1
|
Wang ZL, Cheng JK, Wang F. Iron-catalyzed C-7 Selective NH 2 Amination of Indoles. Angew Chem Int Ed Engl 2024; 63:e202412103. [PMID: 38979667 DOI: 10.1002/anie.202412103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
7-Aminoindoles are important synthetic intermediates to a broad range of bioactive molecules. Transition metal-catalyzed directed C-H amination is among the most straightforward route for their synthesis, whereas methods that could directly incorporate an NH2 group in a highly selective manner remains elusive. Moreover, there is still high demand for the development of earth-abundant metal catalysis for such attractive reactivity. We present here the first C-7 selective NH2 amination of indoles through a directed homolytic aromatic substitution (HAS) with iron-aminyl radical. The reaction exhibits broad substrate scope, tolerates variety of functional groups, and is readily scalable with catalyst loading down to 0.1 mol % and turnover number (TON) up to 4500.
Collapse
Affiliation(s)
- Zhan-Lin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Jin-Kai Cheng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Fei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
2
|
Liu Y, Chen Y, Zhao YJ, Zhang GQ, Zheng Y, Yu P, Chen P, Jia ZJ. Iron-Catalyzed Primary Amination of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:24863-24870. [PMID: 39192496 DOI: 10.1021/jacs.4c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Primary amines are privileged molecules in drug development. Yet, there is a noticeable scarcity of methods for directly introducing a primary amine group into the ubiquitous C(sp3)-H bonds within organic compounds. Here, we report an iron-based catalytic system that enables direct primary amination of C(sp3)-H bonds under aqueous conditions and air. Various types of C(sp3)-H bonds, including benzylic, allylic, and aliphatic ones, can be readily functionalized with high selectivity and efficiency. The broad utility of this method has been further verified by late-stage amination of 11 complex bioactive molecules. Mechanistic studies unveil a protonated iron-nitrene complex as the key intermediate for the C-H bond activation. This work extends the toolbox for direct C(sp3)-H functionalizations, opening up new opportunities for late-stage modifications of organic molecules.
Collapse
Affiliation(s)
- Ye Liu
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Jie Zhao
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guo-Qing Zhang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yongxiang Zheng
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peng Chen
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Yu YZ, Su HY, Zhuo CX. Anilines Formation via Molybdenum-Catalyzed Intermolecular Reaction of Ynones with Allylic Amines. Angew Chem Int Ed Engl 2024:e202412299. [PMID: 39255246 DOI: 10.1002/anie.202412299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
The multi-substituted anilines are widely found in organic synthesis, medicinal chemistry and material science. The quest for robust and efficient methods to construct a diverse array of these compounds using readily accessible starting materials under simple reaction conditions is of utmost importance. Here, we report an unprecedented and efficient approach for the synthesis of 2,4-di and 2,4,6-trisubstituted anilines. With a simple molybdenum(VI) catalyst, a wide range of 2,4-di and 2,4,6-trisubstituted anilines were efficiently prepared in generally good to excellent yields from readily accessible ynones and allylic amines. The synthetic potential of this methodology was further underscored by its applications in several synthetic transformations, gram-scale reactions, and derivatization of bioactive molecules. Preliminary mechanistic studies suggested that this aniline formation might involve a cascade of aza-Michael addition, [1,6]-proton shift, cyclization, dehydration, 6π-electrocyclization, and aromatization. This novel strategy provided a robust, simple, and modular approach for the syntheses of various valuable di- or trisubstituted anilines, some of which were otherwise challenging to access.
