1
|
Cui MH, Lu YM, Wang J, Ouyang Z, Wang Z, Shao C, Song Y. Room-Temperature Quantum Coherence of Reversible Photo-Generated Radical and its Film. Chemistry 2024; 30:e202402660. [PMID: 39210539 DOI: 10.1002/chem.202402660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Electron spin qubits are becoming an important research direction in the field of quantum computing and information storage. However, the quantum decoherence has seriously hindered the development of this field. So far, few qubits exhibit long phase memory time (Tm), and even fewer qubits that can reach room temperature. Some reports show that the coherence times of radicals are generally long, so radicals may be the preferred spin carriers for qubits. Here, we demonstrate the qubit properties of a photogenerated radical (1 a) based on 2,4,6-Tri(4-pyridyl)-1,3,5-triazine (tpt, 1). More importantly, the photogenerated radical is a spin self-diluting complex, which the dilution is generally used in the investigation of qubits to reduce the interference of environment on qubits in order to overcome the decoherence of qubits. It is surprised that radical tpt has a stable Tm=1.1 μs above 20 K, even keep it to room temperature. In addition, the tpt-film prepared by the vacuum evaporation is significantly increase the T1 and Tm at low temperature.
Collapse
Affiliation(s)
- Ming-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Ming Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhongwen Ouyang
- Department Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxing Wang
- Department Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chongyun Shao
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Kuppusamy SK, Hunger D, Ruben M, Goldner P, Serrano D. Spin-bearing molecules as optically addressable platforms for quantum technologies. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:4357-4379. [PMID: 39679189 PMCID: PMC11636422 DOI: 10.1515/nanoph-2024-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 12/17/2024]
Abstract
Efforts to harness quantum hardware relying on quantum mechanical principles have been steadily progressing. The search for novel material platforms that could spur the progress by providing new functionalities for solving the outstanding technological problems is however still active. Any physical property presenting two distinct energy states that can be found in a long-lived superposition state can serve as a quantum bit (qubit), the basic information processing unit in quantum technologies. Molecular systems that can feature electron and/or nuclear spin states together with optical transitions are one of the material platforms that can serve as optically addressable qubits. The attractiveness of molecular systems for quantum technologies relies on the fact that molecular structures of atomically defined nature can be obtained in endless diversity of chemical compositions. Crucially, by harnessing the molecular design protocols, the optical and spin (electronic and nuclear) properties of molecules can be tailored, aiding the design of optically addressable spin qubits and quantum sensors. In this contribution, we present a concise and collective discussion of optically addressable spin-bearing molecules - namely, organic molecules, transition metal (TM) and rare-earth ion (REI) complexes - and highlight recent results such as chemical tuning of optical and electron spin quantum coherence, optical spin initialization and readout, intramolecular quantum teleportation, optical coherent storage, and photonic-enhanced optical addressing. We envision that optically addressable spin-carrying molecules could become a scalable building block of quantum hardware for applications in the fields of quantum sensing, quantum communication and quantum computing.
Collapse
Affiliation(s)
- Senthil Kumar Kuppusamy
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - David Hunger
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mario Ruben
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d’Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, Strasbourg, France
| | - Philippe Goldner
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Diana Serrano
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| |
Collapse
|
4
|
Brown PJ, Qiu Y, Latawiec EI, Phelan BT, Tcyrulnikov NA, Palmer JR, Krzyaniak MD, Kopp SM, Huang Y, Young RM, Wasielewski MR. Enhancing Photogenerated Radical Pair Properties in Donor-Chromophore-Acceptor Systems for Quantum Information Applications. J Phys Chem A 2024; 128:9371-9382. [PMID: 39413291 DOI: 10.1021/acs.jpca.4c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
We report on new donor-chromophore-acceptor triads BDX-ANI-NDI and BDX-ANI-xy-NDI where the BDX donor is 2,2,6,6-tetramethylbenzo[1,2-d;4,5-d]bis[1,3]dioxole, the ANI chromophore is 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, the NDI acceptor is naphthalene-1,8:4,5-bis(dicarboximide), and xy is a 2,5-xylyl spacer. The results on these compounds are compared to the analogous derivatives having a p-methoxyaniline (MeOAn) as the donor. BDX•+ has no nitrogen atoms and only a single hydrogen atom coupled to its unpaired electron spin, and therefore has significantly decreased hyperfine interactions compared to MeOAn•+. We use femtosecond transient absorption (fsTA) and nanosecond TA (nsTA) spectroscopies, the latter with an applied static magnetic field, to study the charge transfer dynamics and determine the spin-spin exchange interaction (J) for BDX•+-ANI-NDI•- and BDX•+-ANI-xy-NDI•- at both ambient and cryogenic temperatures. Time-resolved electron paramagnetic resonance (EPR) and pulse-EPR measurements on these spin-correlated radical pairs (SCRPs) were used to probe their spin dynamics. We demonstrate that BDX•+-ANI-xy-NDI•- has an unusually long lifetime of ∼550 μs in glassy butyronitrile (PrCN) at 85 K, which makes it useful for pulse-EPR studies that target quantum information science (QIS) applications. We also show that rotation of the BDX group about the single bond linking it to the neighboring phenyl group has a significant impact on the spin dynamics, and in particular the magnitude of J. By comparing the results on these compounds to the analogous MeOAn series, insights into design principles for creating improved spin-correlated radical pair systems for QIS studies are obtained.
