1
|
Hu T, Wan C, Zhan Y, Li X, Zheng Y. Preparation and performance of biocompatible gadolinium polymer as liver-targeting magnetic resonance imaging contrast agent. J Biosci Bioeng 2024; 137:134-140. [PMID: 38195341 DOI: 10.1016/j.jbiosc.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
A biocompatible macromolecule-conjugated gadolinium chelate complex (PAV2-EDA-DOTA-Gd) as a new liver-specific contrast agent for magnetic resonance imaging (MRI) was synthesized and evaluated. An aspartic acid-valine copolymer was used as a carrier and ethylenediamine as a chemical linker, and the aspartic acid-valine copolymer was covalently linked to the small molecule MRI contrast agent Gd-DOTA (Dotarem) to synthesize a large molecule contrast agent. In vitro MR relaxation showed that the T1-relaxivity of PAV2-EDA-DOTA-Gd (13.7 mmol-1 L s-1) was much higher than that of the small-molecule Gd-DOTA (4.9 mmol-1 L s-1). In vivo imaging of rats showed that the enhancement effect of PAV2-EDA-DOTA-Gd (55.37 ± 2.80%) on liver imaging was 2.6 times that of Gd-DOTA (21.12 ± 3.86%), and it produced a longer imaging window time (40-70 min for PAV2-EDA-DOTA-Gd and 10-30 min for Gd-DOTA). Preliminary safety experiments, such as cell experiments and tissue sectioning, showed that PAV2-EDA-DOTA-Gd had low toxicity and satisfactory biocompatibility. The results of this study indicated that PAV2-EDA-DOTA-Gd had high potential as a liver-specific MRI contrast agent.
Collapse
Affiliation(s)
- Tingting Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chuanling Wan
- School of Science, Changchun Institute of Technology, Changchun 130012, Jilin Province, China
| | - Youyang Zhan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Yan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
2
|
Fu S, Cai Z, Liu L, Fu X, Xia C, Lui S, Gong Q, Song B, Ai H. PEGylated Amphiphilic Gd-DOTA Backboned-Bound Branched Polymers as Magnetic Resonance Imaging Contrast Agents. Biomacromolecules 2023; 24:5998-6008. [PMID: 37945532 DOI: 10.1021/acs.biomac.3c00987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
MRI contrast agents with high kinetic stability and relaxivity are the key objectives in the field. We previously reported that Gd-DOTA backboned-bound branched polymers possess high kinetic stability and significantly increased T1 relaxivity than traditional branched polymer contrast agents. In this work, non-PEGylated and PEGylated amphiphilic Gd-DOTA backboned-bound branched polymers [P(GdDOTA-C6), P(GdDOTA-C10), mPEG-P(GdDOTA-C6), and mPEG-P(GdDOTA-C10)] were obtained by sequential introduction of rigid carbon chains (1,6-hexamethylenediamine or 1,10-diaminodecane) and mPEG into the structure of Gd-DOTA backboned-bound branched polymers. It is found that the introduction of both rigid carbon chains, especially the longer one, and mPEG can increase the kinetic stability and T1 relaxivity of Gd-DOTA backboned-bound branched polymers. Among them, mPEG-P(GdDOTA-C10) possesses the highest kinetic stability (significantly higher than those of linear Gd-DTPA and cyclic Gd-DOTA-butrol) and T1 relaxivity (42.9 mM-1 s-1, 1.5 T), 11 times that of Gd-DOTA and 1.4 times that of previously reported Gd-DOTA backboned-bound branched polymers. In addition, mPEG-P(GdDOTA-C10) showed excellent MRA effect in cardiovascular and hepatic vessels at a dose (0.025 or 0.05 mmol Gd/kg BW) far below the clinical range (0.1-0.3 mmol Gd/kg BW). Overall, effective branched-polymer-based contrast agents can be obtained by a strategy in which rigid carbon chains and PEG were introduced into the structure of Gd-DOTA backbone-bound branched polymers, resulting in excellent kinetic stability and enhanced T1 relaxivity.
Collapse
Affiliation(s)
- Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Li Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Ren H, Hu Q, Yang J, Zhou X, Liu X, Tang J, Hu H, Shen Y, Zhou Z. Single-Molecule Dendritic MRI Nanoprobes Reveal the Size-Dependent Tumor Entrance. Adv Healthc Mater 2023; 12:e2302210. [PMID: 37715937 DOI: 10.1002/adhm.202302210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/03/2023] [Indexed: 09/18/2023]
Abstract
The tumor entrance of drug delivery systems, including therapeutic proteins and nanomedicine, plays an essential role in affecting the treatment outcome. Nanoparticle size is a critical but contradictory factor in making a trade-off among blood circulation, tumor accumulation, and penetration. Here, this work designs a series of single-molecule gadolinium (Gd)-based magnetic resonance imaging (MRI) nanoprobes with well-defined sizes to precisely explore the size-dependent tumor entrance in vivo. The MRI nanoprobes obtained by divergent synthesis contain a core molecule of macrocyclic Gd(III)-chelate and different layers of dendritic lysine units, mimicking globular protein. This work finds that the r1 relaxivity and MR imaging signals increase with the nanoparticle size. The nanoprobe with a lower limit of critical size threshold ≈8.0 nm achieves superior tumor accumulation and penetration. These single-molecule MRI nanoprobes can be served to precisely examine the size-related nanoparticle-biological interactions.
Collapse
Affiliation(s)
- Huiming Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Qiuhui Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Jiajia Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
4
|
Henoumont C, Devreux M, Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023; 28:7275. [PMID: 37959694 PMCID: PMC10648041 DOI: 10.3390/molecules28217275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.
