1
|
Cao Z, Dong Z, Yang S, Cui R, Zhang L, Chen X, Luo L. Phase Separation of CuPd Alloy Nanocatalysts in CO Oxidation. ACS NANO 2025; 19:1140-1149. [PMID: 39718904 DOI: 10.1021/acsnano.4c13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Alloy nanocatalysts exhibit enhanced activity, selectivity, and stability mainly due to their versatile phases and atomic structures. However, nanocatalysts' "real" functional structures may vary from their as-synthesized status due to the structural and chemical changes during the activation and reaction conditions. Herein, we studied the activated CuPd/CeO2 nanocatalysts under the CO oxidation reaction featuring an atomic-scale phase separation process, resulting in a notable "hysteresis" in catalyst performance. Through the "identical-location" transmission electron microscopy (TEM) characterization, we found that the CuPd nanoparticles (NPs) evolve to a Cu2O/CuPd or CuPdOx phase depending on different surface planes of CeO2 supports under the reaction condition. The detailed dynamic information is obtained by in situ environmental TEM-in situ DRIFTS characterizations to further decouple the effect of pure CO and O2 gas. The interfacial binding energies between alloy nanoparticles and CeO2 supports are found to play a critical role in determining the phase separation behaviors. These atomic insights highlight the importance of both the phase separation of alloy nanocatalysts and in situ characterizations of "live" catalysts.
Collapse
Affiliation(s)
- Zhongliang Cao
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Zejian Dong
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Siyuan Yang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Ronghua Cui
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
2
|
Yang H, Duan P, Zhuang Z, Luo Y, Shen J, Xiong Y, Liu X, Wang D. Understanding the Dynamic Evolution of Active Sites among Single Atoms, Clusters, and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415265. [PMID: 39748626 DOI: 10.1002/adma.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Catalysis remains a cornerstone of chemical research, with the active sites of catalysts being crucial for their functionality. Identifying active sites, particularly during the reaction process, is crucial for elucidating the relationship between a catalyst's structure and its catalytic property. However, the dynamic evolution of active sites within heterogeneous metal catalysts presents a substantial challenge for accurately pinpointing the real active sites. The advent of in situ and operando characterization techniques has illuminated the path toward understanding the dynamic changes of active sites, offering robust scientific evidence to support the rational design of catalysts. There is a pressing need for a comprehensive review that systematically explores the dynamic evolution among single atoms, clusters, and nanoparticles as active sites during the reaction process, utilizing in situ and operando characterization techniques. This review aims to delineate the effects of various reaction factors on dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Moreover, several in situ and operando techniques are elaborated with emphases on tracking the dynamic evolution of active sites, linking them to catalytic properties. Finally, it discusses challenges and future perspectives in identifying active sites during the reaction process and advancing in situ and operando characterization techniques.
Collapse
Affiliation(s)
- Hongchen Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengfei Duan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaowu Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Gong FQ, Liu YP, Wang Y, E W, Tian ZQ, Cheng J. Machine Learning Molecular Dynamics Shows Anomalous Entropic Effect on Catalysis through Surface Pre-melting of Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202405379. [PMID: 38639181 DOI: 10.1002/anie.202405379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
Due to the superior catalytic activity and efficient utilization of noble metals, nanocatalysts are extensively used in the modern industrial production of chemicals. The surface structures of these materials are significantly influenced by reactive adsorbates, leading to dynamic behavior under experimental conditions. The dynamic nature poses significant challenges in studying the structure-activity relations of catalysts. Herein, we unveil an anomalous entropic effect on catalysis via surface pre-melting of nanoclusters through machine learning accelerated molecular dynamics and free energy calculation. We find that due to the pre-melting of shell atoms, there exists a non-linear variation in the catalytic activity of the nanoclusters with temperature. Consequently, two notable changes in catalyst activity occur at the respective temperatures of melting for the shell and core atoms. We further study the nanoclusters with surface point defects, i.e. vacancy and ad-atom, and observe significant decrease in the surface melting temperatures of the nanoclusters, enabling the reaction to take place under more favorable and milder conditions. These findings not only provide novel insights into dynamic catalysis of nanoclusters but also offer new understanding of the role of point defects in catalytic processes.
