1
|
Ding Y, Jin W, Zhang J, Cui C. A Masked Boryl-Substituted Oxo-Bridged Bis-Silylene: Synthesis and Reductive-Elimination and Synergistic Oxidative-Addition Reactivity. J Am Chem Soc 2024; 146:27925-27934. [PMID: 39319777 DOI: 10.1021/jacs.4c10961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Controlled oxidation of NHB-stabilized disilyne (NHB)Si ≡ Si(NHB) (1, NHB = [ArN(CMe)2NAr]B, Ar = 2,6-iPr2C6H3) with one equivalent of trimethylamine N-oxide (Me3N+─O-) in dry n-hexane gave oxo-bridged bis-silepin 2 in high yields. DFT calculations disclosed that silepin 2 is only more stable by 13.4 kcal/mol than the corresponding oxo-bridged bis-silylene intermediate 2' (NHB)Si(μ-O)Si(NHB), and 2 was very likely to be formed by the insertion of the two divalent Si atoms into the pendant aryl rings in bis-silylene intermediate 2'. The two silicon atoms in bis-silepin 2 could undergo formal reductive-elimination of the aryl rings and sequential oxidative-insertion reactions with small molecules and organic substrates. Treatment of 2 with H2O, S8, and P4 at 60 °C yielded compounds 3-5 via reductive-elimination of the aryl rings, followed by the sequential oxidative-addition of these molecules at the two Si(II) centers. Similarly, reactions of 2 with PhSiH3, a diphenylalkyne, pyridines, 1,3,4,5-tetramethylimidazolin-2-ylidene (IMe4), Ph2CO, and thiophene yielded the corresponding polycyclic bis-silanes 6-12 via reductive-elimination and oxidative-addition of C-H, Si-H, C≡C, and aromatic C═C, C-S, and C═N bonds at the two Si atoms. These novel reactions indicated the pronounced bis-silylene reactivity of bis-silepin 2, consistent with the low-energy barrier for the interconversion between 2 and 2', as disclosed by DFT calculations.
Collapse
Affiliation(s)
- Yazhou Ding
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Wen Jin
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
2
|
Liu X, Dai Y, Bao Q, Li Q, Chen N, Su Y, Wang X. Isolable T-Shaped Planar Silyl Anion. Angew Chem Int Ed Engl 2024; 63:e202406089. [PMID: 38781000 DOI: 10.1002/anie.202406089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Silyl anions have garnered significant attention due to their synthetic abilities. However, previously reported silyl anions have been limited to either trigonal-pyramidal or trigonal-planar geometries, which confine them primarily as nucleophiles in substitution reactions. Herein, we report the isolation of the unprecedented T-shaped planar silyl anion salt 2 by employment of a geometrically constrained triamido pincer ligand. Theoretical calculations disclosed that the silicon centre in 2 possesses both a lone pair of electrons and an empty 3pz orbital. In addition to nucleophilic substitution reactions with Ph3PAuCl and W(CO)6, 2 readily undergoes oxidative additions with CO2 and 2,6-dimethylphenylisonitrile at room temperature. Furthermore, under mild conditions, compound 2 cleaves Csp2-H, Csp2-H, and H-H bonds in 1,2,4,5-tetrafluorobenzene, an intramolecular iPr group, and dihydrogen, representing the first examples of C-H and H-H activations mediated by a silyl anion, respectively. This work unveils new reactivity of silyl anions owing to the non-classical geometry and electronic structure.
Collapse
Affiliation(s)
- Xiaona Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qidi Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qianli Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinping Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Xu C, Zhao S, Zhang H, Peng Q, Chen Y. Yb/Si frustrated Lewis pairs with a labile naphthalenyl bridge. Chem Commun (Camb) 2024; 60:8411-8414. [PMID: 39028271 DOI: 10.1039/d4cc03009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The first examples of RE/Si FLPs (RE: rare-earth metal, FLPs: frustrated Lewis pairs), namely Yb/Si FLPs were synthesized, where Yb⋯Si distances are in the range of 3.55 to 3.72 Å. These FLPs react with triphenylphosphine sulfide and aryl isocyanide to produce novel silylyne group transfer products through dissociation of naphthalene.
Collapse
Affiliation(s)
- Cheng Xu
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials South China University of Technology, Guangzhou 510641, P. R. China.
| | - Sixuan Zhao
- State Key Laboratory of Elemento-Organic Chemistry and and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China.
| | - Heng Zhang
- State Key Laboratory of Elemento-Organic Chemistry and and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China.