Collapse
Affiliation(s)
- Yi-Zhe Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Hong-Yi Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, P. R. China
| |
Collapse
|
4
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Aghi A, Sau S, Kumar A. Fe(III)-catalyzed stereoselective synthesis of deoxyglycosides using stable bifunctional deoxy-phenylpropiolate glycoside donors. Carbohydr Res 2024; 536:109051. [PMID: 38325069 DOI: 10.1016/j.carres.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Herein, we report a mild and economical route for the stereoselective synthesis of 2-deoxy and 2,6-dideoxyglycosides via FeCl3-catalyzed activation of bench stable deoxy-phenylpropiolate glycosyl donors (D-PPGs). Optimized reaction conditions work well under additive-free conditions to afford the corresponding 2-deoxy and 2,6-dideoxyglycosides in good yields with high α-anomeric selectivity by reacting with sugar and non-sugar-based acceptors. The optimized conditions were also extended for disarmed D-PPG donors. In addition, the developed strategy is amenable to high-scale-up synthesis.
Collapse
Affiliation(s)
- Anjali Aghi
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Sankar Sau
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
| |
Collapse
|
6
|
Lv Q, Hu Z, Zhang Y, Zhang Z, Lei H. Advancing Meta-Selective C-H Amination through Non-Covalent Interactions. J Am Chem Soc 2024; 146:1735-1741. [PMID: 38095630 DOI: 10.1021/jacs.3c09904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Regioselective C-H amination of simple arenes is highly desirable, but accessing meta-sites of ubiquitous arenes has proven challenging due to the lack of both electronic and spatial preference. This study demonstrates the successful use of various privileged nitrogen-containing functionalities found in pharmaceutical compounds to direct meta-C-H amination of arenes, overcoming the long-standing requirement for a redundant directing group. The remarkable advancements in functional group accommodation for precise regiochemical control were achieved through the discovery of an unprecedented organo-initiator and the strategic utilization of non-covalent interactions. This protocol has been successfully applied in the concise synthesis and late-stage derivatization of drug molecules, which would have been otherwise challenging to achieve.
Collapse
Affiliation(s)
- Qianqian Lv
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zongxing Hu
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yousong Zhang
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
| | - Honghui Lei
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
| |
Collapse
|
7
|
Zhu SY, He WJ, Shen GC, Bai ZQ, Song FF, He G, Wang H, Chen G. Ligand-Promoted Iron-Catalyzed Nitrene Transfer for the Synthesis of Hydrazines and Triazanes through N-Amidation of Arylamines. Angew Chem Int Ed Engl 2024; 63:e202312465. [PMID: 37997539 DOI: 10.1002/anie.202312465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Herein, we report that bulky alkylphosphines such as PtBu3 can switch the roles from actor to spectator ligands to promote the FeCl2 -catalyzed N-amidation reaction of arylamines with dioxazolones, giving hydrazides in high efficiency and chemoselectivity. Mechanistic studies indicated that the phosphine ligands could facilitate the decarboxylation of dioxazolones on the Fe center, and the hydrogen bonding interactions between the arylamines and the ligands on Fe nitrenoid intermediates might play a role in modulating the delicate interplay between the phosphine ligand, arylamine, and acyl nitrene N, favoring N-N coupling over N-P coupling. The new ligand-promoted N-amidation protocols offer a convenient way to access various challenging triazane compounds via double or sequential N-amidation of primary arylamines.
Collapse
Affiliation(s)
- Shi-Yang Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Ji He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guan-Chi Shen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zi-Qian Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fang-Fang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
8
|
Gillespie JE, Lam NYS, Phipps RJ. Ortho-Selective amination of arene carboxylic acids via rearrangement of acyl O-hydroxylamines. Chem Sci 2023; 14:10103-10111. [PMID: 37772106 PMCID: PMC10530477 DOI: 10.1039/d3sc03293k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Direct amination of arene C-H bonds is an attractive disconnection to form aniline-derived building blocks. This transformation presents significant practical challenges; classical methods for ortho-selective amination require strongly acidic or forcing conditions, while contemporary catalytic processes often require bespoke directing groups and/or precious metal catalysis. We report a mild and procedurally straightforward ortho-selective amination of arene carboxylic acids, arising from a facile rearrangement of acyl O-hydroxylamines without requiring precious metal catalysts. A broad scope of benzoic acid substrates are compatible and the reaction can be applied to longer chain arene carboxylic acids. Mechanistic studies probe the specific requirement for trifluoroacetic acid in generating the active aminating agent, and suggest that two separate mechanisms may be operating in parallel in the presence of an iron catalyst: (i) an iron-nitrenoid intermediate and (ii) a radical chain pathway. Regardless of which mechanism is followed, high ortho selectivity is obtained, proposed to arise from the directivity (first) or attractive interactions (second) arising with the carboxylic acid motif.