Collapse
Affiliation(s)
- Céline Henoumont
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Marie Devreux
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
5
|
Jiang Y, Cai Z, Fu S, Gu H, Fu X, Zhu J, Ke Y, Jiang H, Cao W, Wu C, Xia C, Lui S, Song B, Gong Q, Ai H. Relaxivity Enhancement of Hybrid Micelles via Modulation of Water Coordination Numbers for Magnetic Resonance Lymphography. NANO LETTERS 2023; 23:8505-8514. [PMID: 37695636 DOI: 10.1021/acs.nanolett.3c02214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Considerable efforts have been made to develop nanoparticle-based magnetic resonance contrast agents (CAs) with high relaxivity. The prolonged rotational correlation time (τR) induced relaxivity enhancement is commonly recognized, while the effect of the water coordination numbers (q) on the relaxivity of nanoparticle-based CAs gets less attention. Herein, we first investigated the relationship between T1 relaxivity (r1) and q in manganese-based hybrid micellar CAs and proposed a strategy to enhance the relaxivity by increasing q. Hybrid micelles with different ratios of amphiphilic manganese complex (MnL) and DSPE-PEG2000 were prepared, whose q values were evaluated by Oxygen-17-NMR spectroscopy. Micelles with lower manganese doping density exhibit increased q and enhanced relaxivity, corroborating the conception. In vivo sentinel lymph node (SLN) imaging demonstrates that DSPE-PEG/MnL micelles could differentiate metastatic SLN from inflammatory LN. Our strategy makes it feasible for relaxivity enhancement by modulating q, providing new approaches for the structural design of high-performance hybrid micellar CAs.
Collapse
Affiliation(s)
- Yuting Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Weidong Cao
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Jiang X, Zhao Y, Sun S, Xiang Y, Yan J, Wang J, Pei R. Research development of porphyrin-based metal-organic frameworks: targeting modalities and cancer therapeutic applications. J Mater Chem B 2023. [PMID: 37305964 DOI: 10.1039/d3tb00632h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porphyrins are naturally occurring organic molecules that have attracted widespread attention for their potential in the field of biomedical research. Porphyrin-based metal-organic frameworks (MOFs) that utilize porphyrin molecules as organic ligands have gained attention from researchers due to their excellent results as photosensitizers in tumor photodynamic therapy (PDT). Additionally, MOFs hold significant promise and potential for other tumor therapeutic approaches due to their tunable size and pore size, excellent porosity, and ultra-high specific surface area. Active delivery of nanomaterials via targeted molecules for tumor therapy has demonstrated greater accumulation, lower drug doses, higher therapeutic efficacy, and reduced side effects relative to passive targeting through the enhanced permeation and retention effect (EPR). This paper presents a comprehensive review of the targeting methods employed by porphyrin-based MOFs in tumor targeting therapy over the past few years. It further discusses the applications of porphyrin-based MOFs for targeted cancer therapy through various therapeutic methods. The objective of this paper is to provide a valuable reference and source of ideas for targeted therapy using porphyrin-based MOF materials and to inspire further exploration of their potential in the field of cancer therapy.
Collapse
Affiliation(s)
- Xiang Jiang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ying Xiang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jincong Yan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
7
|
Yang Z, Lin H, Lin Y, Wang J, Bu Y, Lin H, Gao J. Constructing sequence-controlled heterolayered dendritic lanthanide chelates via a one-pot strategy using orthogonal chemistry. Chem Commun (Camb) 2023; 59:6195-6198. [PMID: 37128904 DOI: 10.1039/d2cc06393j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The construction of sequence-controlled heterometallic lanthanide complexes is challenging despite their intriguing physical/chemical properties and enormous potential applications. Here we report a one-pot strategy that exploits orthogonal chemical reactions for modular assembly, which allows for rapid preparation of sequence-controlled heterolayered lanthanide-complex dendritic structures.
Collapse
Affiliation(s)
- Zhaoxuan Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Haojin Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yaying Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jinzhi Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yifan Bu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
8
|
Fu S, Cai Z, Liu L, Fu X, Wu C, Du L, Xia C, Lui S, Gong Q, Song B, Ai H. Gadolinium(III) Complex-Backboned Branched Polymers as Imaging Probes for Contrast-Enhanced Magnetic Resonance Angiography. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18311-18322. [PMID: 37000117 DOI: 10.1021/acsami.3c00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Compared to traditional branched polymers with Gd(III) chelates conjugated on their surface, branched polymers with Gd(III) chelates as the internal skeleton are considered to be a reasonable strategy for preparing efficient magnetic resonance imaging contrast agents. Herein, the Gd(III) ligand DOTA was chosen as the internal skeleton; four different molecular weights (3.5, 5.3, 8.6, and 13.1 kDa) and degrees of branching poly-DOTA branched polymers (P1, P2, P3, and P4) were synthesized by a simple "A2 + B4"-type one-pot polymerization. The Gd(III) chelates of these poly-DOTA branched polymers (P1-Gd, P2-Gd, P3-Gd, and P4-Gd) display excellent kinetic stability, which is significantly higher than those of linear Gd-DTPA and cyclic Gd-DOTA-butrol and slightly lower than that of cyclic Gd-DOTA. The T1 relaxivities of P1-Gd, P2-Gd, P3-Gd, and P4-Gd are 29.4, 38.7, 44.0, and 47.9 Gd mM-1 s-1, respectively, at 0.5 T, which are about 6-11 times higher than that of Gd-DOTA (4.4 Gd mM-1 s-1). P4-Gd was selected for in vivo magnetic resonance angiography (MRA) because of its high kinetic stability, T1 relaxivity, and good biosafety. The results showed excellent MRA effect, sensitive detection of vascular stenosis, and prolonged observation window as compared to Gd-DOTA. Overall, Gd(III) chelates of poly-DOTA branched polymers are good candidates of MRI probes, providing a unique design strategy in which Gd chelation can occur at both the interior and surface of the poly-DOTA branched polymers, resulting in excellent relaxivity enhancement. In vivo animal MRA studies of the probe provide possibilities in discovering small vascular pathologies.