Collapse
Affiliation(s)
- Paige J Brown
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Elisabeth I Latawiec
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T Phelan
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Nikolai A Tcyrulnikov
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jonathan R Palmer
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Sebastian M Kopp
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Yuheng Huang
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
5
|
Franz M, Neese F, Richert S. Elucidation of the exchange interaction in photoexcited three-spin systems - a second-order perturbational approach. Phys Chem Chem Phys 2024; 26:25005-25020. [PMID: 39301612 DOI: 10.1039/d4cp03402c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Photogenerated three-spin systems show great potential for applications in the field of molecular spintronics. In these systems, the exchange interaction in the electronically excited state dictates their magnetic properties. To design such molecules for specific applications, it is thus important to understand how the sign and magnitude of the exchange interaction can be controlled. For this purpose, we developed a perturbational approach, based on previous work by the groups of de Loth and Malrieu, that allows for the direct calculation of the exchange interaction and its individual contributions up to the second order and implemented it within the ORCA program package. Within this manuscript, we present the derivation of the individual second-order contributions, provide an overview of the implementation of the code and illustrate its performance. We show that, using this perturbational approach in combination with state-averaged orbitals from minimal active space calculations, accurate values for the exchange interaction can be computed for organic nitroxides. Further, we demonstrate that the weight of the ionic determinants in the orbital optimisation of the CASSCF procedure is crucial for the computation of accurate exchange couplings. In the case of photoexcited chromophore-radical systems, we find that the dynamic spin polarisation effect constitutes the most important contribution to the exchange interaction, whereby the sign of this contribution determines the sign of the exchange interaction.
Collapse
Affiliation(s)
- Michael Franz
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| |
Collapse
|
6
|
Mayländer M, Khariushin IV, Vargas Jentzsch A, Richert S. Correlation between Radical and Quartet State Coherence Times in Photogenerated Triplet-Radical Conjugates. J Phys Chem Lett 2024; 15:5935-5938. [PMID: 38809777 DOI: 10.1021/acs.jpclett.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Molecular quartet states, generated by photoexcitation of chromophore-radical conjugates, have been shown to exhibit attractive properties for applications in the field of molecular spintronics. Many of these applications, such as quantum sensing, require a coherent manipulation of the spin system, implying the need to control the quartet state spin coherence properties. By examining the influence of structural and matrix-related factors, we demonstrate a correlation between the coherence decay of the photogenerated quartet state and that of the tethered stable radical, paving the way for a rational design of photogenerated molecular three-spin systems with optimized coherence properties.
Collapse
Affiliation(s)
- Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Ivan V Khariushin
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France
| | - Andreas Vargas Jentzsch
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Eckvahl HJ, Tcyrulnikov NA, Chiesa A, Bradley JM, Young RM, Carretta S, Krzyaniak MD, Wasielewski MR. Direct observation of chirality-induced spin selectivity in electron donor-acceptor molecules. Science 2023; 382:197-201. [PMID: 37824648 DOI: 10.1126/science.adj5328] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023]
Abstract
The role of chirality in determining the spin dynamics of photoinduced electron transfer in donor-acceptor molecules remains an open question. Although chirality-induced spin selectivity (CISS) has been demonstrated in molecules bound to substrates, experimental information about whether this process influences spin dynamics in the molecules themselves is lacking. Here we used time-resolved electron paramagnetic resonance spectroscopy to show that CISS strongly influences the spin dynamics of isolated covalent donor-chiral bridge-acceptor (D-Bχ-A) molecules in which selective photoexcitation of D is followed by two rapid, sequential electron-transfer events to yield D•+-Bχ-A•-. Exploiting this phenomenon affords the possibility of using chiral molecular building blocks to control electron spin states in quantum information applications.