Collapse
Affiliation(s)
- James E Gillespie
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
9
|
Gao Y, Li H, Zhao Y, Hu XQ. Nitrene transfer reaction with hydroxylamine derivatives. Chem Commun (Camb) 2023; 59:1889-1906. [PMID: 36661267 DOI: 10.1039/d2cc06318b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent progress on catalytic nitrene transfer reactions with hydroxylamine derivatives as prevalent precursors is summarized in this highlight. The salient features of these N-O derived nitrene transfer reagents are that they are readily available, bench-stable, and can be facilely activated by a range of transition metal-catalysts under mild conditions. The application of these reagents in transition metal-catalysis has led to many new amidation or amination reactions, such as C-H insertions and aziridination of olefins. These reagents have also been applied in difunctionalisation of unsaturated bonds, dearomative amination of indoles, and formation of N-X bonds. Moreover, the recent achievements in photocatalysis and enzyme catalysis further emphasize the importance of these appealing reagents. This highlight provides an overview of these reactions reported in recent years. Challenges and potential opportunities for future developments are also discussed.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.,Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| | - Haixia Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yupeng Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
10
|
Van Emelen L, Lemmens V, Marquez C, Van Minnebruggen S, Usoltsev OA, Bugaev AL, Janssens K, Cheung KY, Van Velthoven N, De Vos DE. Cu-α-diimine Compounds Encapsulated in Porous Materials as Catalysts for Electrophilic Amination of Aromatic C-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51867-51880. [PMID: 36349551 DOI: 10.1021/acsami.2c13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrophilic amination has emerged as a more environmentally benign approach to construct arene C-N bonds. However, heterogeneous catalysts remain largely unexplored in this area, even though their use could facilitate product purification and catalyst recovery. Here we investigate strategies to heterogenize a Cu(2,2'-bipyridine) catalyst for the amination of arenes lacking a directing group with hydroxylamine-O-sulfonic acid (HOSA). Besides immobilization of Cu on a metal-organic framework (MOF) or covalent organic framework (COF) with embedded 2,2'-bipyridines, a ship-in-a-bottle approach was followed in which the Cu complex is encapsulated in the pores of a zeolite. Recyclability and hot centrifugation tests show that zeolite Beta-entrapped CuII(2,2'-bipyridine) is superior in terms of stability. With N-methylmorpholine as a weakly coordinating, weak base, simple arenes, such as mesitylene, could be aminated with yields up to 59%, corresponding to a catalyst TON of 24. The zeolite could be used in three consecutive runs without a decrease in activity. Characterization of the catalyst by EPR and XAS showed that the active catalytic complex consisted of a site-isolated CuII species with one 2,2'-bipyridine ligand.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Vincent Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Carlos Marquez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Sam Van Minnebruggen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Oleg A Usoltsev
- The Smart Materials Research Institute at the Southern Federal University, Sladkova 178/24, Rostov-on-Don 344090, Russia
| | - Aram L Bugaev
- The Smart Materials Research Institute at the Southern Federal University, Sladkova 178/24, Rostov-on-Don 344090, Russia
| | - Kwinten Janssens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Ka Yan Cheung
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Niels Van Velthoven
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| |
Collapse
|
11
|
Wang H, Li H, Chen X, Zhou C, Li S, Yang YF, Li G. Asymmetric Remote meta-C–H Activation Controlled by a Chiral Ligand. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Gasser VCM, Makai S, Morandi B. The advent of electrophilic hydroxylamine-derived reagents for the direct preparation of unprotected amines. Chem Commun (Camb) 2022; 58:9991-10003. [PMID: 35993918 PMCID: PMC9453917 DOI: 10.1039/d2cc02431d] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Electrophilic aminating reagents have seen a renaissance in recent years as effective nitrogen sources for the synthesis of unprotected amino functionalities. Based on their reactivity, several noble and non-noble transition metal catalysed amination reactions have been developed. These include the aziridination and difunctionalisation of alkenes, the amination of arenes as well as the synthesis of aminated sulfur compounds. In particular, the use of hydroxylamine-derived (N-O) reagents, such as PONT (PivONH3OTf), has enabled the introduction of unprotected amino groups on various different feedstock compounds, such as alkenes, arenes and thiols. This strategy obviates undesired protecting-group manipulations and thus improves step efficiency and atom economy. Overall, this feature article gives a recent update on several reactions that have been unlocked by employing versatile hydroxylamine-derived aminating reagents, which facilitate the generation of unprotected primary, secondary and tertiary amino groups.