Collapse
Affiliation(s)
- Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Li Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Liang Du
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Wang HL, Liu D, Jia JH, Liu JL, Ruan ZY, Deng W, Yang S, Wu SG, Tong ML. High-stability spherical lanthanide nanoclusters for magnetic resonance imaging. Natl Sci Rev 2023; 10:nwad036. [PMID: 37200676 PMCID: PMC10187785 DOI: 10.1093/nsr/nwad036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2023] Open
Abstract
High-nuclear lanthanide clusters have shown great potential for the administration of high-dose mononuclear gadolinium chelates in magnetic resonance imaging (MRI). The development of high-nuclear lanthanide clusters with excellent solubility and high stability in water or solution has been challenging and is very important for expanding the performance of MRI. We used N-methylbenzimidazole-2-methanol (HL) and LnCl3·6H2O to synthesize two spherical lanthanide clusters, Ln32 (Ln = Ho, Ho32; and Ln = Gd, Gd32), which are highly stable in solution. The 24 ligands L- are all distributed on the periphery of Ln32 and tightly wrap the cluster core, ensuring that the cluster is stable. Notably, Ho32 can remain highly stable when bombarded with different ion source energies in HRESI-MS or immersed in an aqueous solution of different pH values for 24 h. The possible formation mechanism of Ho32 was proposed to be Ho(III), (L)- and H2O → Ho3(L)3/Ho3(L)4 → Ho4(L)4/Ho4(L)5 → Ho6(L)6/Ho6(L)7 → Ho16(L)19 → Ho28(L)15 → Ho32(L)24/Ho32(L)21/Ho32(L)23. To the best of our knowledge, this is the first study of the assembly mechanism of spherical high-nuclear lanthanide clusters. Spherical cluster Gd32, a form of highly aggregated Gd(III), exhibits a high longitudinal relaxation rate (1 T, r1 = 265.87 mM-1·s-1). More notably, compared with the clinically used commercial material Gd-DTPA, Gd32 has a clearer and higher-contrast T1-weighted MRI effect in mice bearing 4T1 tumors. This is the first time that high-nuclear lanthanide clusters with high water stability have been utilized for MRI. High-nuclear Gd clusters containing highly aggregated Gd(III) at the molecular level have higher imaging contrast than traditional Gd chelates; thus, using large doses of traditional gadolinium contrast agents can be avoided.
Collapse
Affiliation(s)
- Hai-Ling Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Donglin Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Hua Jia
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Shiping Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Yan J, Lu Z, Xu M, Liu J, Zhang Y, Yin J, Cao Y, Pei R. A tumor-targeting and ROS-responsive iron-based T 1 magnetic resonance imaging contrast agent for highly specific tumor imaging. J Mater Chem B 2023; 11:3176-3185. [PMID: 36942891 DOI: 10.1039/d3tb00217a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
T1 contrast agents (CAs) exhibit outstanding capacity in enhancing the magnetic resonance imaging (MRI) contrast between tumor tissues and normal tissues for generating bright images. However, the clinical application of representative gadolinium(III) chelate-based T1 CAs is limited due to their potential toxicity and low specificity for pathological tissues. To obtain MRI CAs with a combination of low toxicity and high tumor specificity, herein, we report a reactive oxygen species (ROS)-responsive T1 CA (GA-Fe(II)-PEG-FA), which was constructed by chelating Fe(II) with gallic acid (GA), and modified with tumor-targeted folic acid (FA). The resultant CA could accumulate in tumor tissues via the affinity between FA and their receptors on the tumor cell membrane. It realized the switch from Fe(II) to Fe(III), and further enhancing the longitudinal relaxation rate (r1) under the stimuli of ROS in the tumor microenvironment. The r1 of GA-Fe(II)-PEG-FA on a 0.5 T nuclear magnetic resonance analyzer increased to 2.20 mM-1 s-1 under ROS stimuli and was 5 times greater than the r1 (0.42 mM-1 s-1) before oxidation. The cell and in vivo experiments demonstrated that GA-Fe(II)-PEG-FA exhibited good biocompatibility and significant targeting specificity to tumor cells and tumor tissues. Furthermore, in vivo MRI studies demonstrated that the enhanced T1 contrast effect against tumors could be achieved after injecting the CA for 3 h, indicating that GA-Fe(II)-PEG-FA has the potential as an ideal tumor MRI CA to increase the contrast and improve the diagnostic precision.
Collapse
Affiliation(s)
- Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Mingsheng Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jihuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
11
|
Tang X, Li A, Zuo C, Liu X, Luo X, Chen L, Li L, Lin H, Gao J. Water-Soluble Chemically Precise Fluorinated Molecular Clusters for Interference-Free Multiplex 19F MRI in Living Mice. ACS NANO 2023; 17:5014-5024. [PMID: 36862135 DOI: 10.1021/acsnano.2c12793] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorine-19 magnetic resonance imaging (19F MRI) is gaining widespread interest from the fields of biomolecule detection, cell tracking, and diagnosis, benefiting from its negligible background, deep tissue penetration, and multispectral capacity. However, a wide range of 19F MRI probes are in great demand for the development of multispectral 19F MRI due to the limited number of high-performance 19F MRI probes. Herein, we report a type of water-soluble molecular 19F MRI nanoprobe by conjugating fluorine-containing moieties with a polyhedral oligomeric silsesquioxane (POSS) cluster for multispectral color-coded 19F MRI. These chemically precise fluorinated molecular clusters are of excellent aqueous solubility with relatively high 19F contents and of single 19F resonance frequency with suitable longitudinal and transverse relaxation times for high-performance 19F MRI. We construct three POSS-based molecular nanoprobes with distinct 19F chemical shifts at -71.91, -123.23, and -60.18 ppm and achieve interference-free multispectral color-coded 19F MRI of labeled cells in vitro and in vivo. Moreover, in vivo 19F MRI reveals that these molecular nanoprobes could selectively accumulate in tumors and undergo rapid renal clearance afterward, illustrating their favorable in vivo behavior for biomedical applications. This study provides an efficient strategy to expand the 19F probe libraries for multispectral 19F MRI in biomedical research.