Collapse
Affiliation(s)
- Hannah J Eckvahl
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| | - Nikolai A Tcyrulnikov
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| | - Alessandro Chiesa
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
| | - Jillian M Bradley
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| | - Stefano Carretta
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
8
|
Song Y, Lin X, Yu S, Bu Y, Song X. Hydrogen-migration governed dynamic magnetic coupling characteristics in nitrogen-vacancy-hydrogen nanodiamonds. Phys Chem Chem Phys 2023; 25:25818-25827. [PMID: 37724461 DOI: 10.1039/d3cp02875e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The nitrogen-vacancy center doped with hydrogen (NVH) is one of the most common defects in diamonds, and the doping of hydrogen is known to enable mobility among three equivalent C-radicals in the defect, which noticeably affects the spin coupling among the radicals. Here, we for the first time uncover the dynamic nature of magnetic coupling induced by H-migration in the NVH center of nanodiamonds, using spin-polarized density functional theory calculations and enhanced sampling metadynamics simulations. The mobility of doping H enables the interior NVH region to become a variable magnetic space (antiferromagnetic/AFM versus ferromagnetic/FM). That is, the dynamic H has three frequently reachable binding C sites where H enables the center to exhibit variable AFM coupling (high up to J = -1282 cm-1) and that in other H-reachable regions including N sites, it enables the center to exhibit FM coupling (high up to J = 598 cm-1). The magnetic switching (AFM ↔ FM) and strength fluctuation strongly depend on the H-position which can adjust the ratio of the C radical orbitals in their mixing orbitals for a special three-electron three-center covalent C⋯H⋯C H-bonding and radical orbital distributions. Clearly, this work provides insights into the dynamic switching of magnetic coupling in such multi-radical centers of defect nanodiamonds.
Collapse
Affiliation(s)
- Yamin Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Xuexing Lin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Shaofen Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Xinyu Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
9
|
Tait CE, Krzyaniak MD, Stoll S. Computational tools for the simulation and analysis of spin-polarized EPR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107410. [PMID: 36870248 DOI: 10.1016/j.jmr.2023.107410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The EPR spectra of paramagnetic species induced by photoexcitation typically exhibit enhanced absorptive and emissive features resulting from sublevel populations that differ from thermal equilibrium. The populations and the resulting spin polarization of the spectra are dictated by the selectivity of the photophysical process generating the observed state. Simulation of the spin-polarized EPR spectra is crucial in the characterization of both the dynamics of formation of the photoexcited state as well as its electronic and structural properties. EasySpin, the simulation toolbox for EPR spectroscopy, now includes extended support for the simulation of the EPR spectra of spin-polarized states of arbitrary spin multiplicity and formed by a variety of different mechanisms, including photoexcited triplet states populated by intersystem crossing, charge recombination or spin polarization transfer, spin-correlated radical pairs created by photoinduced electron transfer, triplet pairs formed by singlet fission and multiplet states arising from photoexcitation in systems containing chromophores and stable radicals. In this paper, we highlight EasySpin's capabilities for the simulation of spin-polarized EPR spectra on the basis of illustrative examples from the literature in a variety of fields ranging across chemistry, biology, material science and quantum information science.
Collapse
Affiliation(s)
- Claudia E Tait
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston 60208, IL, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, 98195, WA, United States
| |
Collapse
|
10
|
Mao H, Pažėra GJ, Young RM, Krzyaniak MD, Wasielewski MR. Quantum Gate Operations on a Spectrally Addressable Photogenerated Molecular Electron Spin-Qubit Pair. J Am Chem Soc 2023; 145:6585-6593. [PMID: 36913602 DOI: 10.1021/jacs.3c01243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Sub-nanosecond photodriven electron transfer from a molecular donor to an acceptor can be used to generate a radical pair (RP) having two entangled electron spins in a well-defined pure initial singlet quantum state to serve as a spin-qubit pair (SQP). Achieving good spin-qubit addressability is challenging because many organic radical ions have large hyperfine couplings (HFCs) in addition to significant g-anisotropy, which results in significant spectral overlap. Moreover, using radicals with g-factors that deviate significantly from that of the free electron results in difficulty generating microwave pulses with sufficiently large bandwidths to manipulate the two spins either simultaneously or selectively as is necessary to implement the controlled-NOT (CNOT) quantum gate essential for quantum algorithms. Here, we address these issues by using a covalently linked donor-acceptor(1)-acceptor(2) (D-A1-A2) molecule with significantly reduced HFCs that uses fully deuterated peri-xanthenoxanthene (PXX) as D, naphthalenemonoimide (NMI) as A1, and a C60 derivative as A2. Selective photoexcitation of PXX within PXX-d9-NMI-C60 results in sub-nanosecond, two-step electron transfer to generate the long-lived PXX•+-d9-NMI-C60•- SQP. Alignment of PXX•+-d9-NMI-C60•- in the nematic liquid crystal 4-cyano-4'-(n-pentyl)biphenyl (5CB) at cryogenic temperatures results in well-resolved, narrow resonances for each electron spin. We demonstrate both single-qubit gate and two-qubit CNOT gate operations using both selective and nonselective Gaussian-shaped microwave pulses and broadband spectral detection of the spin states following the gate operations.
