1
|
Zhao Q, Zhang Q, Xu Y, Han A, He H, Zheng H, Zhang W, Lei H, Apfel UP, Cao R. Improving Active Site Local Proton Transfer in Porous Organic Polymers for Boosted Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202414104. [PMID: 39145688 DOI: 10.1002/anie.202414104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Improving proton transfer is vital for electrocatalysis with porous materials. Although several strategies are reported to assist proton transfer in channels, few studies are dedicated to improving proton transfer at the local environments of active sites in porous materials. Herein, we report on new Co-corrole-based porous organic polymers (POPs) with improved proton transfer for electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). By tuning the pore sizes and installing proton relays at Co corrole sites, we designed and synthesized POP-2-OH with improved proton transfer both in channels and at local Co active sites. This POP shows remarkable activity for both electrocatalytic ORR with E1/2=0.91 V vs RHE and OER with η10=255 mV. Therefore, this work is significant to present a strategy to improve active site local proton transfer in porous materials and highlight the key role of such structural functionalization in boosting oxygen electrocatalysis.
Collapse
Affiliation(s)
- Qian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Anhao Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haowen He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Activation of Small Molecules/Technical Electrochemistry, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Voloshyn I, Schumann C, Cabotaje PR, Zamader A, Land H, Senger M. Secondary structure changes as the potential H 2 sensing mechanism of group D [FeFe]-hydrogenases. Chem Commun (Camb) 2024; 60:10914-10917. [PMID: 39254592 DOI: 10.1039/d4cc03098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
[FeFe]-hydrogenases function as both H2 catalysts and sensors. While catalysis is well investigated, details regarding the H2 sensing mechanism are limited. Here, we relate protein structure changes to H2 sensing, similar to light-driven bio-sensors. Our results highlight how identical cofactors incorporated in alternative protein scaffolds serve different functions in nature.
Collapse
Affiliation(s)
- Ivan Voloshyn
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75120 Uppsala, Sweden.
| | - Conrad Schumann
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden
| | - Princess R Cabotaje
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden
| | - Afridi Zamader
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden
| | - Henrik Land
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden
| | - Moritz Senger
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75120 Uppsala, Sweden.
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
3
|
Yadav S, Haas R, Boydas EB, Roemelt M, Happe T, Apfel UP, Stripp ST. Oxygen sensitivity of [FeFe]-hydrogenase: a comparative study of active site mimics inside vs. outside the enzyme. Phys Chem Chem Phys 2024; 26:19105-19116. [PMID: 38957092 DOI: 10.1039/d3cp06048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
[FeFe]-hydrogenase is nature's most efficient proton reducing and H2-oxidizing enzyme. However, biotechnological applications are hampered by the O2 sensitivity of this metalloenzyme, and the mechanism of aerobic deactivation is not well understood. Here, we explore the oxygen sensitivity of four mimics of the organometallic active site cofactor of [FeFe]-hydrogenase, [Fe2(adt)(CO)6-x(CN)x]x- and [Fe2(pdt)(CO)6-x(CN)x]x- (x = 1, 2) as well as the corresponding cofactor variants of the enzyme by means of infrared, Mössbauer, and NMR spectroscopy. Additionally, we describe a straightforward synthetic recipe for the active site precursor complex Fe2(adt)(CO)6. Our data indicate that the aminodithiolate (adt) complex, which is the synthetic precursor of the natural active site cofactor, is most oxygen sensitive. This observation highlights the significance of proton transfer in aerobic deactivation, and supported by DFT calculations facilitates an identification of the responsible reactive oxygen species (ROS). Moreover, we show that the ligand environment of the iron ions critically influences the reactivity with O2 and ROS like superoxide and H2O2 as the oxygen sensitivity increases with the exchange of ligands from CO to CN-. The trends in aerobic deactivation observed for the model complexes are in line with the respective enzyme variants. Based on experimental and computational data, a model for the initial reaction of [FeFe]-hydrogenase with O2 is developed. Our study underscores the relevance of model systems in understanding biocatalysis and validates their potential as important tools for elucidating the chemistry of oxygen-induced deactivation of [FeFe]-hydrogenase.
Collapse
Affiliation(s)
- Shanika Yadav
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Rieke Haas
- Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Esma Birsen Boydas
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str.2, 12489, Berlin, Germany
| | - Michael Roemelt
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str.2, 12489, Berlin, Germany
| | - Thomas Happe
- Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
- Department of Electrosynthesi, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Sven T Stripp
- Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
4
|
Hobballah A, Elleouet C, Schollhammer P. Triiron Complexes Featuring Azadiphosphine Related to the Active Site of [FeFe]-Hydrogenases: Their Redox Behavior and Protonation. Molecules 2024; 29:3270. [PMID: 39064850 PMCID: PMC11279172 DOI: 10.3390/molecules29143270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The design of iron clusters featuring a bimetallic core and several protonation sites in the second coordination sphere of the metal centers is important for modeling the activity of polymetallic active sites such as the H-cluster of [FeFe]-hydrogenases. For this purpose, the syntheses of complexes [Fe3(CO)5(κ2-PPh2NR2)(μ-pdt)2] (R = Ph (1), Bn (2)) and [Fe3(CO)5(κ2-PPh2NR2)(μ-adtBn)(μ-pdt)] (R = Ph (3), Bn (4)) were carried out by reacting hexacarbonyl precursors [Fe2(CO)6(µ-xdt)] (xdt = pdt (propanedithiolate), adtBn (azadithiolate) with mononuclear complexes [Fe(κ2-pdt)(CO)2(κ2-PPh2NR2)] (PPh2NR2 = (PPhCH2NRCH2)2, R = Ph, Bn) in order to introduce amine functions, through well-known PPh2NR2 diphosphine, into the vicinity of the triiron core. The investigation of the reactivity of these triiron species towards the proton (in the presence of CF3SO3H) and the influence of the pendant amines on the redox properties of these complexes were explored using spectroscopic and electrochemical methods. The protonation sites in such triiron clusters and their relationships were identified. The orientation of the first and second protonation processes depends on the arrangement of the second coordination sphere. The similarities and differences, due to the extended metal nuclearity, with their dinuclear counterparts [Fe2(CO)4(κ2-PPh2NR2)(μ-pdt)], were highlighted.