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, P. R. China
| | - Yaofeng Chen
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
4
|
Li J, Wang XF, Hu C, Liu LL. Carbene-Stabilized Phosphagermylenylidene: A Heavier Analog of Isonitrile. J Am Chem Soc 2024; 146:14341-14348. [PMID: 38726476 DOI: 10.1021/jacs.4c04434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Phosphagermylenylidenes (R-P═Ge), as heavier analogs of isonitriles, whether in their free state or as complexes with a Lewis base, have not been previously identified as isolable entities. In this study, we report the synthesis of a stable monomeric phosphagermylenylidene within the coordination sphere of a Lewis base under ambient conditions. This species was synthesized by Lewis base-induced dedimerization of a cyclic phosphagermylenylidene dimer or via Me3SiCl elimination from a phosphinochlorogermylene framework. The deliberate integration of a bulky, electropositive N-heterocyclic boryl group at the phosphorus site, combined with coordination stabilization by a cyclic (alkyl)(amino)carbene at the low-valent germanium site, effectively mitigated its natural tendency toward oligomerization. Structural analyses and theoretical calculations have demonstrated that this unprecedented species features a P═Ge double bond, characterized by conventional electron-sharing π and σ bonds, complemented by lone pairs at both the phosphorus and germanium atoms. Preliminary reactivity studies show that this base-stabilized phosphagermylenylidene demonstrates facile release of ligands at the Ge atom, coordination to silver through the lone pair on P, and versatile reactivity including both (cyclo)addition and cleavage of the P═Ge double bond.
Collapse
Affiliation(s)
- Jiancheng Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Feng Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Zhang M, Zheng Y, Jin Y, Jiang H, Wu W. Palladium-catalyzed ligand-regulated divergent synthesis of pyrrole[2,3- b]indoles and ureas from 2-ethynylanilines and isocyanides. Chem Commun (Camb) 2024; 60:2950-2953. [PMID: 38375635 DOI: 10.1039/d3cc05387c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Herein, a palladium-catalyzed and ligand-controlled protocol for the divergent synthesis of pyrrole[2,3-b]indole and urea derivatives has been described. Pyrrole[2,3-b]indoles ("cyclization on" products) via tandem cyclization of o-alkynylanilines with isocyanides in the absence of a ligand and ureas ("cyclization off" products) via oxidative amination of anilines with isocyanides in the presence of a ligand were obtained both in moderate to good yields with high selectivity. In this chemistry, cyclic and acyclic products were easily accessed with the same starting materials under the regulation of the ligand.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yongpeng Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yangbin Jin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Abstract
Low valent group 14 compounds exhibit diverse structures and reactivities. The employment of diazaborolyl anions (NHB anions), isoelectronic analogues to N-heterocyclic carbenes (NHCs), in group 14 chemistry leads to the exceptional structures and reactivity. The unique combination of σ-electron donation and pronounced steric hindrance impart distinct structural characteristics to the NHB-substituted low valent group 14 compounds. Notably, the modulation of the HOMO-LUMO gap in these compounds with the diazaborolyl substituents results in novel reaction patterns in the activation of small molecules and inert chemical bonds. This review mainly summarizes the recent advances in NHB-substituted low-valent heavy Group 14 compounds, emphasizing their synthesis, structural characteristics and application to small molecule activation.
Collapse
Affiliation(s)
- Chenxi Duan
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, China.
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Ding Y, Zhang J, Li Y, Cui C. Disilicon Dicarbonyl Complex: Synthesis and Protonation of CO with O–H Bond. J Am Chem Soc 2022; 144:20566-20570. [DOI: 10.1021/jacs.2c10599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yazhou Ding
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| | - Yang Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| |
Collapse
|
9
|
Mukhopadhyay S, Patro AG, Vadavi RS, Nembenna S. Coordination chemistry of main group metals with organic isocyanides. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sayantan Mukhopadhyay
- National Institute of Science Education and Research Schoool of Chemical Sciences INDIA
| | - A Ganesh Patro
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Ramesh S. Vadavi
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Sharanappa Nembenna
- National Institute of Science Education and Research (NISER) School of Chemical Sciences Jatni CampusNISER, BhubaneswarINDIA 752050 Bhubaneswar INDIA