Collapse
Affiliation(s)
- Haochuan Mao
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Gediminas J Pažėra
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
11
|
Lee AY, Colleran TA, Jain A, Niklas J, Rugg BK, Mani T, Poluektov OG, Olshansky JH. Quantum Dot-Organic Molecule Conjugates as Hosts for Photogenerated Spin Qubit Pairs. J Am Chem Soc 2023; 145:4372-4377. [PMID: 36753287 DOI: 10.1021/jacs.2c11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The inherent spin polarization present in photogenerated spin-correlated radical pairs makes them promising candidates for quantum computing and quantum sensing applications. The spin states of these systems can be probed and manipulated with microwave pulses using electron paramagnetic resonance spectrometers. However, to date, there are no reports on magnetic resonance-based spin measurements of photogenerated spin-correlated radical pairs hosted on quantum dots. In the current work, we prepare dye molecule-inorganic quantum dot conjugates and show that they can produce photogenerated spin-polarized states. The dye molecule, D131, is chosen for its ability to undergo efficient charge separation, and the nanoparticle materials, ZnO quantum dots, are chosen for their promising spin properties. Transient and steady state optical spectroscopy performed on ZnO quantum dot-D131 conjugates shows that reversible photogenerated charge separation is occurring. Transient and pulsed electron paramagnetic resonance experiments are then performed on the photogenerated radical pair, which demonstrate that (1) the radical pair is polarized at moderate temperatures and well modeled by existing theories and (2) the spin states can be accessed and manipulated with microwave pulses. This work opens the door to a new class of promising qubit materials that can be photogenerated in polarized states and hosted by highly tailorable inorganic nanoparticles.
Collapse
Affiliation(s)
- Autumn Y Lee
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Troy A Colleran
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Amisha Jain
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Brandon K Rugg
- Chemistry and Nanosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jacob H Olshansky
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| |
Collapse
|
12
|
Hipwell VM, Meyer AR, Garcia-Garibay MA. Exceptionally Long Lifetimes of Strongly Entangled Acyl-Trityl Radical Pairs Photochemically Generated in Crystalline Trityl Ketones. J Am Chem Soc 2023; 145:1342-1348. [PMID: 36598840 DOI: 10.1021/jacs.2c11787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Triplet acyl-alkyl radical pairs generated by pulsed laser excitation within the constraints of their nanocrystalline ketone precursors were recently introduced as a potential platform for the robust and repeated instantiation of spin qubit pairs for applications in quantum information science. Here, we report the transient spectroscopy of a series of nanocrystalline trityl-alkyl and trityl-aryl ketones capable of generating correlated triplet radical pairs with persistent triphenylmethyl radicals forced to remain within bonding distances of highly reactive acyl radicals. Whereas triplet trityl-acyl radical pairs decay by competing product-forming decarbonylation and intersystem crossing, triplet trityl-benzoyl radical pairs have lifetimes of up to ca. 4 ms and exclusively regenerate the starting ketone. We propose that these long lifetimes are the result of the short inter-radical distances and the colinear orientation of the two singly occupied orbitals, which are expected to result in large singlet-triplet energy gaps, large zero-field splitting parameters, and a poor geometry for spin-obit coupling. Ketones generating trityl-benzoyl radical pairs demonstrate promising performance along multiple dimensions that are crucial for quantum information science.
Collapse
Affiliation(s)
- Vince M Hipwell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024-1569, United States
| | - Alana Rose Meyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024-1569, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024-1569, United States
| |
Collapse
|
13
|
Properties and applications of photoexcited chromophore–radical systems. Nat Rev Chem 2023; 7:75-90. [PMID: 37117913 DOI: 10.1038/s41570-022-00453-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 02/11/2023]
Abstract
Photoexcited organic chromophore-radical systems hold great promise for a range of technological applications in molecular spintronics, including quantum information technology and artificial photosynthesis. However, further development of such systems will depend on the ability to control the magnetic properties of these materials, which requires a profound understanding of the underlying excited-state dynamics. In this Review, we discuss photogenerated triplet-doublet systems and their potential to be used for applications in molecular spintronics. We outline the theoretical description of the spin system in the different coupling regimes and the invoked excited-state mechanisms governing the generation and transfer of spin polarization. The main characterization techniques used to evaluate the optical and magnetic properties of chromophore-radical systems are discussed. We conclude by giving an overview of previously investigated covalently linked triplet-radical systems, and highlight the need for further systematic investigations to improve our understanding of the magnetic interactions in such systems.