Collapse
Affiliation(s)
| | - Catherine Elleouet
- Laboratoire de Chimie, Electrochimie Moléculaire et Chimie Analytique, UMR 6521 CNRS-Université de Bretagne Occidentale, CS 93837–6 Avenue Le Gorgeu, CEDEX 3, 29238 Brest, France;
| | - Philippe Schollhammer
- Laboratoire de Chimie, Electrochimie Moléculaire et Chimie Analytique, UMR 6521 CNRS-Université de Bretagne Occidentale, CS 93837–6 Avenue Le Gorgeu, CEDEX 3, 29238 Brest, France;
| |
Collapse
|
5
|
Greening C, Cabotaje PR, Valentin Alvarado LE, Leung PM, Land H, Rodrigues-Oliveira T, Ponce-Toledo RI, Senger M, Klamke MA, Milton M, Lappan R, Mullen S, West-Roberts J, Mao J, Song J, Schoelmerich M, Stairs CW, Schleper C, Grinter R, Spang A, Banfield JF, Berggren G. Minimal and hybrid hydrogenases are active from archaea. Cell 2024; 187:3357-3372.e19. [PMID: 38866018 PMCID: PMC11216029 DOI: 10.1016/j.cell.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 04/12/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia.
| | - Princess R Cabotaje
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Luis E Valentin Alvarado
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - Henrik Land
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rafael I Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Moritz Senger
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Max A Klamke
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Milton
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - Susan Mullen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Jacob West-Roberts
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Jie Mao
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marie Schoelmerich
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | | | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, the Netherlands; Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Jillian F Banfield
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA.
| | - Gustav Berggren
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Riera Aroche R, Ortiz García YM, Martínez Arellano MA, Riera Leal A. DNA as a perfect quantum computer based on the quantum physics principles. Sci Rep 2024; 14:11636. [PMID: 38773193 PMCID: PMC11109248 DOI: 10.1038/s41598-024-62539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
DNA is a complex multi-resolution molecule whose theoretical study is a challenge. Its intrinsic multiscale nature requires chemistry and quantum physics to understand the structure and quantum informatics to explain its operation as a perfect quantum computer. Here, we present theoretical results of DNA that allow a better description of its structure and the operation process in the transmission, coding, and decoding of genetic information. Aromaticity is explained by the oscillatory resonant quantum state of correlated electron and hole pairs due to the quantized molecular vibrational energy acting as an attractive force. The correlated pairs form a supercurrent in the nitrogenous bases in a single band π -molecular orbital ( π -MO). The MO wave function ( Φ ) is assumed to be the linear combination of the n constituent atomic orbitals. The central Hydrogen bond between Adenine (A) and Thymine (T) or Guanine (G) and Cytosine (C) functions like an ideal Josephson Junction. The approach of a Josephson Effect between two superconductors is correctly described, as well as the condensation of the nitrogenous bases to obtain the two entangled quantum states that form the qubit. Combining the quantum state of the composite system with the classical information, RNA polymerase teleports one of the four Bell states. DNA is a perfect quantum computer.
Collapse
Affiliation(s)
- R Riera Aroche
- Department of Research in Physics, University of Sonora, Hermosillo, Sonora, Mexico
- Research and Higher Education Center of UNEPROP, Hermosillo, Sonora, Mexico
| | - Y M Ortiz García
- Research Institute of Dentistry, University of Guadalajara, Guadalajara Jalisco, Mexico
- Research and Higher Education Center of UNEPROP, Hermosillo, Sonora, Mexico
| | - M A Martínez Arellano
- General Hospital of the State of Sonora, Boulevar José María Escrivá de Balaguer 157, Colonia Villa del Palmar, C.P. 83105, Hermosillo, Sonora, Mexico
- Research and Higher Education Center of UNEPROP, Hermosillo, Sonora, Mexico
| | - A Riera Leal
- General Hospital of the State of Sonora, Boulevar José María Escrivá de Balaguer 157, Colonia Villa del Palmar, C.P. 83105, Hermosillo, Sonora, Mexico.
- Research and Higher Education Center of UNEPROP, Hermosillo, Sonora, Mexico.
| |
Collapse
|
7
|
Plummer SM, Plummer MA, Merkel PA, Waidner LA. Using directed evolution to improve hydrogen production in chimeric hydrogenases from algal species. Enzyme Microb Technol 2024; 173:110349. [PMID: 37984199 DOI: 10.1016/j.enzmictec.2023.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Algae generate hydrogen from sunlight and water utilizing high-energy electrons generated during photosynthesis. The amount of hydrogen produced in heterologous expression of the wild-type hydrogenase is currently insufficient for industrial applications. One approach to improve hydrogen yields is through directed evolution of the DNA of the native hydrogenase. Here, we created 113 chimeric algal hydrogenase gene variants derived from combining segments of three parent hydrogenases, two from Chlamydomonas reinhardtii (CrHydA1 and CrHydA2) and one from Scenedesmus obliquus (HydA1). To generate chimeras, there were seven segments into which each of the parent hydrogenase genes was divided and recombined in a variety of combinations. The chimeric and parental hydrogenase sequences were cloned for heterologous expression in Escherichia coli, and 40 of the resultant enzymes expressed were assayed for H2 production. Chimeric clones that resulted in equal or greater production obtained with the cloned CrHydA1 parent hydrogenase were those comprised of CrHydA1 sequence in segments #1, 2, 3, and/or 4. These best-performing chimeras all contained one common region, segment #2, the part of the sequence known to contain important amino acids involved in proton transfer or hydrogen cluster coordination. The amino acid sequence distances among all chimeric clones to that of the CrHydA1 parent were determined, and the relationship between sequence distances and experimentally-derived H2 production was evaluated. An additional model determined the correlation between electrostatic potential energy surface area ratios and H2 production. The model yielded several algal mutants with predicted hydrogen productions in a range of two to three times that of the wild-type hydrogenase. The mutant data and the model can now be used to predict which specific mutant sequences may result in even higher hydrogen yields. Overall, results provide more precise details in planning future directed evolution to functionally improve algal hydrogenases.
Collapse
Affiliation(s)
| | | | - Patricia A Merkel
- H2OPE Biofuels LLC, Greenwood Village, CO, USA; Children's Hospital, 3123 East 16th Avenue, B518, Aurora, CO, USA
| | - Lisa A Waidner
- H2OPE Biofuels LLC, Greenwood Village, CO, USA; University of West Florida, Pensacola, FL USA.
| |
Collapse
|
8
|
Zhang C, Cai Y, Zhang Z, Zheng N, Zhou H, Su Y, Du S, Hussain A, Xia X. Directed Evolution of the UDP-Glycosyltransferase UGT BL1 for Highly Regioselective and Efficient Biosynthesis of Natural Phenolic Glycosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1640-1650. [PMID: 38213280 DOI: 10.1021/acs.jafc.3c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The O-glycosylation of polyphenols for the synthesis of glycosides has garnered substantial attention in food research applications. However, the practical utility of UDP-glycosyltransferases (UGTs) is significantly hindered by their low catalytic efficiency and suboptimal regioselectivity. The concurrent optimization of the regioselectivity and activity during the glycosylation of polyphenols presents a formidable challenge. Here, we addressed the long-standing activity-regioselectivity tradeoff in glycosyltransferase UGTBL1 through systematic enzyme engineering. The optimal combination of mutants, N61S/I62M/D63W/A208R/P218W/R282W (SMWRW1W2), yielded a 6.1-fold improvement in relative activity and a 17.3-fold increase in the ratio of gastrodin to para-hydroxybenzyl alcohol-4'-O-β-glucoside (with 89.5% regioselectivity for gastrodin) compared to those of the wild-type enzyme and ultimately allowed gram-scale production of gastrodin (1,066.2 mg/L) using whole-cell biocatalysis. In addition, variant SMWRW1W2 exhibited a preference for producing phenolic glycosides from several substrates. This study lays the foundation for the engineering of additional UGTs and the practical applications of UGTs in regioselective retrofitting.