| |
Collapse
|
10
|
Synthesis of an N‐Heterocylic Boryl‐Stabilized Disilyne and Its Application to the Activation of Dihydrogen and C−H Bonds. Angew Chem Int Ed Engl 2022; 61:e202205785. [DOI: 10.1002/anie.202205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/07/2022]
|
11
|
Ding Y, Li Y, Zhang J, Cui C. Synthesis of an N‐Heterocylic Boryl‐Stabilized Disilyne and its Application to the Activation of Dihydrogen and C−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yazhou Ding
- Nankai University Institute of elemento-organic chemistry CHINA
| | - Yang Li
- Nankai University College of Chemistry Institute of elemento-organic chemistry CHINA
| | - Jianying Zhang
- Nankai University College of Chemistry Institute of elemento-organic chemistry CHINA
| | - Chunming Cui
- Nankai University Institute of Elemento-Organic Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
12
|
Zhao Y, Chen Y, Zhang L, Li J, Peng Y, Chen Z, Jiang L, Zhu H. Homocoupling of Isocyanide at the Si(II) Center of Borylaminoamidinatosilylene. Inorg Chem 2022; 61:5215-5223. [PMID: 35312318 DOI: 10.1021/acs.inorgchem.1c03349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two borylaminoamidinatosilylenes (L)[(1,5-C8H14)B(Ar)N]Si (L = PhC(NtBu)2, Ar = 2,6-iPr2C6H3 (1)) and (L)[(1,5-C8H14)B(Ar')N]Si (Ar' = 2,4,6-Me3C6H2 (2)) have been prepared and utilized to investigate the reaction toward isocyanide. Reactions of 1 with the respective CN-2,6-Me2C6H3 and CNCy (Cy = cyclo-C6H11) produced compounds (L)Si(NAr)C(N-2,6-Me2C6H3)B(1,5-C8H14)(CN-2,6-Me2C6H3) (3) and (L)Si(NAr)C(NCy)C(NCy)B(1,5-C8H14)(CNCy) (4). Reactions of 2 with the respective CNCy and CN-2,6-Me2C6H3 yielded compounds cyclo-(L)SiN(Ar')C(NCy)B(1,5-C8H14)C(NCy) (5) and cyclo-(L)[(1,5-C8H14)B(Ar')N]SiC(CN-2,6-Me2C6H3)N(2,6-Me2C6H3)C(N-2,6-Me2C6H3) (6). Compounds 3-6 have different compositions and structures from each other. Density functional theory (DFT) calculations suggest initial formation of (L)[(1,5-C8H14)B(←:CN-2,6-Me2C6H3)(Ar)N]Si (A), (L)[(1,5-C8H14)B(←:CNCy)(Ar)N]Si (A'), (L)[(1,5-C8H14)B(←:CNCy)-(Ar')N]Si (A″), and (L)[(1,5-C8H14)B(←:CN-2,6-Me2C6H3)(Ar')N]Si (A‴) as the respective intermediates. The as-followed transition states TS, TS1', TS1″, and TS‴ all feature probable Si:→C(═N):→B bonding with different Gibbs energies of 7.24, 2.46, 3.86, and 6.59 kcal/mol, respectively, due to variation among the Ar, Ar', 2,6-Me2C6H3, and Cy groups in these species, and reacted in different ways.
Collapse
Affiliation(s)
- Yiling Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Li Zhang
- Center of Materials Science and Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Jiancheng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanbo Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhikang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liuyin Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongping Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Tian M, Zhang J, Guo L, Cui C. Isolation of a planar 1,2-dilithio-disilene and its conversion to a Si-B hybrid 2π-electron system and a planar tetraboryldisilene. Chem Sci 2021; 12:14635-14640. [PMID: 34881016 PMCID: PMC8580061 DOI: 10.1039/d1sc05125c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Lithium reagents have long played important roles in synthetic chemistry. However, unsaturated organosilicon lithium reagents are few in number. Herein, we describe the first isolation of a 1,2-dilithiodisilene: [(boryl)SiLi]2 (2) was prepared in 73% yield by the reduction of (boryl)tribromosilane (1, boryl = (HCArN)2B, Ar = 2,6-iPr2C6H3) with lithium in Et2O. The salt elimination reaction of 2 with dihaloboranes RBX2 afforded disilaborirenes [(boryl)Si]2BR (3a–c), whereas the reaction with two equivalents of B-bromocatecholborane ((cat)BBr) yielded the first tetraboryldisilene [(boryl)(cat)BSi]2 (4). X-ray diffraction analysis and density functional theory calculations indicated that the disilene 2 and tetraboryldisilene 4 feature an almost planar geometry and disilaborirenes 3a–c are aromatic with a silicon–boron hybrid 2π-electron delocalized structure. The results indicate that 1,2-dilithiodisilene 2 is a powerful synthetic reagent for the construction of novel silicon multiply bonded species with unique electronic structures and that the boryl substituents have significant electronic effects on the structure of silicon multiple bonding. Dianionic disilyne: reduction of boryltribromosilane yielded the 1,2-dilithio-disilene 2, which is a powerful transfer reagent for the synthesis of a novel 2π aromatic system and the first tetraboryldisilene.![]()
Collapse
Affiliation(s)
- Miao Tian
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jianying Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Lulu Guo
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chunming Cui