Collapse
|
14
|
Huff J, Díaz S, Barclay MS, Chowdhury AU, Chiriboga M, Ellis GA, Mathur D, Patten LK, Roy SK, Sup A, Biaggne A, Rolczynski BS, Cunningham PD, Li L, Lee J, Davis PH, Yurke B, Knowlton WB, Medintz IL, Turner DB, Melinger JS, Pensack RD. Tunable Electronic Structure via DNA-Templated Heteroaggregates of Two Distinct Cyanine Dyes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17164-17175. [PMID: 36268205 PMCID: PMC9575151 DOI: 10.1021/acs.jpcc.2c04336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/08/2022] [Indexed: 06/01/2023]
Abstract
Molecular excitons are useful for applications in light harvesting, organic optoelectronics, and nanoscale computing. Electronic energy transfer (EET) is a process central to the function of devices based on molecular excitons. Achieving EET with a high quantum efficiency is a common obstacle to excitonic devices, often owing to the lack of donor and acceptor molecules that exhibit favorable spectral overlap. EET quantum efficiencies may be substantially improved through the use of heteroaggregates-aggregates of chemically distinct dyes-rather than individual dyes as energy relay units. However, controlling the assembly of heteroaggregates remains a significant challenge. Here, we use DNA Holliday junctions to assemble homo- and heterotetramer aggregates of the prototypical cyanine dyes Cy5 and Cy5.5. In addition to permitting control over the number of dyes within an aggregate, DNA-templated assembly confers control over aggregate composition, i.e., the ratio of constituent Cy5 and Cy5.5 dyes. By varying the ratio of Cy5 and Cy5.5, we show that the most intense absorption feature of the resulting tetramer can be shifted in energy over a range of almost 200 meV (1600 cm-1). All tetramers pack in the form of H-aggregates and exhibit quenched emission and drastically reduced excited-state lifetimes compared to the monomeric dyes. We apply a purely electronic exciton theory model to describe the observed progression of the absorption spectra. This model agrees with both the measured data and a more sophisticated vibronic model of the absorption and circular dichroism spectra, indicating that Cy5 and Cy5.5 heteroaggregates are largely described by molecular exciton theory. Finally, we extend the purely electronic exciton model to describe an idealized J-aggregate based on Förster resonance energy transfer (FRET) and discuss the potential advantages of such a device over traditional FRET relays.
Collapse
Affiliation(s)
- Jonathan
S. Huff
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Sebastián
A. Díaz
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Matthew S. Barclay
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Azhad U. Chowdhury
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew Chiriboga
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
- Volgenau
School of Engineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Gregory A. Ellis
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Divita Mathur
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Lance K. Patten
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Simon K. Roy
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Aaron Sup
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Austin Biaggne
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Brian S. Rolczynski
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Paul D. Cunningham
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Lan Li
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul H. Davis
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Daniel B. Turner
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Joseph S. Melinger
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Ryan D. Pensack
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
15
|
Kirk ML, Shultz DA, Hewitt P, Chen J, van der Est A. Excited State Magneto-Structural Correlations Related to Photoinduced Electron Spin Polarization. J Am Chem Soc 2022; 144:12781-12788. [PMID: 35802385 DOI: 10.1021/jacs.2c03490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoinduced electron spin polarization (ESP) is reported in the ground state of a series of complexes consisting of an organic radical (nitronylnitroxide, NN) covalently attached to a donor-acceptor chromophore either directly or via para-phenylene bridges substituted with 0-4 methyl groups. These molecules represent a class of chromophores that undergo visible light excitation to produce an initial exchange-coupled, three-spin [bpy•-, CAT•+ (= semiquinone, SQ) and NN•], charge-separated doublet 2S1 (S = chromophore spin singlet configuration) excited state that rapidly decays by magnetic exchange-enhanced internal conversion to a 2T1 (T = chromophore excited spin triplet configuration) state. The 2T1 state equilibrates with chromophoric and NN radical-derived excited states, resulting in absorptive ESP of the recovered ground state, which persists for greater than a millisecond and can be measured by low-temperature time-resolved electron paramagnetic resonance spectroscopy. The magnitude of the ground state ESP is found to correlate with the excited state magnetic exchange interaction between the CAT+• and NN• radicals, which in turn is controlled by the structure of the bridge fragment.