Collapse
Affiliation(s)
- Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongchao Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zehua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nan Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Huimin Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yumeng Su
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuang Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Asif Hussain
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Duan J, Veliju A, Lampret O, Liu L, Yadav S, Apfel UP, Armstrong FA, Hemschemeier A, Hofmann E. Insights into the Molecular Mechanism of Formaldehyde Inhibition of [FeFe]-Hydrogenases. J Am Chem Soc 2023; 145:26068-26074. [PMID: 37983562 DOI: 10.1021/jacs.3c07800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
[FeFe]-hydrogenases are efficient H2 converting biocatalysts that are inhibited by formaldehyde (HCHO). The molecular mechanism of this inhibition has so far not been experimentally solved. Here, we obtained high-resolution crystal structures of the HCHO-treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum, showing HCHO reacts with the secondary amine base of the catalytic cofactor and the cysteine C299 of the proton transfer pathway which both are very important for catalytic turnover. Kinetic assays via protein film electrochemistry show the CpI variant C299D is significantly less inhibited by HCHO, corroborating the structural results. By combining our data from protein crystallography, site-directed mutagenesis and protein film electrochemistry, a reaction mechanism involving the cofactor's amine base, the thiol group of C299 and HCHO can be deduced. In addition to the specific case of [FeFe]-hydrogenases, our study provides additional insights into the reactions between HCHO and protein molecules.
Collapse
Affiliation(s)
- Jifu Duan
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Astrit Veliju
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Oliver Lampret
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lingling Liu
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Shanika Yadav
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Energy, Electrosynthesis Group, Fraunhofer UMSICHT, 46047 Oberhausen, Germany
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Anja Hemschemeier
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
10
|
Cabotaje P, Walter K, Zamader A, Huang P, Ho F, Land H, Senger M, Berggren G. Probing Substrate Transport Effects on Enzymatic Hydrogen Catalysis: An Alternative Proton Transfer Pathway in Putatively Sensory [FeFe] Hydrogenase. ACS Catal 2023; 13:10435-10446. [PMID: 37560193 PMCID: PMC10407848 DOI: 10.1021/acscatal.3c02314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Indexed: 08/11/2023]
Abstract
[FeFe] hydrogenases, metalloenzymes catalyzing proton/dihydrogen interconversion, have attracted intense attention due to their remarkable catalytic properties and (bio-)technological potential for a future hydrogen economy. In order to unravel the factors enabling their efficient catalysis, both their unique organometallic cofactors and protein structural features, i.e., "outer-coordination sphere" effects have been intensively studied. These structurally diverse enzymes are divided into distinct phylogenetic groups, denoted as Group A-D. Prototypical Group A hydrogenases display high turnover rates (104-105 s-1). Conversely, the sole characterized Group D representative, Thermoanaerobacter mathranii HydS (TamHydS), shows relatively low catalytic activity (specific activity 10-1 μmol H2 mg-1 min-1) and has been proposed to serve a H2-sensory function. The various groups of [FeFe] hydrogenase share the same catalytic cofactor, the H-cluster, and the structural factors causing the diverging reactivities of Group A and D remain to be elucidated. In the case of the highly active Group A enzymes, a well-defined proton transfer pathway (PTP) has been identified, which shuttles H+ between the enzyme surface and the active site. In Group D hydrogenases, this conserved pathway is absent. Here, we report on the identification of highly conserved amino acid residues in Group D hydrogenases that constitute a possible alternative PTP. We varied two proposed key amino acid residues of this pathway (E252 and E289, TamHydS numbering) via site-directed mutagenesis and analyzed the resulting variants via biochemical and spectroscopic methods. All variants displayed significantly decreased H2-evolution and -oxidation activities. Additionally, the variants showed two redox states that were not characterized previously. These findings provide initial evidence that these amino acid residues are central to the putative PTP of Group D [FeFe] hydrogenase. Since the identified residues are highly conserved in Group D exclusively, our results support the notion that the PTP is not universal for different phylogenetic groups in [FeFe] hydrogenases.
Collapse
Affiliation(s)
| | | | - Afridi Zamader
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Ping Huang
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Felix Ho
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Henrik Land
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Moritz Senger
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| |
Collapse
|
11
|
T Waffo AF, Lorent C, Katz S, Schoknecht J, Lenz O, Zebger I, Caserta G. Structural Determinants of the Catalytic Ni a-L Intermediate of [NiFe]-Hydrogenase. J Am Chem Soc 2023. [PMID: 37328284 DOI: 10.1021/jacs.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
[NiFe]-hydrogenases catalyze the reversible cleavage of H2 into two protons and two electrons at the inorganic heterobimetallic NiFe center of the enzyme. Their catalytic cycle involves at least four intermediates, some of which are still under debate. While the core reaction, including H2/H- binding, takes place at the inorganic cofactor, a major challenge lies in identifying those amino acid residues that contribute to the reactivity and how they stabilize (short-lived) intermediate states. Using cryogenic infrared and electron paramagnetic resonance spectroscopy on the regulatory [NiFe]-hydrogenase from Cupriavidus necator, a model enzyme for the analysis of catalytic intermediates, we deciphered the structural basis of the hitherto elusive Nia-L intermediates. We unveiled the protonation states of a proton-accepting glutamate and a Ni-bound cysteine residue in the Nia-L1, Nia-L2, and the hydride-binding Nia-C intermediates as well as previously unknown conformational changes of amino acid residues in proximity of the bimetallic active site. As such, this study unravels the complexity of the Nia-L intermediate and reveals the importance of the protein scaffold in fine-tuning proton and electron dynamics in [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Armel F T Waffo
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Janna Schoknecht
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
12
|
Corrigan PS, Majer SH, Silakov A. Evidence of Atypical Structural Flexibility of the Active Site Surrounding of an [FeFe] Hydrogenase from Clostridium beijerinkii. J Am Chem Soc 2023; 145:11033-11044. [PMID: 37163727 DOI: 10.1021/jacs.2c13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
[FeFe] hydrogenase from Clostridium beijerinkii (CbHydA1) is an unusual hydrogenase in that it can withstand prolonged exposure to O2 by reversibly converting into an O2-protected, inactive state (Hinact). It has been indicated in the past that an atypical conformation of the "SC367CP" loop near the [2Fe]H portion of the six-iron active site (H-cluster) allows the Cys367 residue to adopt an "off-H+-pathway" orientation, promoting a facile transition of the cofactor to Hinact. Here, we investigated the electronic structure of the H-cluster in the oxidized state (Hox) that directly converts to Hinact under oxidizing conditions and the related CO-inhibited state (Hox-CO). We demonstrate that both states exhibit two distinct forms in electron paramagnetic resonance (EPR) spectroscopy. The ratio between the two forms is pH-dependent but also sensitive to the buffer choice. Our IR and EPR analyses illustrate that the spectral heterogeneity is due to a perturbation of the coordination environment of the H-cluster's [4Fe4S]H subcluster without affecting the [2Fe]H subcluster. Overall, we conclude that the observation of two spectral components per state is evidence of heterogeneity of the environment of the H-cluster likely associated with conformational mobility of the SCCP loop. Such flexibility may allow Cys367 to switch rapidly between off- and on-H+-pathway rotamers. Consequently, we believe such structural mobility may be the key to maintaining high enzymatic activity while allowing a facile transition to the O2-protected state.