Collapse
Affiliation(s)
- Valentina C M Gasser
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich 8093, Switzerland.
| |
Collapse
|
13
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
14
|
Anugu RR, Falck JR. Site-selective amination and/or nitrilation via metal-free C(sp 2)-C(sp 3) cleavage of benzylic and allylic alcohols. Chem Sci 2022; 13:4821-4827. [PMID: 35655896 PMCID: PMC9067586 DOI: 10.1039/d2sc00758d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Benzylic/allylic alcohols are converted via site-selective C(sp2)-C(sp3) cleavage to value-added nitrogenous motifs, viz., anilines and/or nitriles as well as N-heterocycles, utilizing commercial hydroxylamine-O-sulfonic acid (HOSA) and Et3N in an operationally simple, one-pot process. Notably, cyclic benzylic/allylic alcohols undergo bis-functionalization with attendant increases in architectural complexity and step-economy.
Collapse
Affiliation(s)
- Raghunath Reddy Anugu
- Chemistry Division, Biochemistry Dept., Pharmacology Dept., University of Texas Southwestern Medical Center Dallas TX 75390 USA
| | - John R Falck
- Chemistry Division, Biochemistry Dept., Pharmacology Dept., University of Texas Southwestern Medical Center Dallas TX 75390 USA
| |
Collapse
|
15
|
Ma YN, Gao Y, Ma Y, Wang Y, Ren H, Chen X. Palladium-Catalyzed Regioselective B(9)-Amination of o-Carboranes and m-Carboranes in HFIP with Broad Nitrogen Sources. J Am Chem Soc 2022; 144:8371-8378. [PMID: 35499359 DOI: 10.1021/jacs.2c03031] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amination of carboranes has a good application prospect in organic and pharmaceutical synthesis. However, the current methods used for this transformation suffer from limitations. Herein, we report a practical method for a highly regioselective formation of a B-N bond by Pd(II)-catalyzed B(9)-H amination of o- and m-carboranes in hexafluoroisopropanol (HFIP) with different nitrogen sources under air atmosphere. The silver salt and HFIP solvent play critical roles in the present protocol. The mechanistic study reveals that the silver salt acts as a Lewis acid to promote the electrophilic palladation step by forming a heterobimetallic active catalyst PdAg(OAc)3; the strong hydrogen-bond-donating ability and low nucleophilicity of HFIP enhance the electrophilic ability of Pd(II). It is believed that these N-containing carboranes are potentially of great importance in the synthesis of new pharmaceuticals.