Collapse
Affiliation(s)
- Fu-Qiang Gong
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
| | - Yun-Pei Liu
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
| | - Ye Wang
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
| | - Weinan E
- School of Mathematical Sciences, Peking University, Center for Machine Learning Research, Beijing, 100084, China
- AI for Science Institute, Beijing, 100080, China
| | - Zhong-Qun Tian
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory (IKKEM), Xiamen, 361005, China
| | - Jun Cheng
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory (IKKEM), Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Jiang Y, Lim AMH, Yan H, Zeng HC, Mirsaidov U. Phase Segregation in PdCu Alloy Nanoparticles During CO Oxidation Reaction at Atmospheric Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302663. [PMID: 37377354 PMCID: PMC10477843 DOI: 10.1002/advs.202302663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Bimetallic nanoparticle (NP) catalysts are widely used in many heterogeneous gas-based reactions because they often outperform their monometallic counterparts. During these reactions, NPs often undergo structural changes, which impact their catalytic activity. Despite the important role of the structure in the catalytic activity, many aspects of how a reactive gaseous environment affects the structure of bimetallic nanocatalysts are still lacking. Here, using gas-cell transmission electron microscopy (TEM), it is shown that during a CO oxidation reaction over PdCu alloy NPs, the selective oxidation of Cu causes the segregation of Cu and transforms the NPs into Pd-CuO NPs. The segregated NPs are very stable and have high activity for the conversion of CO into CO2 . Based on the observations, the segregation of Cu from Cu-based alloys during a redox reaction is likely to be general and may have a positive impact on the catalytic activity. Hence, it is believed that similar insights based on direct observation of the reactions under relevant reactive conditions are critical both for understanding and designing high-performance catalysts.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Alvin M H Lim
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Hongwei Yan
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Utkur Mirsaidov
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
5
|
Moreira Da Silva C, Girard A, Le Bouar Y, Fossard F, Dragoe D, Ducastelle F, Loiseau A, Huc V. Structural Size Effect in Capped Metallic Nanoparticles. ACS NANO 2023; 17:5663-5672. [PMID: 36917747 DOI: 10.1021/acsnano.2c11825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The surfactant used during a colloidal synthesis is known to control the size and shape of metallic nanoparticles. However, its influence on the nanoparticle (NP) structure is still not well understood. In this study, we show that the surfactant can significantly modify the lattice parameter of a crystalline particle. First, our electron diffraction measurements reveals that NiPt nanoparticles around 4 nm in diameter covered by a mixture of oleylamine and oleic acid (50:50) display a lattice parameter expansion around 2% when compared to the same particles without surfactant. Using high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX) techniques, we show that this expansion can not be explained by crystal defects, twinning, oxidation, or atoms insertion. Then, using covered NPs in the 4-22 nm size range, we show that the lattice parameter evolves linearly with the inverse of the NP size, as it is expected when a surface stress is present. Finally, the study is extended to pure nickel and pure platinum NPs, with different sizes, coated by different surfactants (oleylamine, trioctylphosphine, polyvinylpyrrolidone). The surfactants induce lattice parameter variations, whose magnitude could be related to the charge transfer between the surfactant and the particle surface.