Collapse
Affiliation(s)
- Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Renji Medical Research Center, Chengdu Second People's Hospital, Chengdu 610011, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cuicui Zuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Gong W, Xie Y, Wang X, Kirlikovali KO, Idrees KB, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha OK. Programmed Polarizability Engineering in a Cyclen-Based Cubic Zr(IV) Metal-Organic Framework to Boost Xe/Kr Separation. J Am Chem Soc 2023; 145:2679-2689. [PMID: 36652593 DOI: 10.1021/jacs.2c13171] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Efficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs. NU-1107-Ag(I), which features the strongest framework polarizability among this series, achieves the best performance for a 20:80 v/v Xe/Kr mixture at 298 K and 1.0 bar with an ideal adsorbed solution theory (IAST) predicted selectivity of 13.4, placing it among the highest performing MOF materials reported to date. Notably, the Xe/Kr separation performance for NU-1107-Ag(I) is significantly better than that of the isoreticular, porphyrin-based MOF-525-Ag(II), highlighting how the cyclen core can generate relatively stronger framework polarizability through the formation of low-valent Ag(I) species and polarizable counteranions. Density functional theory (DFT) calculations corroborate these experimental results and suggest strong interactions between Xe and exposed Ag(I) sites in NU-1107-Ag(I). Finally, we validated this framework polarizability regulation approach by demonstrating the effectiveness of NU-1107-Ag(I) toward C3H6/C3H8 separation, indicating that this generalizable strategy can facilitate the bespoke synthesis of polarized porous materials for targeted separations.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Li A, Luo X, Chen D, Li L, Lin H, Gao J. Small Molecule Probes for 19F Magnetic Resonance Imaging. Anal Chem 2023; 95:70-82. [PMID: 36625117 DOI: 10.1021/acs.analchem.2c04539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| |
Collapse
|
14
|
Li L, Li A, Lin Y, Chen D, Kang B, Lin H, Gao J. An Activatable 19 F MRI Molecular Probe for Sensing and Imaging of Norepinephrine. ChemistryOpen 2022; 11:e202200110. [PMID: 35762743 PMCID: PMC9278097 DOI: 10.1002/open.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Norepinephrine (NE), acting as both a neurotransmitter and hormone, plays a significant role in regulating the action of the brain and body. Many studies have demonstrated a strong correlation between mental disorders and aberrant NE levels. Therefore, it is of urgent demand to develop in vivo analytical methods of NE for diagnostic assessment and mechanistic investigations of mental diseases. Herein, we report a 19 F MRI probe (NRFP) for sensing and imaging NE, which is constructed by conjugating a gadolinium chelate to a fluorine-containing moiety through a NE-responsive aromatic thiocarbonate linkage. The capacity and specificity of NRFP for detecting NE is validated with in vitro detecting/imaging experiments. Furthermore, the feasibility of NRFP for visualizing NE in animals is illustrated by ex vivo and in vivo imaging experiments, demonstrating the promising potential of NRFP for selective detection and specific imaging of NE in deep tissues of living subjects.
Collapse
Affiliation(s)
- Lingxuan Li
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ao Li
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yaying Lin
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Dongxia Chen
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Bilun Kang
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Hongyu Lin
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Jinhao Gao
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
15
|
Wang D, Zhang N, Yang T, Zhang Y, Jing X, Zhou Y, Long J, Meng L. Amino acids and doxorubicin as building blocks for metal ions-driven self-assembly of biodegradable polyprodrugs for tumor theranostics. Acta Biomater 2022; 147:245-257. [PMID: 35487428 DOI: 10.1016/j.actbio.2022.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
On-demand designed theranostics nanoagents show promising applications for next-generation precision-and-personalized oncotherapy. Researchers have since aimed to develop nanoplatforms that can efficiently deliver drugs and contrast medium to tumor and release active ingredients in response to tumor microenvironment (TME) conditions. Herein, we propose a modular strategy, and develop a series of nanoplatforms based on metal-coordinated-polyprodrugs for cancer theranostics. The polyprodrugs were synthesized through a click-reaction between amino acid and doxorubicin (DOX) with dipropiolate. The backbones of the polyprodrugs had intrinsic sensitivities to pH and/or GSH, and provided abundant -COOH, -NH2, or -S-S- to chelate with functional metal ions and further self-assembled to form different morphologies. Dicysteine, which contains disulfide bond (-S-S-), was chosen to copolymerize with DOX and triethylene glycol dipropiolate (TEP) to prepare the pH/GSH dual-responsive polyprodrug poly(dicysteine-co-TEP-co-DOX) (pDTD), then separately coordinated with Gd3+, Fe3+, and Mn2+ to construct nanoplatforms pDTD@M (M representing the metal ions). In vitro and in vivo investigations suggest the metal-coordinated-polyprodrug nanoplatforms have good magnetic resonance imaging (MRI) ability and efficient tumor-growth inhibition with high safety. The design strategy of nanoplatforms based on metal-coordinated-polyprodrugs provides a new idea for on-demand construction of promising theranostics agents. STATEMENT OF SIGNIFICANCE: Compared to small molecule antitumor drugs, polymeric drugs have high drug loading ratio and are easily enriched at the tumor site to achieve improved therapy efficacy. This work utilizes click reactions to link amino acids with anticancer drugs to produce polymeric drugs that are degraded in response to tumor microenvironment and released small molecule antitumor drugs mainly in tumor sites, and subtly utilizes the coordination of amino acid to chelate MRI functional metal ion to realize enhanced MRI imaging mediated tumor therapy. This strategy provides a new idea for the convenient construction of polymeric drugs for tumor theranostics.