Collapse
Affiliation(s)
- Yan-Na Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yubin Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huazhan Ren
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.,School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
16
|
Lee HS, Kang JS, Cho DY, Choi DK, Shin HJ. Isolation, Structure Determination, and Semisynthesis of Diphenazine Compounds from a Deep-Sea-Derived Strain of the Fungus Cystobasidium laryngis and Their Biological Activities. JOURNAL OF NATURAL PRODUCTS 2022; 85:857-865. [PMID: 35302779 DOI: 10.1021/acs.jnatprod.1c00985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phenazostatins E-J (1-6), six new diphenazine derivatives, were isolated from the EtOAc extract of the culture broth of a strain of Cystobasidium laryngis derived from deep-sea sediments of the Indian Ocean Ridge. The structures of 1-6 were elucidated based on the HRESIMS and 1D and 2D NMR spectra. The absolute configurations of 1-6, except for 3 and 6, were determined by modified Mosher's method, ECD data analysis, and calculations of optical rotation values. The absolute configurations of 3 and 6 were identified by chemical derivatization and comparing the specific rotation values with those of semisynthetic 3 obtained by the oxidation of 1 and saphenic acid (7). Phenazostatin J (6) was semisynthesized using saphenic acid (7) to prepare additional material for biological testing. During the purification of semisynthetic 6, a side product 9 was obtained from the reaction mixture along with 6. Compounds 1-6, along with previously reported 7 and 8, were assessed for anti-neuroinflammatory activity in LPS-induced BV-2 microglia cells. Compound 6 exhibited the highest anti-neuroinflammatory effect with an IC50 value of 0.30 μM, but it showed cytotoxicity at higher concentrations than 1.0 μM. Accordingly, cytotoxicities of 1-9 were evaluated against six human cancer cell lines. Among tested compounds, 6 and 9 showed potent cytotoxicity (IC50 values: 7.7-72 nM). Especially, 6 exhibited the strongest cytotoxicity with an IC50 value of 7.7 nM against the NUGC-3 (stomach) cell line, displaying 19-fold stronger activity than the positive control, adriamycin.
Collapse
Affiliation(s)
- Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science Technology, 385 Haeyang-ro, Yeoungdo-gu, Busan 49111, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeoungudanji-ro, Cheongju 28116, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju 27478, Republic of Korea
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science Technology, 385 Haeyang-ro, Yeoungdo-gu, Busan 49111, Republic of Korea
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajung-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
17
|
Maity A, Roychowdhury P, Herrera RG, Powers DC. Diversification of Amidyl Radical Intermediates Derived from C-H Aminopyridylation. Org Lett 2022; 24:2762-2766. [PMID: 35377670 PMCID: PMC9089237 DOI: 10.1021/acs.orglett.2c00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The N-activating substituents typically encountered in C-H amination chemistry are challenging to remove and have limited scope for synthetic elaboration. Here, we demonstrate that N-benzylaminopyridinium species provide a platform for synthetic elaboration via reductive N-N bond activation to unveil electrophilic N-centered radicals. These reactive intermediates can be trapped either via anti-Markovnikov olefin carboamination to provide access to tetrahydroisoquinolines or via aza-Rubottom chemistry with silyl enol ethers to provide α-amino ketones.
Collapse
Affiliation(s)
- Asim Maity
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - Roberto G. Herrera
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
18
|
Ma P, Wang J, Liu G. Direct Synthesis of 1‐Naphthylamines Enabled by 6‐endo‐dig Cyclization Strategy Using Copper Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Ma
- Department of Chemistry, College of Science Tianjin University Tianjin P. R. China
| | - Jianhui Wang
- Department of Chemistry, College of Science Tianjin University Tianjin P. R. China
| | - Guiyan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules (Tianjin), College of Chemistry Tianjin Normal University Tianjin P. R. China
| |
Collapse
|
19
|
Tan Y, Han YP, Zhang Y, Zhang HY, Zhao J, Yang SD. Primary Amination of Ar2P(O)–H with (NH4)2CO3 as an Ammonia Source under Simple and Mild Conditions and Its Extension to the Construction of Various P–N or P–O Bonds. J Org Chem 2022; 87:3254-3264. [DOI: 10.1021/acs.joc.1c02933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yushi Tan
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
20
|
Van Emelen L, Henrion M, Lemmens R, De Vos D. C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01827b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we discuss the state-of-the-art in arene C–N coupling through C–H activation and to what extent it complies with the principles of green chemistry, with a focus on heterogeneously catalysed systems.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Mickaël Henrion
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Robin Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| |
Collapse
|
21
|
Jinan D, Mondal PP, Nair AV, Sahoo B. O-Protected NH-free hydroxylamines: emerging electrophilic aminating reagents for organic synthesis. Chem Commun (Camb) 2021; 57:13495-13505. [PMID: 34842254 DOI: 10.1039/d1cc05282a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this highlight, O-protected NH-free hydroxylamine derivatives have been evaluated in the construction of nitrogen-enriched compounds, such as primary amines, amides, and N-heterocycles, with high regio-, chemo- and stereoselectivity in the unprotected form, showcasing the late-stage functionalization of natural products, drugs and functional molecules by biocatalysis, organocatalysis, and transition metal catalysis. The reactivity dichotomy among these N-O reagents has been explored based on SET and metal-nitrenoids.