Collapse
Affiliation(s)
- Patrick S Corrigan
- Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Sean H Majer
- Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Chalopin Y, Cramer SP, Arragain S. Phonon-assisted electron-proton transfer in [FeFe] hydrogenases: Topological role of clusters. Biophys J 2023; 122:1557-1567. [PMID: 36960530 PMCID: PMC10147833 DOI: 10.1016/j.bpj.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
[FeFe] hydrogenases are enzymes that have acquired a unique capacity to synthesize or consume molecular hydrogen (H2). This function relies on a complex catalytic mechanism involving the active site and two distinct electron and proton transfer networks working in concert. By an analysis based on terahertz vibrations of [FeFe] hydrogenase structure, we are able to predict and identify the existence of rate-promoting vibrations at the catalytic site and the coupling with functional residues involved in reported electron and proton transfer networks. Our findings suggest that the positioning of the cluster is influenced by the response of the scaffold to thermal fluctuations, which in turn drives the formation of networks for electron transfer through phonon-assisted mechanisms. Thus, we address the problem of linking the molecular structure to the catalytic function through picosecond dynamics, while raising the functional gain brought by the cofactors or clusters, using the concept of fold-encoded localized vibrations.
Collapse
Affiliation(s)
- Yann Chalopin
- Laboratoire d'Energétique Macroscopique et Moléculaire, Combustion (EM2C), CNRS/CentraleSupélec, University of Paris-Saclay, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
14
|
Martini MA, Bikbaev K, Pang Y, Lorent C, Wiemann C, Breuer N, Zebger I, DeBeer S, Span I, Bjornsson R, Birrell JA, Rodríguez-Maciá P. Binding of exogenous cyanide reveals new active-site states in [FeFe] hydrogenases. Chem Sci 2023; 14:2826-2838. [PMID: 36937599 PMCID: PMC10016341 DOI: 10.1039/d2sc06098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
[FeFe] hydrogenases are highly efficient metalloenyzmes for hydrogen conversion. Their active site cofactor (the H-cluster) is composed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) linked to a unique organometallic di-iron subcluster ([2Fe]H). In [2Fe]H the two Fe ions are coordinated by a bridging 2-azapropane-1,3-dithiolate (ADT) ligand, three CO and two CN- ligands, leaving an open coordination site on one Fe where substrates (H2 and H+) as well as inhibitors (e.g. O2, CO, H2S) may bind. Here, we investigate two new active site states that accumulate in [FeFe] hydrogenase variants where the cysteine (Cys) in the proton transfer pathway is mutated to alanine (Ala). Our experimental data, including atomic resolution crystal structures and supported by calculations, suggest that in these two states a third CN- ligand is bound to the apical position of [2Fe]H. These states can be generated both by "cannibalization" of CN- from damaged [2Fe]H subclusters as well as by addition of exogenous CN-. This is the first detailed spectroscopic and computational characterisation of the interaction of exogenous CN- with [FeFe] hydrogenases. Similar CN--bound states can also be generated in wild-type hydrogenases, but do not form as readily as with the Cys to Ala variants. These results highlight how the interaction between the first amino acid in the proton transfer pathway and the active site tunes ligand binding to the open coordination site and affects the electronic structure of the H-cluster.
Collapse
Affiliation(s)
- Maria Alessandra Martini
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Konstantin Bikbaev
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg Bioinorganic Chemistry Erlangen Germany
| | - Yunjie Pang
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- College of Chemistry, Beijing Normal University 100875 Beijing China
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Charlotte Wiemann
- Institut für Chemie, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
- Ruanda-Zentrum und Büro für Afrika-Kooperationen, Universität Koblenz-Landau, Universitätsstraße 1 56070 Koblenz Germany
| | - Nina Breuer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Ingrid Span
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg Bioinorganic Chemistry Erlangen Germany
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble Cedex France
| | - James A Birrell
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- School of Life Sciences, University of Essex Colchester CO4 3SQ UK
| | - Patricia Rodríguez-Maciá
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
15
|
Sidabras JW, Stripp ST. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 2023; 28:355-378. [PMID: 36856864 DOI: 10.1007/s00775-023-01992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.
Collapse
Affiliation(s)
- Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA, 53226.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
16
|
Duan J, Hemschemeier A, Burr DJ, Stripp ST, Hofmann E, Happe T. Cyanide Binding to [FeFe]-Hydrogenase Stabilizes the Alternative Configuration of the Proton Transfer Pathway. Angew Chem Int Ed Engl 2023; 62:e202216903. [PMID: 36464641 PMCID: PMC10107461 DOI: 10.1002/anie.202216903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Hydrogenases are H2 converting enzymes that harbor catalytic cofactors in which iron (Fe) ions are coordinated by biologically unusual carbon monoxide (CO) and cyanide (CN- ) ligands. Extrinsic CO and CN- , however, inhibit hydrogenases. The mechanism by which CN- binds to [FeFe]-hydrogenases is not known. Here, we obtained crystal structures of the CN- -treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum. The high resolution of 1.39 Å allowed us to distinguish intrinsic CN- and CO ligands and to show that extrinsic CN- binds to the open coordination site of the cofactor where CO is known to bind. In contrast to other inhibitors, CN- treated crystals show conformational changes of conserved residues within the proton transfer pathway which could allow a direct proton transfer between E279 and S319. This configuration has been proposed to be vital for efficient proton transfer, but has never been observed structurally.