Collapse
Affiliation(s)
- Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States.,The Center for High Technology Materials, The University of New Mexico, Albuquerque, New Mexico 87106, United States.,Center for Quantum Information and Control (CQuIC), The University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - David A Shultz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Patrick Hewitt
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Ju Chen
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Art van der Est
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
16
|
Aiello CD, Abendroth JM, Abbas M, Afanasev A, Agarwal S, Banerjee AS, Beratan DN, Belling JN, Berche B, Botana A, Caram JR, Celardo GL, Cuniberti G, Garcia-Etxarri A, Dianat A, Diez-Perez I, Guo Y, Gutierrez R, Herrmann C, Hihath J, Kale S, Kurian P, Lai YC, Liu T, Lopez A, Medina E, Mujica V, Naaman R, Noormandipour M, Palma JL, Paltiel Y, Petuskey W, Ribeiro-Silva JC, Saenz JJ, Santos EJG, Solyanik-Gorgone M, Sorger VJ, Stemer DM, Ugalde JM, Valdes-Curiel A, Varela S, Waldeck DH, Wasielewski MR, Weiss PS, Zacharias H, Wang QH. A Chirality-Based Quantum Leap. ACS NANO 2022; 16:4989-5035. [PMID: 35318848 PMCID: PMC9278663 DOI: 10.1021/acsnano.1c01347] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.
Collapse
Affiliation(s)
- Clarice D. Aiello
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John M. Abendroth
- Laboratory
for Solid State Physics, ETH Zürich, Zürich 8093, Switzerland
| | - Muneer Abbas
- Department
of Microbiology, Howard University, Washington, D.C. 20059, United States
| | - Andrei Afanasev
- Department
of Physics, George Washington University, Washington, D.C. 20052, United States
| | - Shivang Agarwal
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Amartya S. Banerjee
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - David N. Beratan
- Departments
of Chemistry, Biochemistry, and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Jason N. Belling
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Bertrand Berche
- Laboratoire
de Physique et Chimie Théoriques, UMR Université de Lorraine-CNRS, 7019 54506 Vandœuvre les
Nancy, France
| | - Antia Botana
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Justin R. Caram
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Giuseppe Luca Celardo
- Institute
of Physics, Benemerita Universidad Autonoma
de Puebla, Apartado Postal J-48, 72570, Mexico
- Department
of Physics and Astronomy, University of
Florence, 50019 Sesto Fiorentino, Italy
| | - Gianaurelio Cuniberti
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Aitzol Garcia-Etxarri
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Arezoo Dianat
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural and Mathematical Sciences, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Yuqi Guo
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Rafael Gutierrez
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Carmen Herrmann
- Department
of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Joshua Hihath
- Department
of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
| | - Suneet Kale
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Philip Kurian
- Quantum
Biology Laboratory, Graduate School, Howard
University, Washington, D.C. 20059, United States
| | - Ying-Cheng Lai
- School
of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Tianhan Liu
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander Lopez
- Escuela
Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil 090902, Ecuador
| | - Ernesto Medina
- Departamento
de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Av. Diego de Robles
y Vía Interoceánica, Quito 170901, Ecuador
| | - Vladimiro Mujica
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Mohammadreza Noormandipour
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- TCM Group,
Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Julio L. Palma
- Department
of Chemistry, Pennsylvania State University, Lemont Furnace, Pennsylvania 15456, United States
| | - Yossi Paltiel
- Applied
Physics Department and the Center for Nano-Science and Nano-Technology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - William Petuskey
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - João Carlos Ribeiro-Silva
- Laboratory
of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, 05508-900 São
Paulo, Brazil
| | - Juan José Saenz
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| | - Maria Solyanik-Gorgone
- Department
of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Volker J. Sorger
- Department
of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Dominik M. Stemer
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jesus M. Ugalde
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain
| | - Ana Valdes-Curiel
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Solmar Varela
- School
of Chemical Sciences and Engineering, Yachay
Tech University, 100119 Urcuquí, Ecuador
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Institute
for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California, 90095, United States
| | - Helmut Zacharias
- Center
for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| | - Qing Hua Wang
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
17
|
Harvey SM, Wasielewski MR. Photogenerated Spin-Correlated Radical Pairs: From Photosynthetic Energy Transduction to Quantum Information Science. J Am Chem Soc 2021; 143:15508-15529. [PMID: 34533930 DOI: 10.1021/jacs.1c07706] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
More than a half century ago, the NMR spectra of diamagnetic products resulting from radical pair reactions were observed to have strongly enhanced absorptive and emissive resonances. At the same time, photogenerated radical pairs were discovered to exhibit unusual electron paramagnetic resonance spectra that also had such resonances. These non-Boltzmann, spin-polarized spectra were observed in both chemical systems as well as in photosynthetic reaction center proteins following photodriven charge separation. Subsequent studies of these phenomena led to a variety of chemical electron donor-acceptor model systems that provided a broad understanding of the spin dynamics responsible for these spectra. When the distance between the two radicals is restricted, these observations result from the formation of spin-correlated radical pairs (SCRPs) in which the spin-spin exchange and dipolar interactions between the two unpaired spins play an important role in the spin dynamics. Early on, it was recognized that SCRPs photogenerated by ultrafast electron transfer are entangled spin pairs created in a well-defined spin state. These SCRPs can serve as spin qubit pairs (SQPs), whose spin dynamics can be manipulated to study a wide variety of quantum phenomena intrinsic to the field of quantum information science. This Perspective highlights the role of SCRPs as SQPs, gives examples of possible quantum manipulations using SQPs, and provides some thoughts on future directions.