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Karwasara S, Maurer LR, Peerless B, Schnakenburg G, Das U, Filippou AC. (NHC)Si═C═N-R: A Two-Coordinated Si 0-Isocyanide Compound as Si(NHC) Transfer Reagent. J Am Chem Soc 2021; 143:14780-14794. [PMID: 34469138 DOI: 10.1021/jacs.1c06628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental and theoretical studies are reported of the first two-coordinated Si0-isocyanide compound (SIDipp)Si═C═N-ArMes (1: SIDipp (NHC) = C[N(Dipp)CH2]2, ArMes = 2,6-dimesitylphenyl), supported by an N-heterocyclic carbene (NHC). A Si atom economic two-step synthesis of 1 involves a 2e reduction of the isocyanide-stabilized silyliumylidene salt [SiBr(CNArMes)(SIDipp)][B(ArF)4] (2[B(ArF)4], ArF = B(C6H3-3,5-(CF3)2)4) with KC8. 2[B(ArF)4] was obtained from SiBr2(SIDipp) after bromide abstraction with an equimolar mixture of Na[B(ArF)4] and ArMesNC. Exact adherence to the stoichiometry is crucial in the latter reaction, since 2[B(ArF)4] reacts with SiBr2(SIDipp) via isocyanide exchange to afford the disilicon(II) salt [Si2Br3(SIDipp)2)][B(ArF)4] (3[B(ArF)4]), the reaction leading to an equilibrium that favors 3[B(ArF)4] (Keq(298 K) = 10.6, ΔH° = -10.6 kJ mol-1; ΔS° = -16.0 J mol-1 K-1). 3[B(ArF)4] was obtained selectively from the 2:1 reaction of SiBr2(SIDipp) with Na[B(ArF)4] and fully characterized. Detailed studies of 1 reveal an intriguing structure featuring a planar CNHC-Si-C-N skeleton with a V-shaped geometry at the dicoordinated Si0 center, a slightly bent Si═C═N core, a CNHC-Si-CCNR 3c-2e out of plane π-bond (HOMO), and an anticlinal conformation of the SIDipp and ArMes substituents leading to axial chirality and the presence of two enantiomers, (Ra)-1 and (Sa)-1. Compound 1 displays structural dynamics in solution, rapidly interconverting the enantiomers. The silacumulene 1 is a potent Si(SIDipp) transfer agent as demonstrated by the synthesis and full characterization of the NHC-supported germasilyne (Z)-(SIDipp)(Cl)Si═GeArMes (4) from 1 and Ge(ArMes)Cl.
Collapse
Affiliation(s)
- Surendar Karwasara
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Leonard R Maurer
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Benjamin Peerless
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Ujjal Das
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Alexander C Filippou
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| |
Collapse
|
15
|
Khoo S, Siu CK, So CW. A Base-Stabilized Silylene-Promoted C(sp3)–H Borylation and H2 Activation. Inorg Chem 2020; 59:9551-9559. [DOI: 10.1021/acs.inorgchem.0c00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sabrina Khoo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Chi-Kit Siu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
16
|
Liu Z, Zhang J, Yang H, Cui C. Synthesis of Boryl-Substituted Disilane, Disilene, and Silyl Cation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhaocai Liu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hao Yang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
17
|
Tian M, Zhang J, Yang H, Cui C. Isolation of a 1-Magnesium-2,3-disilacyclopropene and a Related Bis(disilenide). J Am Chem Soc 2020; 142:4131-4135. [PMID: 32066239 DOI: 10.1021/jacs.0c00519] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report the first synthesis of a 1-magnesium-2,3-disilacyclopropene and a related bis(disilenide). Reduction of (boryl)tribromosilane (1, boryl = (HCArN)2B, Ar = 2,6-iPr2C6H3) with magnesium in THF afforded boryl-substituted magnesium complex [(boryl)Si]2Mg(THF)3 (2) in good yield, whereas reduction of (boryl)trichlorosilane (3) with KC8 in THF led to the isolation of bridged alkoxy alkyl bis(disilenide) (THF)K(boryl)Si═Si(boryl)O(CH2)4(boryl)Si═Si(boryl)K(THF) (4) via ring opening of a THF molecule. X-ray diffraction analysis of 2 confirmed the presence of the novel Si2Mg three-membered ring as well as the Si═Si double bond, which existed in a noticeably twisted B-Si-Si-B array. Complex 2 also represents the first reported example of a stable disilyne dianion.
Collapse
Affiliation(s)
- Miao Tian
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hao Yang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
18
|
Wang Y, Zhou Y, Song Q. [3+1+1] type cyclization of ClCF2COONa for the assembly of imidazoles and tetrazoles via in situ generated isocyanides. Chem Commun (Camb) 2020; 56:6106-6109. [DOI: 10.1039/d0cc01919d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A facile synthesis of imidazoles and tetrazoles via [3+1+1] type cyclization of ClCF2COONa is developed.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering at Huaqiao University
- 668 Jimei Blvd, Xiamen
- Fujian
- P. R. China
| | - Yao Zhou
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering at Huaqiao University
- 668 Jimei Blvd, Xiamen
- Fujian
- P. R. China
| |
Collapse
|