Collapse
Affiliation(s)
- Jifu Duan
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - David J Burr
- Department of Physics, Experimental Biophysics and Space Sciences, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Sven T Stripp
- Department of Biophysics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Eckhard Hofmann
- Department of Biophysics, Faculty of Biology and Biotechnology, Protein Crystallography, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Thomas Happe
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
17
|
Kisgeropoulos EC, Bharadwaj VS, Mulder DW, King PW. The Contribution of Proton-Donor pKa on Reactivity Profiles of [FeFe]-hydrogenases. Front Microbiol 2022; 13:903951. [PMID: 36246213 PMCID: PMC9563086 DOI: 10.3389/fmicb.2022.903951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
The [FeFe]-hydrogenases are enzymes that catalyze the reversible activation of H2 coupled to the reduction-oxidation of electron carriers. Members of the different taxonomic groups of [FeFe]-hydrogenases display a wide range of preference, or bias, for H2 oxidation or H2 production reactions, despite sharing a common catalytic cofactor, or H-cluster. Identifying the properties that control reactivity remains an active area of investigation, and models have emerged that include diversity in the catalytic site coordination environments and compositions of electron transfer chains. The kinetics of proton-coupled electron transfer at the H-cluster might be expected to be a point of control of reactivity. To test this hypothesis, systematic changes were made to the conserved cysteine residue that functions in proton exchange with the H-cluster in the three model enzymes: CaI, CpII, and CrHydA1. CaI and CpII both employ electron transfer accessory clusters but differ in bias, whereas CrHydA1 lacks accessory clusters having only the H-cluster. Changing from cysteine to either serine (more basic) or aspartate (more acidic) modifies the sidechain pKa and thus the barrier for the proton exchange step. The reaction rates for H2 oxidation or H2 evolution were surveyed and measured for model [FeFe]-hydrogenases, and the results show that the initial proton-transfer step in [FeFe]-hydrogenase is tightly coupled to the control of reactivity; a change from cysteine to more basic serine favored H2 oxidation in all enzymes, whereas a change to more acidic aspartate caused a shift in preference toward H2 evolution. Overall, the changes in reactivity profiles were profound, spanning 105 in ratio of the H2 oxidation-to-H2 evolution rates. The fact that the change in reactivity follows a common trend implies that the effect of changing the proton-transfer residue pKa may also be framed as an effect on the scaling relationship between the H-cluster di(thiolmethyl)amine (DTMA) ligand pKa and E m values of the H-cluster. Experimental observations that support this relationship, and how it relates to catalytic function in [FeFe]-hydrogenases, are discussed.
Collapse
Affiliation(s)
| | | | | | - Paul W. King
- National Renewable Energy Lab, Biosciences Center, Golden, CO, United States
| |
Collapse
|
18
|
Lorenzi M, Gamache MT, Redman HJ, Land H, Senger M, Berggren G. Light-Driven [FeFe] Hydrogenase Based H 2 Production in E. coli: A Model Reaction for Exploring E. coli Based Semiartificial Photosynthetic Systems. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:10760-10767. [PMID: 36035441 PMCID: PMC9400101 DOI: 10.1021/acssuschemeng.2c03657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Biohybrid technologies like semiartificial photosynthesis are attracting increased attention, as they enable the combination of highly efficient synthetic light-harvesters with the self-healing and outstanding performance of biocatalysis. However, such systems are intrinsically complex, with multiple interacting components. Herein, we explore a whole-cell photocatalytic system for hydrogen (H2) gas production as a model system for semiartificial photosynthesis. The employed whole-cell photocatalytic system is based on Escherichia coli cells heterologously expressing a highly efficient, but oxygen-sensitive, [FeFe] hydrogenase. The system is driven by the organic photosensitizer eosin Y under broad-spectrum white light illumination. The direct involvement of the [FeFe] hydrogenase in the catalytic reaction is verified spectroscopically. We also observe that E. coli provides protection against O2 damage, underscoring the suitability of this host organism for oxygen-sensitive enzymes in the development of (photo) catalytic biohybrid systems. Moreover, the study shows how factorial experimental design combined with analysis of variance (ANOVA) can be employed to identify relevant variables, as well as their interconnectivity, on both overall catalytic performance and O2 tolerance.
Collapse
Affiliation(s)
- Marco Lorenzi
- Department
of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Mira T. Gamache
- Department
of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Holly J. Redman
- Department
of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Henrik Land
- Department
of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Moritz Senger
- Department
of Chemistry - Ångström, Physical Chemistry, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Gustav Berggren
- Department
of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| |
Collapse
|
19
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
20
|
Senger M, Duan J, Pavliuk MV, Apfel UP, Haumann M, Stripp ST. Trapping an Oxidized and Protonated Intermediate of the [FeFe]-Hydrogenase Cofactor under Mildly Reducing Conditions. Inorg Chem 2022; 61:10036-10042. [PMID: 35729755 DOI: 10.1021/acs.inorgchem.2c00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The H-cluster is the catalytic cofactor of [FeFe]-hydrogenase, a metalloenzyme that catalyzes the formation of dihydrogen (H2). The catalytic diiron site of the H-cluster carries two cyanide and three carbon monoxide ligands, making it an excellent target for IR spectroscopy. In previous work, we identified an oxidized and protonated H-cluster species, whose IR signature differs from that of the oxidized resting state (Hox) by a small but distinct shift to higher frequencies. This "blue shift" was explained by a protonation at the [4Fe-4S] subcomplex of the H-cluster. The novel species, denoted HoxH, was preferentially accumulated at low pH and in the presence of the exogenous reductant sodium dithionite (NaDT). When HoxH was reacted with H2, the hydride state (Hhyd) was formed, a key intermediate of [FeFe]-hydrogenase turnover. A recent publication revisited our protocol for the accumulation of HoxH in wild-type [FeFe]-hydrogenase, concluding that inhibition by NaDT decay products rather than cofactor protonation causes the spectroscopic "blue shift". Here, we demonstrate that HoxH formation does not require the presence of NaDT (or its decay products), but accumulates also with the milder reductants tris(2-carboxyethyl)phosphine, dithiothreitol, or ascorbic acid, in particular at low pH. Our data consistently suggest that HoxH is accumulated when deprotonation of the H-cluster is impaired, thereby preventing the regain of the oxidized resting state Hox in the catalytic cycle.
Collapse
Affiliation(s)
- Moritz Senger
- Department of Chemistry, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Mariia V Pavliuk
- Department of Chemistry, Physical Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Small Molecule Activation, Ruhr-Universität Bochum, Bochum 44801, Germany.,Electrosynthesis, Fraunhofer UMSICHT, Oberhausen 46047, Germany
| | - Michael Haumann
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, Berlin 14195, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
21
|
Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme. Nat Chem 2022; 14:677-685. [PMID: 35393554 DOI: 10.1038/s41557-022-00922-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD•- isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD•-. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.
Collapse
|
22
|
Puthenkalathil RC, Ensing B. Fast Proton Transport in FeFe Hydrogenase via a Flexible Channel and a Proton Hole Mechanism. J Phys Chem B 2022; 126:403-411. [PMID: 35007078 PMCID: PMC8785182 DOI: 10.1021/acs.jpcb.1c08124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Di-iron hydrogenases
are a class of enzymes that are capable of
reducing protons to form molecular hydrogen with high efficiency.