Collapse
Affiliation(s)
- Cora Moreira Da Silva
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Armelle Girard
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
- Université Paris-Saclay, UVSQ, 78000 Versailles, France
| | - Yann Le Bouar
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Frédéric Fossard
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| | - François Ducastelle
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Annick Loiseau
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Vincent Huc
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| |
Collapse
|
6
|
E-waste derived CuAu bimetallic catalysts supported on carbon cloth enabling effective degradation of bisphenol A via an electro-Fenton process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Wu Y, Li Y, Han S, Li M, Shen W. Atomic-Scale Engineering of CuO x-Au Interfaces over AuCu Single-Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55644-55652. [PMID: 36507662 DOI: 10.1021/acsami.2c17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A face-centered tetragonal (fct) AuCu particle with a size of 7.1 nm and an Au/Cu molar ratio of 1/1 was coated by a silica shell of 6 nm thickness. Segregation of Cu atoms from the metal particle under an oxidative atmosphere precisely mediated the CuOx-Au interfacial structure by simply varying the temperature. As raising the temperature from 473 to 773 K, more Cu atoms emigrated from the AuCu particle and were oxidized into CuOx layers that grew up to 0.8 nm in thickness. Simultaneously, the size of the Au-rich particle lowered moderately while the crystalline structure transformed from the fct phase into the face-centered cubic (fcc) phase. The CuOx-Au interface shifted from the CuOx monolayer bound to Au single-atoms to Au@CuOx core-shell geometry, while the catalytic activity for CO oxidation at 433 K decreased dramatically. Moreover, a sharp loss in activity was observed as the crystal-phase transition occurred. This change in catalytic performance was ascribed to the geometrical configuration at the interfacial sites: the synergetic effect between the fct-AuCu particle and CuOx monolayer contributed to the much higher activity, whereas the fcc-AuCu/Au particle weakened its interaction with the thicker CuOx layer and thus decreased the activity.
Collapse
Affiliation(s)
- Yongbin Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Single-Atom Catalysts: Preparation and Applications in Environmental Catalysis. Catalysts 2022. [DOI: 10.3390/catal12101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Due to the expensive price and the low reserve of noble metals in nature, much attention has been paid to single-atom catalysts (SACs)—especially single-atom noble metal catalysts—owing to their maximum atomic utilization and dispersion. The emergence of SACs greatly decreases the amount of precious metals, improves the catalytic activity, and makes the catalytic process progressively economic and sustainable. However, the most remarkable challenge is the active sites and their stability against migration and aggregation under practical conditions. This review article summarizes the preparation strategies of SACs and their catalytic applications for the oxidation of methane, carbon monoxide, and volatile organic compounds (VOCs) and the reduction of nitrogen oxides. Furthermore, the perspectives and challenges of SACs in future research and practical applications are proposed. It is envisioned that the results summarized in this review will stimulate the interest of more researchers in developing SACs that are effective in catalyzing the reactions related to the environmental pollution control.
Collapse
|
9
|
Song L, Liu Y, Zhang S, Zhou C, Ma K, Yue H. Tuning Oxygen Vacancies of the Co 3O 4 Catalyst through an Ethanol-Assisted Hydrothermal Method for Low-Temperature CO Oxidation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lei Song
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanhong Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shihui Zhang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changan Zhou
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kui Ma
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
10
|
Chen S, Yang B. Activity and stability of alloyed NiCo catalyst for the dry reforming of methane: A combined DFT and microkinetic modeling study. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Dong Z, Zhang N, Wang S, Liu Y, Zhang L, Chen X, Luo L. In Situ Structural Dynamics of Atomic Defects in Tungsten Oxide. J Phys Chem Lett 2022; 13:7170-7176. [PMID: 35904340 DOI: 10.1021/acs.jpclett.2c01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic defects are critical to tuning the physical and chemical properties of functional materials such as catalysts, semiconductors, and 2D materials. However, direct structural characterization of atomic defects, especially their formation and annihilation under practical conditions, is challenging yet crucial to understanding the underlying mechanisms driving defect dynamics, which remain mostly elusive. Here, through in situ atomic imaging by an aberration-corrected environmental transmission electron microscope (AC-ETEM), we directly visualize the formation and annihilation mechanism of planar defects in monoclinic WO3 on the atomic scale in real time. We captured the atomistic process of the nucleation dynamics of the dislocation core in the [010] direction, followed by its propagation to form a planar defect. Corroborated by density functional theory-based calculations, we rationalize the formation of dislocation through O extraction from bridge sites followed by an atomic channeling process. These in situ observations shed light on the defect dynamics in oxides and provide atomic insights into forming and manipulating defects in functional materials.