Collapse
Affiliation(s)
- Samantha M Harvey
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
18
|
Drummond BH, Aizawa N, Zhang Y, Myers WK, Xiong Y, Cooper MW, Barlow S, Gu Q, Weiss LR, Gillett AJ, Credgington D, Pu YJ, Marder SR, Evans EW. Electron spin resonance resolves intermediate triplet states in delayed fluorescence. Nat Commun 2021; 12:4532. [PMID: 34312394 PMCID: PMC8313702 DOI: 10.1038/s41467-021-24612-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Molecular organic fluorophores are currently used in organic light-emitting diodes, though non-emissive triplet excitons generated in devices incorporating conventional fluorophores limit the efficiency. This limit can be overcome in materials that have intramolecular charge-transfer excitonic states and associated small singlet-triplet energy separations; triplets can then be converted to emissive singlet excitons resulting in efficient delayed fluorescence. However, the mechanistic details of the spin interconversion have not yet been fully resolved. We report transient electron spin resonance studies that allow direct probing of the spin conversion in a series of delayed fluorescence fluorophores with varying energy gaps between local excitation and charge-transfer triplet states. The observation of distinct triplet signals, unusual in transient electron spin resonance, suggests that multiple triplet states mediate the photophysics for efficient light emission in delayed fluorescence emitters. We reveal that as the energy separation between local excitation and charge-transfer triplet states decreases, spin interconversion changes from a direct, singlet-triplet mechanism to an indirect mechanism involving intermediate states.
Collapse
Affiliation(s)
- Bluebell H Drummond
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK
- Centre for Advanced Electron Spin Resonance (CAESR), Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford, UK
| | - Naoya Aizawa
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan
| | - Yadong Zhang
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - William K Myers
- Centre for Advanced Electron Spin Resonance (CAESR), Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford, UK
| | - Yao Xiong
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew W Cooper
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephen Barlow
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Qinying Gu
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK
| | - Leah R Weiss
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Alexander J Gillett
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK
| | - Dan Credgington
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan
| | - Seth R Marder
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emrys W Evans
- Department of Physics, Cavendish Laboratory, J J Thomson Avenue, University of Cambridge, Cambridge, UK.
- Department of Chemistry, Swansea University, Swansea, UK.
| |
Collapse
|
19
|
Mayländer M, Chen S, Lorenzo ER, Wasielewski MR, Richert S. Exploring Photogenerated Molecular Quartet States as Spin Qubits and Qudits. J Am Chem Soc 2021; 143:7050-7058. [PMID: 33929834 DOI: 10.1021/jacs.1c01620] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photogenerated molecular spin systems hold great promise for applications in quantum information science because they can be prepared in well-defined spin states at modest temperatures, they often exhibit long coherence times, and their properties can be tuned by chemical synthesis. Here, we investigate a molecular spin system composed of a 1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PDI) chromophore covalently linked to a stable nitroxide radical (TEMPO) by optical and electron paramagnetic resonance (EPR) techniques. Upon photoexcitation of the spin system, a quartet state is formed as confirmed by transient nutation experiments. This quartet state has spin polarization lifetimes longer than 0.1 ms and is characterized by relatively long coherence times of ∼1.8 μs even at 80 K. Rabi oscillation experiments reveal that more than 60 single-qubit logic operations can be performed with this system at 80 K. The large magnitude of the nitroxide 14N hyperfine coupling in the quartet state of PDI-TEMPO is resolved in the transient EPR spectra and leads to a further splitting of the quartet state electron spin sublevels. We discuss the properties of this photogenerated multilevel system, comprising 12 electron-nuclear spin states, in the context of its viability as a qubit for applications in quantum information science.