In addition to the catalytic site, these enzymes have evolved dedicated
pathways to transport protons and electrons to the reaction center.
Here, we present a detailed study of the most likely proton transfer
pathway in such an enzyme using QM/MM molecular dynamics simulations.
The protons are transported through a channel lined out from the protein
exterior to the di-iron active site, by a series of hydrogen-bonded,
weakly acidic or basic, amino acids and two incorporated water molecules.
The channel shows remarkable flexibility, which is an essential feature
to quickly reset the hydrogen-bond direction in the channel after
each proton passing. Proton transport takes place via a “hole”
mechanism, rather than an excess proton mechanism, the free energy
landscape of which is remarkably flat, with a highest transition state
barrier of only 5 kcal/mol. These results confirm our previous assumptions
that proton transport is not rate limiting in the H2 formation
activity and that cysteine C299 may be considered protonated at physiological
pH conditions. Detailed understanding of this proton transport may
aid in the ongoing attempts to design artificial biomimetic hydrogenases
for hydrogen fuel production.
Collapse
Affiliation(s)
- Rakesh C Puthenkalathil
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
23
|
Senger M, Kernmayr T, Lorenzi M, Redman HJ, Berggren G. Hydride state accumulation in native [FeFe]-hydrogenase with the physiological reductant H2 supports its catalytic relevance. Chem Commun (Camb) 2022; 58:7184-7187. [PMID: 35670542 PMCID: PMC9219605 DOI: 10.1039/d2cc00671e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecules in solution may interfere with mechanistic investigations, as they can affect the stability of catalytic states and produce off-cycle states that can be mistaken for catalytically relevant species. Here we show that the hydride state (Hhyd), a proposed central intermediate in the catalytic cycle of [FeFe]-hydrogenase, can be formed in wild-type [FeFe]-hydrogenases treated with H2 in absence of other, non-biological, reductants. Moreover, we reveal a new state with unclear role in catalysis induced by common low pH buffers. Studies of enzymatic catalysis often rely on non-biological reagents, which may affect catalytic intermediates and produce off-cycle states. Here the influence of buffer and reductant on key intermediates of [FeFe]-hydrogenase are explored.![]()
Collapse
Affiliation(s)
- Moritz Senger
- Department of Chemistry, Physical Chemistry, Uppsala University, 75120 Uppsala, Sweden.
| | - Tobias Kernmayr
- Department of Chemistry, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden.
| | - Marco Lorenzi
- Department of Chemistry, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden.
| | - Holly J Redman
- Department of Chemistry, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden.
| | - Gustav Berggren
- Department of Chemistry, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden.
| |
Collapse
|
24
|
Felbek C, Arrigoni F, de Sancho D, Jacq-Bailly A, Best RB, Fourmond V, Bertini L, Léger C. Mechanism of Hydrogen Sulfide-Dependent Inhibition of FeFe Hydrogenase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina Felbek
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU & Donostia International Physics Center (DIPC), PK 1072, 20080 Donostia-San Sebastián, Spain
| | - Aurore Jacq-Bailly
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland 20892-0520, United States
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| |
Collapse
|
25
|
Affiliation(s)
- Sven T. Stripp
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
26
|
Khushvakov J, Nussbaum R, Cadoux C, Duan J, Stripp ST, Milton RD. Following Electroenzymatic Hydrogen Production by Rotating Ring-Disk Electrochemistry and Mass Spectrometry*. Angew Chem Int Ed Engl 2021; 60:10001-10006. [PMID: 33630389 DOI: 10.1002/anie.202100863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/06/2022]
Abstract
Gas-processing metalloenzymes are of interest to future bio- and bioinspired technologies. Of particular importance are hydrogenases and nitrogenases, which both produce molecular hydrogen (H2 ) from proton (H+ ) reduction. Herein, we report on the use of rotating ring-disk electrochemistry (RRDE) and mass spectrometry (MS) to follow the production of H2 and isotopes produced from deuteron (D+ ) reduction (HD and D2 ) using the [FeFe]-hydrogenase from Clostridium pasteurianum, a model hydrogen-evolving metalloenzyme. This facilitates enzymology studies independent of non-innocent chemical reductants. We anticipate that these approaches will be of value in resolving the catalytic mechanisms of H2 -producing metalloenzymes and the design of bioinspired catalysts for H2 production and N2 fixation.
Collapse
Affiliation(s)
- Jaloliddin Khushvakov
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Robin Nussbaum
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Cécile Cadoux
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 10623, Berlin, Germany
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| |
Collapse
|
27
|
Khushvakov J, Nussbaum R, Cadoux C, Duan J, Stripp ST, Milton RD. Untersuchung elektroenzymatischer H
2
‐Produktion mithilfe von Rotierende‐Ring‐Scheiben‐Elektrochemie und Massenspektrometrie**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jaloliddin Khushvakov
- Department of Inorganic and Analytical Chemistry University of Geneva Quai Ernest-Ansermet 30 1211 Geneva 4 Schweiz
| | - Robin Nussbaum
- Department of Inorganic and Analytical Chemistry University of Geneva Quai Ernest-Ansermet 30 1211 Geneva 4 Schweiz
| | - Cécile Cadoux
- Department of Inorganic and Analytical Chemistry University of Geneva Quai Ernest-Ansermet 30 1211 Geneva 4 Schweiz
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Sven T. Stripp
- Department of Physics, Experimental Molecular Biophysics Freie Universität Berlin 10623 Berlin Deutschland
| | - Ross D. Milton
- Department of Inorganic and Analytical Chemistry University of Geneva Quai Ernest-Ansermet 30 1211 Geneva 4 Schweiz
| |
Collapse
|
28
|
Laun K, Baranova I, Duan J, Kertess L, Wittkamp F, Apfel UP, Happe T, Senger M, Stripp ST. Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase. Dalton Trans 2021; 50:3641-3650. [PMID: 33629081 DOI: 10.1039/d1dt00110h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenases are bidirectional redox enzymes that catalyze hydrogen turnover in archaea, bacteria, and algae. While all types of hydrogenase show H2 oxidation activity, [FeFe]-hydrogenases are excellent H2 evolution catalysts as well. Their active site cofactor comprises a [4Fe-4S] cluster covalently linked to a diiron site equipped with carbon monoxide and cyanide ligands. The active site niche is connected with the solvent by two distinct proton transfer pathways. To analyze the catalytic mechanism of [FeFe]-hydrogenase, we employ operando infrared spectroscopy and infrared spectro-electrochemistry. Titrating the pH under H2 oxidation or H2 evolution conditions reveals the influence of site-selective protonation on the equilibrium of reduced cofactor states. Governed by pKa differences across the active site niche and proton transfer pathways, we find that individual electrons are stabilized either at the [4Fe-4S] cluster (alkaline pH values) or at the diiron site (acidic pH values). This observation is discussed in the context of the complex interdependence of hydrogen turnover and bulk pH.