Collapse
Affiliation(s)
- Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China.
| | - Ning Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Tingting Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Yun Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Xunan Jing
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China; Instrumental analysis center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- School of Life Science and Technology; Ministry of Education Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China; Instrumental analysis center, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
16
|
Yang G, Wang D, Phua SZF, Bindra AK, Qian C, Zhang R, Cheng L, Liu G, Wu H, Liu Z, Zhao Y. Albumin-Based Therapeutics Capable of Glutathione Consumption and Hydrogen Peroxide Generation for Synergetic Chemodynamic and Chemotherapy of Cancer. ACS NANO 2022; 16:2319-2329. [PMID: 35129953 DOI: 10.1021/acsnano.1c08536] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A nanoscale therapeutic system with good biocompatibility was facilely fabricated by the coassembly of human serum albumin and glucose oxidase (GOD), where the former was pretreated with metal ions through a chelating agent or the chemotherapeutic prodrug oxaliplatin (Oxa(IV)). Among different chelating metal ions used, Mn2+ ion was selected to produce hydroxyl radical (•OH) efficiently through Fenton-like reaction, while GOD loaded in the system was able to generate a large amount of hydrogen peroxide for promoting efficient conversion into highly toxic •OH. In the meanwhile, the conversion of the Oxa(IV) prodrug into chemotherapeutic Oxa(II) was beneficial for the consumption of glutathione, thereby enhancing the chemodynamic therapy (CDT) efficacy. Based on the combined chemotherapy and CDT, the treatment with this system leads to superior antitumor outcome.
Collapse
Affiliation(s)
- Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Cheng Qian
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Rui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Guofeng Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
17
|
Li Y, Cui J, Li C, Zhou H, Chang J, Aras O, An F. 19 F MRI Nanotheranostics for Cancer Management: Progress and Prospects. ChemMedChem 2022; 17:e202100701. [PMID: 34951121 PMCID: PMC9432482 DOI: 10.1002/cmdc.202100701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Fluorine magnetic resonance imaging (19 F MRI) is a promising imaging technique for cancer diagnosis because of its excellent soft tissue resolution and deep tissue penetration, as well as the inherent high natural abundance, almost no endogenous interference, quantitative analysis, and wide chemical shift range of the 19 F nucleus. In recent years, scientists have synthesized various 19 F MRI contrast agents. By further integrating a wide variety of nanomaterials and cutting-edge construction strategies, magnetically equivalent 19 F atoms are super-loaded and maintain satisfactory relaxation efficiency to obtain high-intensity 19 F MRI signals. In this review, the nuclear magnetic resonance principle underlying 19 F MRI is first described. Then, the construction and performance of various fluorinated contrast agents are summarized. Finally, challenges and future prospects regarding the clinical translation of 19 F MRI nanoprobes are considered. This review will provide strategic guidance and panoramic expectations for designing new cancer theranostic regimens and realizing their clinical translation.
Collapse
Affiliation(s)
- Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Cui
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chenlong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huimin Zhou
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jun Chang
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
18
|
Lin XS, Yu Y, Zhou L, He L, Chen T, Sun QF. Mesoporous Silica Nanoparticles-Embedded Lanthanide Organic Polyhedra for Enhanced Stability, Luminescence and Cell Imaging. Dalton Trans 2022; 51:4836-4842. [DOI: 10.1039/d1dt04313g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a simple but efficient “ship-in-a-bottle” synthetic strategy for increasing the stability and luminescence performance of LOPs by embedding them into mesoporous silica nanoparticles (MSNs). Three types of...
Collapse
|
19
|
Zhang K, Li D, Zhou B, Liu J, Luo X, Wei R, Wang L, Hu X, Su Z, Lin H, Gao J, Shan H. Arsenite-loaded albumin nanoparticles for targeted synergistic chemo-photothermal therapy of HCC. Biomater Sci 2021; 10:243-257. [PMID: 34846385 DOI: 10.1039/d1bm01374b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic trioxide (ATO, As2O3), an active ingredient of traditional Chinese medicine, has been approved by the U.S. Food and Drug Administration as an effective therapeutic agent for acute promyelocytic leukemia (APL). However, the application of ATO in treating advanced solid tumors like hepatocellular carcinoma (HCC) is still restricted by limited therapeutic efficacy and insufferable side effects. To solve this problem, we reported a general and facile strategy using human serum albumin (HSA) as a template for synthesizing a series of ATO-based nanoparticles with uniform single-albumin size. Then, we prepared a multifunctional drug delivery system (MDDS) based on MnAs/HSA termed MnAs/ICG/HSA-RGD, and tested its efficacy both in vitro and in vivo. Our results revealed that the photothermal effect of MnAs/ICG/HSA-RGD can not only cause irreversible damage to the tumor but also accelerate the discharge of As and Mn2+ ions, enabling responsive chemotherapy and magnetic resonance imaging. Interestingly, the expression of HSP90, vimentin, and MMP-9 in tumor cells was inhibited during the treatment, resulting in less metastasis and recurrence. Moreover, no apparent side effect has been observed during the treatment. Therefore, MnAs/ICG/HSA-RGD can be considered as a promising option for HCC with excellent therapeutic efficacy and minimum side effects.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Interventional Medicine, Department of Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Dan Li
- Department of Interventional Medicine, Department of Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Bin Zhou
- Department of Interventional Medicine, Department of Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Jiani Liu
- Department of Interventional Medicine, Department of Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lizhu Wang
- Department of Interventional Medicine, Department of Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Xiaojun Hu
- Department of Interventional Medicine, Department of Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Zhongzhen Su
- Department of Interventional Medicine, Department of Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hong Shan
- Department of Interventional Medicine, Department of Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
20
|
Li A, Luo X, Li L, Chen D, Liu X, Yang Z, Yang L, Gao J, Lin H. Activatable Multiplexed 19F Magnetic Resonance Imaging Visualizes Reactive Oxygen and Nitrogen Species in Drug-Induced Acute Kidney Injury. Anal Chem 2021; 93:16552-16561. [PMID: 34859996 DOI: 10.1021/acs.analchem.1c03744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In vivo levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical to many physiological and pathological processes. Because of the distinct differences in their biological generation and effects, simultaneously visualizing both of them could help deepen our insights into the mechanistic details of these processes. However, real-time and deep-tissue imaging and differentiation of ROS- and RNS-related molecular events in living subjects still remain a challenge. Here, we report the development of two activatable 19F magnetic resonance imaging (MRI) molecular probes with different 19F chemical shifts and specific responsive behaviors for simultaneous in vivo detection and deep-tissue imaging of O2•- and ONOO-. These probes are capable of real-time visualization and differentiation of O2•- and ONOO- in living mice with drug-induced acute kidney injury by interference-free multiplexed hot-spot 19F MRI, illustrating the potential of this technique for background-free real-time imaging of diverse biological processes, accurate diagnosis of various diseases in deep tissues, and rapid toxicity evaluation of assorted drugs.