Collapse
Affiliation(s)
- Zejian Dong
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Na Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Shuangbao Wang
- Key Laboratory of LCR Materials and Devices of Yunnan Province, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Yuying Liu
- School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Langli Luo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
12
|
Revealing synergetic structural activation of a CuAu surface during water-gas shift reaction. Proc Natl Acad Sci U S A 2022; 119:e2120088119. [PMID: 35648821 DOI: 10.1073/pnas.2120088119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance Atomic-level in situ environmental transmission electron microscopy observation of the dynamic activation process on a low-indexed CuAu surface under water-gas shift reaction (WGSR) condition has been revealed. The atomic-scale structural activation of a CuAu surface features a gas-dependent periodic surface restructuring and elemental ordering, explaining the "synergy effect" from the structural point of view. These real-time changes under relevant reactant gases and temperature are correlated with the reaction route of WGSR corroborated by density functional theory-based calculation and ab initio molecular dynamics simulation and can provide insights for atom-precision catalyst design.
Collapse
|
13
|
Chutia A. A study on the stability of gold copper bimetallic clusters on the CeO2(110) surface. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Fiuza TER, Gonçalves DS, Gomes IF, Zanchet D. CeO2-supported Au and AuCu catalysts for CO oxidation: Impact of activation protocol and residual chlorine on the active sites. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Dong Z, Liu W, Zhang L, Wang S, Luo L. Structural Evolution of Cu/ZnO Catalysts during Water-Gas Shift Reaction: An In Situ Transmission Electron Microscopy Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41707-41714. [PMID: 34427430 DOI: 10.1021/acsami.1c11839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported metal catalysts experience significant structural evolution during the activation process and reaction conditions, which is critical to achieve a desired active surface and interface enabling efficient catalytic processes. However, such dynamic structural information and related mechanistic understandings remain largely elusive owing to the limitation of real-time capturing dynamic information under reaction conditions. Here, using in situ environment transmission electron microscopy, we demonstrate the atomic-scale structural evolution of the model Cu/ZnO catalyst under relevant water-gas shift reaction (WGSR) conditions. Under a CO gas environment, Cu nanoparticles decompose into smaller Cu species and redistribute on ZnO supports with either the crystalline Cu2O or amorphous CuOx phase due to a strong CO-Cu interaction. In addition, we visualize various metal-support interactions between Cu and ZnO under reaction conditions, e.g., ZnO clusters precipitating on Cu nanoparticles, which are critical to understand active sites of Cu/ZnO as catalysts for WGSR. These in situ atomic-scale observations highlight the dynamic interplays between Cu and ZnO that can be extended to other supported metal catalysts.
Collapse
Affiliation(s)
- Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Wei Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Shuangbao Wang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| |
Collapse
|
16
|
Chen D, Lai Z, Zhang J, Chen J, Hu P, Wang H. Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dingming Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhuangzhuang Lai
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiawei Zhang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jianfu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Peijun Hu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
17
|
Zhang H, Pan J, Zhou Q, Xia F. Nanometal Thermocatalysts: Transformations, Deactivation, and Mitigation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005771. [PMID: 33458963 DOI: 10.1002/smll.202005771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Nanometals have been proven to be efficient thermocatalysts in the last decades. Their enhanced catalytic activity and tunable functionalities make them intriguing candidates for a wide range of catalytic applications, such as gaseous reactions and compound synthesis/decomposition. On the other hand, the enhanced specific surface energy and reactivity of nanometals can lead to configuration transformation and thus catalytic deactivation during the synthesis and catalysis, which largely undermines the activity and service time, thereby calling for urgent research effort to understand the deactivating mechanisms and develop efficient mitigating methods. Herein, the recent progress in understanding the configuration transformation-induced catalytic deactivation within nanometals is reviewed. The major pathways of configuration transformations, and their kinetics controlled by the environmental factors are presented. The approaches toward mitigating the transformation-induced deactivation are also presented. Finally, a perspective on the future academic approaches toward in-depth understanding of the kinetics of the deactivation of nanometals is proposed.