Collapse
Affiliation(s)
- Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Su Chen
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Emmaline R Lorenzo
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Lorenzo ER, Olshansky JH, Abia DSD, Krzyaniak MD, Young RM, Wasielewski MR. Interaction of Photogenerated Spin Qubit Pairs with a Third Electron Spin in DNA Hairpins. J Am Chem Soc 2021; 143:4625-4632. [PMID: 33735563 DOI: 10.1021/jacs.0c12645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The designing of tunable molecular systems that can host spin qubits is a promising strategy for advancing the development of quantum information science (QIS) applications. Photogenerated radical pairs are good spin qubit pair (SQP) candidates because they can be initialized in a pure quantum state that exhibits relatively long coherence times. DNA is a well-studied molecular system that allows for control of energetics and spatial specificity through careful design and thus serves as a tunable scaffold on which to control multispin interactions. Here, we examine a series of DNA hairpins that use naphthalenediimide (NDI) as the hairpin linker. Photoexcitation of the NDI leads to subnanosecond oxidation of guanine (G) within the duplex or a stilbenediether (Sd) end-cap to give NDI•--G•+ or NDI•--Sd•+ SQPs, respectively. A 2,2,6,6-tetramethylpiperdinyl-1-oxyl (TEMPO) stable radical is covalently attached to the hairpin at varying distances from the SQP spins. While TEMPO has a minimal effect on the SQP formation and decay dynamics, EPR spectroscopy indicates that there are significant spin-spin dipolar interactions between the SQP and TEMPO. We also demonstrate the ability to implement more complex spin manipulations of the NDI•--Sd•+-TEMPO system using pulse-EPR techniques, which is important for developing DNA hairpins for QIS applications.
Collapse
Affiliation(s)
- Emmaline R Lorenzo
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jacob H Olshansky
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Daniel S D Abia
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
21
|
Mao H, Young RM, Krzyaniak MD, Wasielewski MR. Controlling the Dynamics of Three Electron Spin Qubits in a Donor-Acceptor-Radical Molecule Using Dielectric Environment Changes. J Phys Chem Lett 2021; 12:2213-2218. [PMID: 33630591 DOI: 10.1021/acs.jpclett.1c00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photogenerated entangled electron spin pairs provide a versatile source of molecular qubits. Here, we examine the spin-dependent dynamics of a covalent donor-acceptor-radical molecule, D-A-R•, where the donor chromophore (D) is peri-xanthenoxanthene (PXX), the acceptor (A) is pyromellitimide (PI), and the radical (R•) is α,γ-bisdiphenylene-β-phenylallyl (BDPA). Selective photoexcitation of D within D-A-R• in butyronitrile/propionitrile at 140 K and butyronitrile at 105 K results in the spin-selective reactions D-A-R• → D•+-1(A•--R•) and D•+-3(A•--R•). Subsequently, at 140 K, D•+-1(A•--R•) → D•+-A-R-, whereas D•+-3(A•--R•) → D-A-R•. In contrast, at 105 K, D•+-3(A•--R•) → 3*D-A-R• and D-A-R•. Time-resolved EPR spectroscopy shows that 3*D-A-R• is highly spin-polarized, where the ms = ±1/2 spin sublevels of the doublet-quartet manifolds are selectively populated. These results demonstrate dielectric environment control over different spin states in the same molecule.
Collapse
Affiliation(s)
- Haochuan Mao
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
22
|
Nolden O, Fleck N, Lorenzo ER, Wasielewski MR, Schiemann O, Gilch P, Richert S. Excitation Energy Transfer and Exchange-Mediated Quartet State Formation in Porphyrin-Trityl Systems. Chemistry 2020; 27:2683-2691. [PMID: 32681763 PMCID: PMC7898503 DOI: 10.1002/chem.202002805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 01/07/2023]
Abstract
Photogenerated multi‐spin systems hold great promise for a range of technological applications in various fields, including molecular spintronics and artificial photosynthesis. However, the further development of these applications, via targeted design of materials with specific magnetic properties, currently still suffers from a lack of understanding of the factors influencing the underlying excited state dynamics and mechanisms on a molecular level. In particular, systematic studies, making use of different techniques to obtain complementary information, are largely missing. This work investigates the photophysics and magnetic properties of a series of three covalently‐linked porphyrin‐trityl compounds, bridged by a phenyl spacer. By combining the results from femtosecond transient absorption and electron paramagnetic resonance spectroscopies, we determine the efficiencies of the competing excited state reaction pathways and characterise the magnetic properties of the individual spin states, formed by the interaction between the chromophore triplet and the stable radical. The differences observed for the three investigated compounds are rationalised in the context of available theoretical models and the implications of the results of this study for the design of a molecular system with an improved intersystem crossing efficiency are discussed.
Collapse
Affiliation(s)
- Oliver Nolden
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nico Fleck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Emmaline R Lorenzo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Peter Gilch
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| |
Collapse
|