Collapse
Affiliation(s)
- Konstantin Laun
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. sven.stripp@fu-berlin and Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Iuliia Baranova
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. sven.stripp@fu-berlin and Faculty of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Leonie Kertess
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Florian Wittkamp
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany and Fraunhofer UMSICHT, 46047 Oberhausen, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Moritz Senger
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. sven.stripp@fu-berlin and Department of Chemistry, Uppsala University, 75120 Uppsala, Sweden.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. sven.stripp@fu-berlin
| |
Collapse
|
29
|
Abstract
Hydrogenases are metalloenzymes that catalyze proton reduction and H2 oxidation with outstanding efficiency. They are model systems for bioinorganic chemistry, including low-valent transition metals, hydride chemistry, and proton-coupled electron transfer. In this Account, we describe how photochemistry and infrared difference spectroscopy can be used to identify the dynamic hydrogen-bonding changes that facilitate proton transfer in [NiFe]- and [FeFe]-hydrogenase.[NiFe]-hydrogenase binds a heterobimetallic nickel/iron site embedded in the protein by four cysteine ligands. [FeFe]-hydrogenase carries a homobimetallic iron/iron site attached to the protein by only a single cysteine. Carbon monoxide and cyanide ligands in the active site facilitate detailed investigations of hydrogenase catalysis by infrared spectroscopy because of their strong signals and redox-dependent frequency shifts. We found that specific redox-state transitions in [NiFe]- and [FeFe]-hydrogenase can be triggered by visible light to record extremely sensitive "light-minus-dark" infrared difference spectra monitoring key amino acid residues. As these transitions are coupled to protonation changes, our data allowed investigation of dynamic hydrogen-bonding changes that go well beyond the resolution of protein crystallography.In [NiFe]-hydrogenase, photolysis of the bridging hydride ligand in the Ni-C state was followed by infrared difference spectroscopy. Our data clearly indicate the formation of a protonated cysteine residue as well as hydrogen-bonding changes involving a glutamic acid residue and a "dangling water" molecule. These findings are in excellent agreement with crystallographic analyses of [NiFe]-hydrogenase. In [FeFe]-hydrogenase, an external redox dye was used to accumulate the Hred state. Infrared difference spectra indicate hydrogen-bonding changes involving two glutamic acid residues and a conserved arginine residue. While crystallographic analyses of [FeFe]-hydrogenase in the oxidized state failed to explain the rapid proton transfer because of a breach in the succession of residues, our findings facilitated a precise molecular model of discontinued proton transfer.Comparing both systems, our data emphasize the role of the outer coordination sphere in bimetallic hydrogenases: we suggest that protonation of a nickel-ligating cysteine in [NiFe]-hydrogenase causes the notable preference toward H2 oxidation. On the contrary, proton transfer in [FeFe]-hydrogenase involves an adjacent cysteine as a relay group, promoting both H2 oxidation and proton reduction. These observations may guide the design of organometallic compounds that mimic the catalytic properties of hydrogenases.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, Jilin 133002, China
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
30
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
31
|
Stripp ST, Mebs S, Haumann M. Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase. Inorg Chem 2020; 59:16474-16488. [PMID: 33147959 DOI: 10.1021/acs.inorgchem.0c02316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[FeFe]-hydrogenases are nature's blueprint for efficient hydrogen turnover. Understanding their enzymatic mechanism may improve technological H2 fuel generation. The active-site cofactor (H-cluster) consists of a [4Fe-4S] cluster ([4Fe]H), cysteine-linked to a diiron site ([2Fe]H) carrying an azadithiolate (adt) group, terminal cyanide and carbon monoxide ligands, and a bridging carbon monoxide (μCO) in the oxidized protein (Hox). Recently, the debate on the structure of reduced H-cluster states was intensified by the assignment of new species under cryogenic conditions. We investigated temperature effects (4-280 K) in infrared (IR) and X-ray absorption spectroscopy (XAS) data of [FeFe]-hydrogenases using fit analyses and quantum-chemical calculations. IR data from our laboratory and literature sources were evaluated. At ambient temperatures, reduced H-cluster states with a bridging hydride (μH-, in Hred and Hsred) or with an additional proton at [4Fe]H (Hred') or at the distal iron of [2Fe]H (Hhyd) prevail. At cryogenic temperatures, these species are largely replaced by states that hold a μCO, lack [4Fe]H protonation, and bind an additional proton at the adt nitrogen (HredH+ and HsredH+). XAS revealed the atomic coordinate dispersion (i.e., the Debye-Waller parameter, 2σ2) of the iron-ligand bonds and Fe-Fe distances in the oxidized and reduced H-cluster. 2σ2 showed a temperature dependence typical for the so-called protein-glass transition, with small changes below ∼200 K and a pronounced increase above this "breakpoint". This behavior is attributed to the freezing-out of larger-scale anharmonic motions of amino acid side chains and water species. We propose that protonation at [4Fe]H as well as ligand rearrangement and μH- binding at [2Fe]H are impaired because of restricted molecular mobility at cryogenic temperatures so that protonation can be biased toward adt. We conclude that a H-cluster with a μCO, selective [4Fe]H or [2Fe]H protonation, and catalytic proton transfer via adt facilitates efficient H2 conversion in [FeFe]-hydrogenase.
Collapse
Affiliation(s)
- Sven T Stripp
- Physics Department, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Stefan Mebs
- Physics Department, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Michael Haumann
- Physics Department, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| |
Collapse
|
32
|
Land H, Sekretareva A, Huang P, Redman HJ, Németh B, Polidori N, Mészáros LS, Senger M, Stripp ST, Berggren G. Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Chem Sci 2020; 11:12789-12801. [PMID: 34094474 PMCID: PMC8163306 DOI: 10.1039/d0sc03319g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
[FeFe]-hydrogenases are known for their high rates of hydrogen turnover, and are intensively studied in the context of biotechnological applications. Evolution has generated a plethora of different subclasses with widely different characteristics. The M2e subclass is phylogenetically distinct from previously characterized members of this enzyme family and its biological role is unknown. It features significant differences in domain- and active site architecture, and is most closely related to the putative sensory [FeFe]-hydrogenases. Here we report the first comprehensive biochemical and spectroscopical characterization of an M2e enzyme, derived from Thermoanaerobacter mathranii. As compared to other [FeFe]-hydrogenases characterized to-date, this enzyme displays an increased H2 affinity, higher activation enthalpies for H+/H2 interconversion, and unusual reactivity towards known hydrogenase inhibitors. These properties are related to differences in active site architecture between the M2e [FeFe]-hydrogenase and "prototypical" [FeFe]-hydrogenases. Thus, this study provides new insight into the role of this subclass in hydrogen metabolism and the influence of the active site pocket on the chemistry of the H-cluster.