Collapse
Affiliation(s)
- Hanlei Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| | - Jing Pan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| | - Qitao Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| |
Collapse
|
18
|
Zeng S, Shan S, Lu A, Wang S, Caracciolo DT, Robinson RJ, Shang G, Xue L, Zhao Y, Zhang A, Liu Y, Liu S, Liu Z, Bai F, Wu J, Wang H, Zhong CJ. Copper-alloy catalysts: structural characterization and catalytic synergies. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00179e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent progress in the development of copper-alloy catalysts is highlighted, focusing on the structural and mechanistic characterizations of the catalysts in different catalytic reactions, and challenges and opportunities in future research.
Collapse
Affiliation(s)
- Shanghong Zeng
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Shiyao Shan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Shan Wang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Dominic T. Caracciolo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Richard J. Robinson
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Guojun Shang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Lei Xue
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Yuansong Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Aiai Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Shangpeng Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Ze Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Fenghua Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Jinfang Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Hong Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, 010051, P.R. China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
19
|
Zhang WC, Luoshan MD, Wang PF, Huang CY, Wang QQ, Ding SJ, Zhou L. Growth of Porous Ag@AuCu Trimetal Nanoplates Assisted by Self-Assembly. NANOMATERIALS 2020; 10:nano10112207. [PMID: 33167463 PMCID: PMC7694533 DOI: 10.3390/nano10112207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/03/2023]
Abstract
The self-assembly process of metal nanoparticles has aroused wide attention due to its low cost and simplicity. However, most of the recently reported self-assembly systems only involve two or fewer metals. Herein, we first report a successful synthesis of self-assembled Ag@AuCu trimetal nanoplates in aqueous solution. The building blocks of multibranched AuCu alloy nanocrystals were first synthesized by a chemical reduction method. The growth of Ag onto the AuCu nanocrystals in the presence of hexadecyltrimethylammonium chloride (CTAC) induces a self-assembly process and formation of Ag@AuCu trimetal nanoplates. These nanoplates with an average side length of over 2 μm show a porous morphology and a very clear boundary with the branches of the as-prepared AuCu alloy nanocrystals extending out. The shape and density of the Ag@AuCu trimetal nanoplates can be controlled by changing the reaction time and the concentration of silver nitrate. The as-assembled Ag@AuCu nanoplates are expected to have the potential for wide-ranging applications in surface-enhanced Raman scattering (SERS) and catalysis owing to their unique structures.
Collapse
Affiliation(s)
- Wan-Cheng Zhang
- School of Science, Hubei University of Technology, Wuhan 430068, China; (W.-C.Z.); (M.-D.L.); (C.-Y.H.)
| | - Meng-Dai Luoshan
- School of Science, Hubei University of Technology, Wuhan 430068, China; (W.-C.Z.); (M.-D.L.); (C.-Y.H.)
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
| | - Peng-Fei Wang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
| | - Chu-Yun Huang
- School of Science, Hubei University of Technology, Wuhan 430068, China; (W.-C.Z.); (M.-D.L.); (C.-Y.H.)
| | - Qu-Quan Wang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
- Correspondence: (S.-J.D.); (L.Z.)
| | - Li Zhou
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
- Correspondence: (S.-J.D.); (L.Z.)