Collapse
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhaoxuan Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lijiao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Lin H, Tang X, Li A, Gao J. Activatable 19 F MRI Nanoprobes for Visualization of Biological Targets in Living Subjects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005657. [PMID: 33834558 DOI: 10.1002/adma.202005657] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Visualization of biological targets such as crucial cells and biomolecules in living subjects is critical for the studies of important biological processes. Though 1 H magnetic resonance imaging (MRI) has demonstrated its power in offering detailed anatomical and pathological information, its capacity for in vivo tracking of biological targets is limited by the high biological background of 1 H. 19 F distinguishes itself from its competitors as an exceptional complement to 1 H in MRI through its high sensitivity, low biological background, and broad chemical shift range. The specificity and sensitivity of 19 F MRI can be further boosted with activatable nanoprobes. The advantages of 19 F MRI with activatable nanoprobes enable in vivo detection and imaging at the cellular or even molecular level in deep tissues, rendering this technique appealing as a potential solution for visualization of biological targets in living subjects. Here, recent progress over the past decades on activatable 19 F MRI nanoprobes made from three major 19 F-containing compounds, as well as present challenges and potential opportunities, are summarized to provide a panoramic prospective for the people who are interested in this emerging and exciting field.
Collapse
Affiliation(s)
- Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
22
|
Liu K, Kang B, Luo X, Yang Z, Sun C, Li A, Fan Y, Chen X, Gao J, Lin H. Redox-Activated Contrast-Enhanced T1-Weighted Imaging Visualizes Glutathione-Mediated Biotransformation Dynamics in the Liver. ACS NANO 2021; 15:17831-17841. [PMID: 34751559 DOI: 10.1021/acsnano.1c06026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
GSH-mediated liver biotransformation is a crucial physiological process demanding efficient research tools. Here, we report a type of amorphous FexMnyO nanoparticles (AFMO-ZDS NPs) as redox-activated probes for in vivo visualization of the dynamics of GSH-mediated biotransformation in liver with T1-weighted magnetic resonance imaging (MRI). This imaging technique reveals the periodic variations in GSH concentration during the degradation of AFMO-ZDS NPs due to the limited transportation capacity of GSH carriers in the course of GSH efflux from hepatocytes to perisinusoidal space, providing direct imaging evidence for this important carrier-mediated process during GSH-mediated biotransformation. Therefore, this technique offers an effective method for in-depth investigations of GSH-related biological processes in liver under various conditions as well as a feasible means for the real-time assessment of liver functions, which is highly desirable for early diagnosis of liver diseases and prompt a toxicity evaluation of pharmaceuticals.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bilun Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhaoxuan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119228, Singapore
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
23
|
Jia M, Yang X, Chen Y, He M, Zhou W, Lin J, An L, Yang S. Grafting of Gd-DTPA onto MOF-808 to enhance MRI performance for guiding photothermal therapy. J Mater Chem B 2021; 9:8631-8638. [PMID: 34585715 DOI: 10.1039/d1tb01596f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gd(III) chelates are important T1-weighted contrast agents used in clinical magnetic resonance imaging (MRI), but their low longitudinal relaxivity (r1) results in limited imaging efficiency. In this study, we utilize a geometric confinement strategy to restrict a Gd chelate (Gd-DTPA) within the channels of a porous metal-organic framework material (MOF-808) for increasing its r1 relaxivity. Moreover, the Gd-DTPA-grafted MOF-808 nanoparticles were further surface modified with polyaniline (PANI) to construct an MRI-guided photothermal therapy platform. The resulting Gd-DTPA-MOF-808@PANI shows a high r1 relaxivity of 30.1 mM-1 s-1 (0.5 T), which is 5.4 times higher than that of the commercial contrast agent Magnevist. In vivo experiments revealed that Gd-DTPA-MOF-808@PANI has good T1-weighted contrast performance and can effectively guide photothermal ablation of tumors upon 808 nm laser irradiation. This work may shed some light on the design and preparation of high relaxation rate Gd-based contrast agents for theranostic application via utilization of versatile MOF materials.
Collapse
Affiliation(s)
- Mingjie Jia
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Xinyu Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Yanan Chen
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Meie He
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Weixiu Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Lu An
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
24
|
Rajan C, Seema J, Chen YW, Chen TC, Lin MH, Lin CH, Hwang DWH. A Gadolinium DO3A Amide m-Phenyl Boronic Acid MRI Probe for Targeted Imaging of Sialated Solid Tumors. Biomedicines 2021; 9:biomedicines9101459. [PMID: 34680576 PMCID: PMC8533322 DOI: 10.3390/biomedicines9101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
We developed a new probe, Gd-DO3A-Am-PBA, for imaging tumors. Our results showed active targeting of Gd-DO3A-Am-PBA to sialic acid (SA) moieties, with increased cellular labeling in vitro and enhanced tumor accumulation and retention in vivo, compared to the commercial Gadovist. The effectiveness of our newly synthesized probe lies in its adequate retention phase, which is expected to provide a suitable time window for tumor diagnosis and a faster renal clearance, which will reduce toxicity risks when translated to clinics. Hence, this study can be extended to other tumor types that express SA on their surface. Targeting and MR imaging of any type of tumors can also be achieved by conjugating the newly synthesized contrast agent with specific antibodies. This study thus opens new avenues for drug delivery and tumor diagnosis via imaging.