Collapse
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Alina Sekretareva
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Ping Huang
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Holly J Redman
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Brigitta Németh
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Nakia Polidori
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Lívia S Mészáros
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin Arnimallee 14 DE-14195 Berlin Germany
| | - Sven T Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin Arnimallee 14 DE-14195 Berlin Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| |
Collapse
|
33
|
The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Proc Natl Acad Sci U S A 2020; 117:20520-20529. [PMID: 32796105 DOI: 10.1073/pnas.2007090117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As paradigms for proton-coupled electron transfer in enzymes and benchmarks for a fully renewable H2 technology, [FeFe]-hydrogenases behave as highly reversible electrocatalysts when immobilized on an electrode, operating in both catalytic directions with minimal overpotential requirement. Using the [FeFe]-hydrogenases from Clostridium pasteurianum (CpI) and Chlamydomonas reinhardtii (CrHydA1) we have conducted site-directed mutagenesis and protein film electrochemistry to determine how efficient catalysis depends on the long-range coupling of electron and proton transfer steps. Importantly, the electron and proton transfer pathways in [FeFe]-hydrogenases are well separated from each other in space. Variants with conservative substitutions (glutamate to aspartate) in either of two positions in the proton-transfer pathway retain significant activity and reveal the consequences of slowing down proton transfer for both catalytic directions over a wide range of pH and potential values. Proton reduction in the variants is impaired mainly by limiting the turnover rate, which drops sharply as the pH is raised, showing that proton capture from bulk solvent becomes critical. In contrast, hydrogen oxidation is affected in two ways: by limiting the turnover rate and by a large overpotential requirement that increases as the pH is raised, consistent with the accumulation of a reduced and protonated intermediate. A unique observation having fundamental significance is made under conditions where the variants still retain sufficient catalytic activity in both directions: An inflection appears as the catalytic current switches direction at the 2H+/H2 thermodynamic potential, clearly signaling a departure from electrocatalytic reversibility as electron and proton transfers begin to be decoupled.
Collapse
|
34
|
Vansuch GE, Wu CH, Haja DK, Blair SA, Chica B, Johnson MK, Adams MWW, Dyer RB. Metal-ligand cooperativity in the soluble hydrogenase-1 from Pyrococcus furiosus. Chem Sci 2020; 11:8572-8581. [PMID: 34123117 PMCID: PMC8163435 DOI: 10.1039/d0sc00628a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metal–ligand cooperativity is an essential feature of bioinorganic catalysis. The design principles of such cooperativity in metalloenzymes are underexplored, but are critical to understand for developing efficient catalysts designed with earth abundant metals for small molecule activation. The simple substrate requirements of reversible proton reduction by the [NiFe]-hydrogenases make them a model bioinorganic system. A highly conserved arginine residue (R355) directly above the exogenous ligand binding position of the [NiFe]-catalytic core is known to be essential for optimal function because mutation to a lysine results in lower catalytic rates. To expand on our studies of soluble hydrogenase-1 from Pyrococcus furiosus (Pf SH1), we investigated the role of R355 by site-directed-mutagenesis to a lysine (R355K) using infrared and electron paramagnetic resonance spectroscopic probes sensitive to active site redox and protonation events. It was found the mutation resulted in an altered ligand binding environment at the [NiFe] centre. A key observation was destabilization of the Nia3+–C state, which contains a bridging hydride. Instead, the tautomeric Nia+–L states were observed. Overall, the results provided insight into complex metal–ligand cooperativity between the active site and protein scaffold that modulates the bridging hydride stability and the proton inventory, which should prove valuable to design principles for efficient bioinspired catalysts. Metal–ligand cooperativity is an essential feature of bioinorganic catalysis.![]()
Collapse
Affiliation(s)
| | - Chang-Hao Wu
- Department of Biochemistry & Molecular Biology, University of Georgia Athens Georgia 30602 USA.,AskGene Pharma Inc. Camarillo CA 93012 USA
| | - Dominik K Haja
- Department of Biochemistry & Molecular Biology, University of Georgia Athens Georgia 30602 USA
| | - Soshawn A Blair
- Department of Chemistry, University of Georgia Athens Georgia 30602 USA
| | - Bryant Chica
- Department of Chemistry, Emory University Atlanta Georgia 30222 USA .,Biosciences Center, National Renewable Energy Laboratory Golden Colorado 80401 USA
| | - Michael K Johnson
- Department of Chemistry, University of Georgia Athens Georgia 30602 USA
| | - Michael W W Adams
- Department of Biochemistry & Molecular Biology, University of Georgia Athens Georgia 30602 USA.,Department of Chemistry, University of Georgia Athens Georgia 30602 USA
| | - R Brian Dyer
- Department of Chemistry, Emory University Atlanta Georgia 30222 USA
| |
Collapse
|
35
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
36
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
37
|
Lorent C, Katz S, Duan J, Kulka CJ, Caserta G, Teutloff C, Yadav S, Apfel UP, Winkler M, Happe T, Horch M, Zebger I. Shedding Light on Proton and Electron Dynamics in [FeFe] Hydrogenases. J Am Chem Soc 2020; 142:5493-5497. [DOI: 10.1021/jacs.9b13075] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian Lorent
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Catharina Julia Kulka
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Teutloff
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Shanika Yadav
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
- Department of Energy, Electrosynthesis Group, Fraunhofer UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany
| | - Martin Winkler
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Marius Horch
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, U.K
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
38
|
Arrigoni F, Bertini L, Breglia R, Greco C, De Gioia L, Zampella G. Catalytic H 2 evolution/oxidation in [FeFe]-hydrogenase biomimetics: account from DFT on the interplay of related issues and proposed solutions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03393f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A DFT overview on selected issues regarding diiron catalysts related to [FeFe]-hydrogenase biomimetic research, with implications for both energy conversion and storage strategies.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Raffaella Breglia
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
- Department of Earth and Environmental Sciences
| | - Claudio Greco
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
- Department of Earth and Environmental Sciences
| | - Luca De Gioia
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| |
Collapse
|
39
|
Honda Y, Shinohara Y, Fujii H. Visible light-driven, external mediator-free H 2 production by a combination of a photosensitizer and a whole-cell biocatalyst: Escherichia coli expressing [FeFe]-hydrogenase and maturase genes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01099e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new visible light-driven, external mediator-free, and highly efficient H2 production system is developed based on the combination of a photosensitizer and a living whole-cell biocatalyst: genetically engineered Escherichia coli.
Collapse
Affiliation(s)
- Yuki Honda
- Department of Chemistry, Biology, and Environmental Science
- Faculty of Science
- Nara Women's University
- Nara 630-8506
- Japan
| | - Yuka Shinohara
- Department of Chemistry, Biology, and Environmental Science
- Faculty of Science
- Nara Women's University
- Nara 630-8506
- Japan
| | - Hiroshi Fujii
- Department of Chemistry, Biology, and Environmental Science
- Faculty of Science
- Nara Women's University
- Nara 630-8506
- Japan
| |
Collapse
|