Collapse
Affiliation(s)
- Dilsha Jinan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram-695551, Kerala, India.
| | - Pinku Prasad Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram-695551, Kerala, India.
| | - Anagha Veluthanath Nair
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram-695551, Kerala, India.
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram-695551, Kerala, India.
| |
Collapse
|
22
|
|
23
|
Qiu X, Wang Y, Su L, Jin R, Song S, Qin Q, Li J, Zong B, Jiao N. Selective
Carbon‐Carbon
Bond Amination with
Redox‐Active
Aminating Reagents: A Direct Approach to Anilines
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Yachong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Lingyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Rui Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, SINOPEC 100083 Beijing China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Qixue Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Junhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Baoning Zong
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, SINOPEC 100083 Beijing China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University Beijing 100191 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Shanghai 200062 China
| |
Collapse
|
24
|
Kobayashi Y, Masakado S, Murai T, Hamada S, Furuta T, Takemoto Y. A bench-stable N-trifluoroacetyl nitrene equivalent for a simple synthesis of 2-trifluoromethyl oxazoles. Org Biomol Chem 2021; 19:6628-6632. [PMID: 34282812 DOI: 10.1039/d1ob00947h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ortho-Nitro-substituted N-trifluoroacetyl imino-λ3-iodane is a bench-stable trifluoroacetyl nitrene precursor, in which intra- and intermolecular halogen bonding (XB) plays an important role. Potential synthetic applications of this novel precursor were explored.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Morofuji T, Inagawa K, Kano N. Sequential Ring-Opening and Ring-Closing Reactions for Converting para-Substituted Pyridines into meta-Substituted Anilines. Org Lett 2021; 23:6126-6130. [PMID: 34314185 DOI: 10.1021/acs.orglett.1c02225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we report a method for converting para-substituted pyridine rings into meta-dialkylamino-substituted benzene rings through sequential ring-opening and ring-closing reactions. The nitrogen atom in the pyridine rings was replaced with a methine group, and a dialkylamino substituent was introduced onto the original unsubstituted carbon atom in the pyridine rings. This process can be formally regarded as a hybrid of the skeletal editing and C-H amination of pyridine rings.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kota Inagawa
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
26
|
Wang T, Hoffmann M, Dreuw A, Hasagić E, Hu C, Stein PM, Witzel S, Shi H, Yang Y, Rudolph M, Stuck F, Rominger F, Kerscher M, Comba P, Hashmi ASK. A Metal‐Free Direct Arene C−H Amination. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tao Wang
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marvin Hoffmann
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 A D-69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing Heidelberg University Im Neuenheimer Feld 205 A D-69120 Heidelberg Germany
| | - Edina Hasagić
- Chemistry Department Faculty of Natural Science Sarajevo University Zmaja od Bosne 33-35 71000 Sarajevo Bosnia and Herzegovina
| | - Chao Hu
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Philipp M. Stein
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sina Witzel
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hongwei Shi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Yangyang Yang
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Fabian Stuck
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marion Kerscher
- Anorganisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department Faculty of Science King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| |
Collapse
|
27
|
Chen P, Wang ZY, Peng XS, Wong HNC. Stereospecific Iron-Catalyzed Carbon (sp 2)-Carbon (sp 2) Cross-Coupling of Aryllithium with Vinyl Halides. Org Lett 2021; 23:4385-4390. [PMID: 34008404 DOI: 10.1021/acs.orglett.1c01318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present herein an efficient synthetic protocol involving iron-catalyzed cross-coupling of organolithium compounds with vinyl halides as key coupling partners. More than 30 examples were obtained with moderate to good yields and high stereoselectivities. The practicality of this method is evidenced by a gram-scale synthesis. In addition, a preliminary mechanistic investigation was also performed.