Collapse
Affiliation(s)
- Christu Rajan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
| | - Jaya Seema
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
| | - Yu-Wen Chen
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Tsai-Chen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
| | - Ming-Huang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
| | - Chia-Huei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
| | - Dennis Wen-Han Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan;
- Correspondence:
| |
Collapse
|
25
|
Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics 2021; 11:8706-8737. [PMID: 34522208 PMCID: PMC8419031 DOI: 10.7150/thno.57004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Smart theranostics are dynamic platforms that integrate multiple functions, including at least imaging, therapy, and responsiveness, in a single agent. This review showcases a variety of responsive theranostic agents developed specifically for magnetic resonance imaging (MRI), due to the privileged position this non-invasive, non-ionising imaging modality continues to hold within the clinical imaging field. Different MRI smart theranostic designs have been devised in the search for more efficient cancer therapy, and improved diagnostic efficiency, through the increase of the local concentration of therapeutic effectors and MRI signal intensity in pathological tissues. This review explores novel small-molecule and nanosized MRI theranostic agents for cancer that exhibit responsiveness to endogenous (change in pH, redox environment, or enzymes) or exogenous (temperature, ultrasound, or light) stimuli. The challenges and obstacles in the design and in vivo application of responsive theranostics are also discussed to guide future research in this interdisciplinary field towards more controllable, efficient, and diagnostically relevant smart theranostics agents.
Collapse
Affiliation(s)
- Beatriz Brito
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
- School of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Hull, UK, HU6 7RX
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Manuel Bañobre-López
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| |
Collapse
|
26
|
Wang Z, Sun Q, Liu B, Kuang Y, Gulzar A, He F, Gai S, Yang P, Lin J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213945] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
27
|
Pu Y, Zhu Y, Qiao Z, Xin N, Chen S, Sun J, Jin R, Nie Y, Fan H. A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy. J Mater Chem B 2021; 9:1846-1857. [PMID: 33527969 DOI: 10.1039/d0tb02725a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Based on widely used photoacoustic imaging (PAI) and photothermal properties of polydopamine (PDA), a multifunctional Gd-PDA-Ce6@Gd-MOF (GPCG) nanosystem with a core-shell structure and strong imaging ability was constructed. Benefitting from the metal-organic framework (MOF) structure, GPCG nanoparticles (NPs) showed enhanced magnetic resonance imaging (MRI) ability with high relaxation rates (r1 = 13.72 mM-1 s-1 and r2 = 216.14 mM-1 s-1). The MRI effect of Gd ions combined with the PAI effect of PDA, giving GPCG NPs a dual-modal imaging ability. The core, mainly composed of PDA and photodynamic photosensitizer chlorin e6 (Ce6), achieved photothermal/photodynamic therapy (PTT/PDT) synergistic performance. Besides, to overcome the unexpected release of Ce6, the MOF shell realized pH-sensitive release and a high local concentration. Through in vivo studies, we concluded that GPCG NPs show a good inhibitory effect on tumor growth. In conclusion, we successfully obtained a GPCG theranostic nanoplatform and paved the way for subsequent design of imaging guided therapeutic nanostructures based on metal-doped PDA.
Collapse
Affiliation(s)
- Yiyao Pu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuda Zhu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Nini Xin
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. and College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
28
|
Berki TR, Martinelli J, Tei L, Willcock H, Butler SJ. Polymerizable Gd(iii) building blocks for the synthesis of high relaxivity macromolecular MRI contrast agents. Chem Sci 2021; 12:3999-4013. [PMID: 34163670 PMCID: PMC8179470 DOI: 10.1039/d0sc04750c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
A new synthetic strategy for the preparation of macromolecular MRI contrast agents (CAs) is reported. Four gadolinium(iii) complexes bearing either one or two polymerizable methacrylamide groups were synthesized, serving as monomers or crosslinkers for the preparation of water-soluble, polymeric CAs using Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization. Using this approach, macromolecular CAs were synthesized with different architectures, including linear, hyperbranched polymers and gels. The relaxivities of the polymeric CAs were determined by NMR relaxometry, revealing an up to 5-fold increase in relaxivity (60 MHz, 310 K) for the linear polymers compared with the clinically used CA, Gd-DOTA. Moreover, hyperbranched polymers obtained from Gd(iii) crosslinkers, displayed even higher relaxivities up to 22.8 mM-1 s-1, approximately 8 times higher than that of Gd-DOTA (60 MHz, 310 K). A detailed NMRD study revealed that the enhanced relaxivities of the hyperbranched polymers were obtained by limiting the local motion of the crosslinked Gd(iii) chelate. The versatility of RAFT polymerization of Gd(iii) monomers and crosslinkers opens the doors to more advanced polymeric CAs capable of multimodal, bioresponsive or targeting properties.
