing Heterocycles via an Enamine Intermediate2.1 Non-Directed β-C(sp3)–H Functionalization of Saturated Nitrogen-Containing Heterocycles under Acidic, Basic or Thermal Conditions2.2 Non-Directed β-C(sp3)–H Functionalization of Saturated Nitrogen-Containing Heterocycles under Oxidative Conditions2.3 Non-Directed β-C(sp3)–H Functionalization of Saturated Nitrogen-Containing Heterocycles under Redox-Neutral Conditions3 Strategies for Non-Directed β- or γ-C(sp3)–H Functionalization of Saturated Heterocycles Excluding Examples Proceeding via an Enamine Intermediate 4 Summary
Collapse
|
50
|
Fang H, Xie K, Kemper S, Oestreich M. Aufeinanderfolgende β,β′‐selektive C(sp
3
)‐H‐Silylierung von tertiären Aminen mit Dihydrosilanen katalysiert durch B(C
6
F
5
)
3. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Huaquan Fang
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Kaixue Xie
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Sebastian Kemper
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Martin Oestreich
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| |
Collapse
|