| |
Collapse
|
20
|
Trivedi S, Prasad R, Mishra A, Kalam A, Yadav P. Current scenario of CNG vehicular pollution and their possible abatement technologies: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39977-40000. [PMID: 32803583 PMCID: PMC7429099 DOI: 10.1007/s11356-020-10361-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/03/2020] [Indexed: 05/25/2023]
Abstract
Compressed natural gas is an alternative green fuel for automobile industry. Recently, the Indian government is targeting to replace all the conventional fuel vehicles by compressed natural gas (CNG) automobiles due to its several merits. Still, the presence of a significant amount of CO, CH4, and NOx gases in the CNG vehicle exhaust are quiet a matter of concern. Thus, to control the emissions from CNG engines, the major advances are under development of and oxidation is one of them in catalytic converter. In literature, the catalysts such as noble and non-noble metals have been reported for separate oxidation of CO and CH4.. Experimentally, it was found that non-noble metal catalysts are preferred due to its low cost, good thermal stability, and molding tractability. In literature, several articles have been published for CO and CH4 oxidation but no review paper is still available. Thus, the present review provides a comprehensive overview of separate as well as simultaneous CO and CH4 oxidation reactions for CNG vehicular emission control.
Collapse
Affiliation(s)
- Suverna Trivedi
- Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India.
- Department of Chemical Engineering, National Institute of Technology, Rourkela, Odisha, India.
| | - Ram Prasad
- Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Ashuthosh Mishra
- Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
- Department of Environment Engineering, CSIR, National Environment and Engineering Research Institute, Noida, India
| | - Abul Kalam
- Department of Chemistry, College of Science, King Khalid University, Guraiger, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Saudi Arabia
| | - Pankaj Yadav
- Department of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, 382 007, India
| |
Collapse
|
21
|
Nian Y, Dong Z, Wang S, Wang Y, Han Y, Wang C, Luo L. Atomic-Scale Dynamic Interaction of H_{2}O Molecules with Cu Surface. PHYSICAL REVIEW LETTERS 2020; 125:156101. [PMID: 33095595 DOI: 10.1103/physrevlett.125.156101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Atomic-scale interaction of water vapor with metal surfaces beyond surface adsorption under technologically relevant conditions remains mostly unexplored. Using aberration-corrected environmental transmission electron microscopy, we reveal the dynamic surface activation of Cu by H_{2}O at elevated temperature and pressure. We find a structural transition from flat to corrugated surface for the Cu(011) under low water-vapor pressure. Increasing the water-vapor pressure leads to the surface reaction of Cu with dissociated H_{2}O, resulting in the formation of a metastable "bilayer" Cu─O─H phase. Corroborated by density functional theory and ab initio molecular dynamics calculations, the cooperative O and OH interaction with Cu is responsible for the formation and subsurface propagation of this phase.
Collapse
Affiliation(s)
- Yao Nian
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Shuangbao Wang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Yan Wang
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - You Han
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, USA
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
22
|
Abstract
In recent years, the impending necessity to improve the quality of outdoor and indoor air has produced a constant increase of investigations in the methodologies to remove and/or to decrease the emission of volatile organic compounds (VOCs). Among the various strategies for VOC elimination, catalytic oxidation and recently photocatalytic oxidation are regarded as some of the most promising technologies for VOC total oxidation from urban and industrial waste streams. This work is focused on bimetallic supported catalysts, investigating systematically the progress and developments in the design of these materials. In particular, we highlight their advantages compared to those of their monometallic counterparts in terms of catalytic performance and physicochemical properties (catalytic stability and reusability). The formation of a synergistic effect between the two metals is the key feature of these particular catalysts. This review examines the state-of-the-art of a peculiar sector (the bimetallic systems) belonging to a wide area (i.e., the several catalysts used for VOC removal) with the aim to contribute to further increase the knowledge of the catalytic materials for VOC removal, stressing the promising potential applications of the bimetallic catalysts in the air purification.
Collapse
|
23
|
Wang Y, Zhang L, Zhang C, Xu X, Xie Y, Chen W, Wang J, Zhang R. Promoting the Generation of Active Oxygen over Ag-Modified Nanoflower-like α-MnO2 for Soot Oxidation: Experimental and DFT Studies. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuhang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Longzhu Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Changsen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingmin Xu
- School of Forensic Medicine, Henan University of Technology, Luoyang 471000, Henan, China
| | - Yunyun Xie
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wenjun Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jie Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ruiqin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|