Collapse
Affiliation(s)
- Thomas R Berki
- Department of Chemistry, Loughborough University Leicestershire LE11 3TU UK
- Department of Materials, Loughborough University Leicestershire LE11 3TU UK
| | - Jonathan Martinelli
- Department of Science and Technological Innovation, Università del Piemonte Orientale I15121 Alessandria Italy
| | - Lorenzo Tei
- Department of Science and Technological Innovation, Università del Piemonte Orientale I15121 Alessandria Italy
| | - Helen Willcock
- Department of Materials, Loughborough University Leicestershire LE11 3TU UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Leicestershire LE11 3TU UK
| |
Collapse
|
29
|
Tang X, Gong X, Ming J, Chen D, Lin H, Gao J. Fluorinated Gadolinium Chelate-Grafted Nanoconjugates for Contrast-Enhanced T1-Weighted 1H and pH-Activatable 19F Dual-Modal MRI. Anal Chem 2020; 92:16293-16300. [DOI: 10.1021/acs.analchem.0c04296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoxue Tang
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xuanqing Gong
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiang Ming
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxia Chen
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
30
|
Carone M, Moreno S, Cangiotti M, Ottaviani MF, Wang P, Carloni R, Appelhans D. DOTA Glycodendrimers as Cu(II) Complexing Agents and Their Dynamic Interaction Characteristics toward Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12816-12829. [PMID: 32993292 PMCID: PMC8015221 DOI: 10.1021/acs.langmuir.0c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Copper (Cu)(II) ions, mainly an excess amount, play a negative role in the course of several diseases, like cancers, neurodegenerative diseases, and the so-called Wilson disease. On the contrary, Cu(II) ions are also capable of improving anticancer drug efficiency. For this reason, it is of great interest to study the interacting ability of Cu(II)-nanodrug and Cu(II)-nanocarrier complexes with cell membranes for their potential use as nanotherapeutics. In this study, the complex interaction between 1,4,7,10-tetraazacyclododecan-N,N',N'',N'''-tetraacetic acid (DOTA)-functionalized poly(propyleneimine) (PPI) glycodendrimers and Cu(II) ions and/or neutral and anionic lipid membrane models using different liposomes is described. These interactions were investigated via dynamic light scattering (DLS), ζ-potential (ZP), electron paramagnetic resonance (EPR), fluorescence anisotropy, and cryogenic transmission electron microscopy (cryo-TEM). Structural and dynamic information about the PPI glycodendrimer and its Cu(II) complexes toward liposomes was obtained via EPR. At the binding site Cu-N2O2 coordination prevails, while at the external interface, this coordination partially weakens due to competitive dendrimer-liposome interactions, with only small liposome structural perturbation. Fluorescence anisotropy was used to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer, while DLS and ZP allowed us to determine the distribution profile of the nanoparticle (PPI glycodendrimer and liposomes) size and surface charge, respectively. From this multitechnique approach, it is deduced that DOTA-PPI glycodendrimers selectively extract Cu(II) ions from the bioenvironment, while these complexes interact with the liposome surface, preferentially with even more negatively charged liposomes. However, these complexes are not able to cross the cell membrane model and poorly perturb the membrane structure, showing their potential for biomedical use.
Collapse
Affiliation(s)
- Marianna Carone
- Department
of Chemistry and Biochemistry, University
of Bern, 3012 Bern, Switzerland
| | - Silvia Moreno
- Leibniz
Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Michela Cangiotti
- Department
of Pure and Applied Sciences, Università
degli studi di Urbino “Carlo Bo”, Urbino 61029, Italy
| | - Maria Francesca Ottaviani
- Department
of Pure and Applied Sciences, Università
degli studi di Urbino “Carlo Bo”, Urbino 61029, Italy
| | - Peng Wang
- Leibniz
Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - Riccardo Carloni
- Department
of Pure and Applied Sciences, Università
degli studi di Urbino “Carlo Bo”, Urbino 61029, Italy
| | - Dietmar Appelhans
- Leibniz
Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| |
Collapse
|
31
|
Wang Z, He L, Liu B, Zhou LP, Cai LX, Hu SJ, Li XZ, Li Z, Chen T, Li X, Sun QF. Coordination-Assembled Water-Soluble Anionic Lanthanide Organic Polyhedra for Luminescent Labeling and Magnetic Resonance Imaging. J Am Chem Soc 2020; 142:16409-16419. [PMID: 32882131 DOI: 10.1021/jacs.0c07514] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lanthanide-containing functional complexes have found a variety of applications in materials science and biomedicine because of their unique electroptical and magnetic properties. However, the poor stability and solubility in water of multicomponent lanthanide organic assemblies significantly limit their practical applications. We report here a series of water-stable anionic Ln2nL3n-type (n = 2, 3, 4, and 5) lanthanide organic polyhedra (LOPs) constructed by deprotonation self-assembly of three fully conjugated ligands (H4L1 and H4L2a/b) featuring a 2,6-pyridine bitetrazolate chelating moiety. The outcomes of the LOPs formation reactions were found to be very sensitive toward the reaction conditions including base, metal source, solvents, and concentrations as characterized by a combination of NMR, high-resolution ESI-MS and X-ray crystallography. Ligands H4L2a/b manifested an excellent sensitization toward lanthanide ions (Ln = EuIII and TbIII), with high luminescent quantum yields for Tb8L2a12 (Φ = 11.2% in water) and Eu8L2b12 (Φ = 76.8% in DMSO) measured in polar solvents. Furthermore, due to the giant molecular weight and rigidity of the polyhedral skeleton, Gd8L2b12 showed a very high longitudinal relaxivity (r1) of 400.53 mM-1S-1. The performance of Gd8L2b12 as potential magnetic resonance imaging contrast agents (CAs) in vivo was evaluated with much longer retention time in the tumor sites compared with the commercial GdIII-based CAs. Dual-modal imaging potential has also been demonstrated with the mixed Eu/Gd LOPs. Our results not only provide a new design route toward water-stable multinuclear lanthanide organic assemblies but also offer potential candidates of supramolecular-edifices for bioimaging and drug delivery.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lizhen He
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Zhen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
32
|
Chen H, Tang X, Gong X, Chen D, Li A, Sun C, Lin H, Gao J. Reversible redox-responsive 1H/19F MRI molecular probes. Chem Commun (Camb) 2020; 56:4106-4109. [DOI: 10.1039/d0cc00778a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The redox-responsive manganese(ii)/(iii) complexes serve as a pair of reversible probes for 1H MRI and 19F MRI of biological redox species.
Collapse
Affiliation(s)
- Hongming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xuanqing Gong
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Dongxia Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|