Collapse
Affiliation(s)
- Peng Chen
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhi-Yong Wang
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Xiao-Shui Peng
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen 518172, China
| | - Henry N C Wong
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen 518172, China
| |
Collapse
|
28
|
Li B, Li Y, Dang Y, Houk KN. Post-Transition State Bifurcation in Iron-Catalyzed Arene Aminations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yuli Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Koszelewski D, Brodzka A, Madej A, Trzepizur D, Ostaszewski R. Evaluation of gem-Diacetates as Alternative Reagents for Enzymatic Regio- and Stereoselective Acylation of Alcohols. J Org Chem 2021; 86:6331-6342. [PMID: 33861083 DOI: 10.1021/acs.joc.1c00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Geminal diacetates have been used as sustainable acyl donors for enzymatic acylation of chiral and nonchiral alcohols. Especially, it was revealed that geminal diacetates showed higher reactivity than vinyl acetate for hydrolases that are sensitive to acetaldehyde. Under optimized conditions for enzymatic acylation, several synthetically relevant saturated and unsaturated acetates of various primary alcohols were obtained in very high yields up to 98% without E/Z isomerization of the double bond. Subsequently, the acyl donor was recreated from the resulting aldehyde and reused constantly in acylation. Therefore, the developed process is characterized by high atomic efficiency. Moreover, it was shown that acylation using geminal diacetates resulted in remarkable regioselectivity by discriminating among the primary and secondary hydroxyl groups in 1-phenyl-1,3-propanediol providing exclusively 3-acetoxy-1-phenyl-propan-1-ol in good yield. Further, enzymatic kinetic resolution (EKR) and chemoenzymatic dynamic kinetic resolution (DKR) protocols were developed using geminal diacetate as an acylating agent, resulting in chiral acetates in high yields up to 94% with enantiomeric excesses exceeding 99%.
Collapse
Affiliation(s)
- Dominik Koszelewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Arleta Madej
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Damian Trzepizur
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
30
|
Falk E, Gasser VCM, Morandi B. Synthesis of N-Alkyl Anilines from Arenes via Iron-Promoted Aromatic C-H Amination. Org Lett 2021; 23:1422-1426. [PMID: 33544600 DOI: 10.1021/acs.orglett.1c00099] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report both an intermolecular C-H amination of arenes to access N-methylanilines and an intramolecular variant for the synthesis of tetrahydroquinolines. A newly developed, highly electrophilic aminating reagent was key for the direct synthesis of unprotected N-methylanilines from simple arenes. The reactions display a broad functional group tolerance and employ catalytic amounts of a benign iron salt under mild reaction conditions.
Collapse
Affiliation(s)
- Eric Falk
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
31
|
Zhong D, Wu L, Wang X, Liu W. Iron‐Catalyzed
Intramolecular C—H Amidation of
N
‐Benzoyloxyureas
. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dayou Zhong
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Lin‐Yang Wu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xing‐Zhen Wang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Wen‐Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
32
|
Affiliation(s)
- Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Rafia Siddiqui
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| |
Collapse
|
33
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
34
|
Cai L, Li S, Zhou C, Li G. Carboxyl-Assisted meta-Selective C-H Functionalizations of Benzylsulfonamides. Org Lett 2020; 22:7791-7796. [PMID: 32991192 DOI: 10.1021/acs.orglett.0c02528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A protocol of carboxyl-group-assisted, Pd(II)-catalyzed remote meta-C(sp2)-H olefination and arylation of benzylsulfonamides has been developed. It was supposed to proceed through a κ2 coordination of the carboxyl group to the Pd center. These findings demonstrated the versatility of carboxyl-assisted remote meta-C-H activation strategy and might stimulate the exploration of novel reactivity and selectivity of other traditional chelating groups in different contexts.
Collapse
Affiliation(s)
- Lei Cai
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Falk E, Makai S, Delcaillau T, Gürtler L, Morandi B. Design and Scalable Synthesis of
N
‐Alkylhydroxylamine Reagents for the Direct Iron‐Catalyzed Installation of Medicinally Relevant Amines**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eric Falk
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Tristan Delcaillau
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Laura Gürtler
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
36
|
Falk E, Makai S, Delcaillau T, Gürtler L, Morandi B. Design and Scalable Synthesis of
N
‐Alkylhydroxylamine Reagents for the Direct Iron‐Catalyzed Installation of Medicinally Relevant Amines**. Angew Chem Int Ed Engl 2020; 59:21064-21071. [DOI: 10.1002/anie.202008247] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Falk
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Tristan Delcaillau
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Laura Gürtler
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
37
|
Prim D, Large B. C–H Functionalization Strategies in the Naphthalene Series: Site Selections and Functional Diversity. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Naphthalene is certainly not a common arene. In contrast to benzene, the bicyclic feature of naphthalene offers multiple differentiable positions and thus a broad diversity of substitution patterns. Naphthalene is a central building block for the construction of elaborated polycyclic architectures with applications in broad domains such as life and materials sciences. As a result, C–H functionalization strategies specially designed for naphthalene substrates have become essential to install valuable substituents on one or both rings towards polysubstituted naphthalenes. This short review provides a focus on uncommon substitution patterns; however, classical ortho C–H activation is not covered.1 Introduction2 C–H Functionalization Using a Directing Group Located at Position 12.1 Functionalization on the Ring Bearing the DG: 1,3-Substitution Pattern2.2 Functionalization on the Ring Bearing the DG: 1,4-Substitution Pattern2.3 Functionalization on the Neighboring Ring: 1,6-, 1,7- and 1,8-Substitution Patterns3 C–H Functionalization Using a Directing Group Located at Position 23.1 Functionalization on the Ring Bearing the DG: 2,4- and 2,1-Substitution Patterns3.2 Miscellaneous Substitution Patterns4 Bis C–H Functionalization4.1 Symmetrical Bisfunctionalization: 1,2,8-Substitution Pattern4.2 Symmetrical Bisfunctionalization: 2,3,1-Substitution Pattern4.2 Unsymmetrical Bisfunctionalization: 2,3,1-Substitution Pattern4.3 Symmetrical Bisfunctionalization: 2,4,8-Substitution Pattern5 Conclusion and Outlook
Collapse
Affiliation(s)
- Damien Prim
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles
| | | |
Collapse
|
38
|
Jia ZJ, Gao S, Arnold FH. Enzymatic Primary Amination of Benzylic and Allylic C(sp 3)-H Bonds. J Am Chem Soc 2020; 142:10279-10283. [PMID: 32450692 DOI: 10.1021/jacs.0c03428] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aliphatic primary amines are prevalent in natural products, pharmaceuticals, and functional materials. While a plethora of processes are reported for their synthesis, methods that directly install a free amine group into C(sp3)-H bonds remain unprecedented. Here, we report a set of new-to-nature enzymes that catalyze the direct primary amination of C(sp3)-H bonds with excellent chemo-, regio-, and enantioselectivity, using a readily available hydroxylamine derivative as the nitrogen source. Directed evolution of genetically encoded cytochrome P411 enzymes (P450s whose Cys axial ligand to the heme iron has been replaced with Ser) generated variants that selectively functionalize benzylic and allylic C-H bonds, affording a broad scope of enantioenriched primary amines. This biocatalytic process is efficient and selective (up to 3930 TTN and 96% ee), and can be performed on preparative scale.
Collapse
Affiliation(s)
- Zhi-Jun Jia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| |
Collapse
|