1
|
Liu X, Fang J, Guan J, Wang S, Xiong Y, Mao J. Substance migration in the synthesis of single-atom catalysts. Chem Commun (Camb) 2025; 61:1800-1817. [PMID: 39749657 DOI: 10.1039/d4cc05747c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Substance migration is universal and crucial in the synthesis of catalysts, which directly affects their existing form and the micro-structure of their active sites. Realizing migration during the synthesis of single-atom catalysts (SACs) is beneficial for not only increasing their metal loading capacity but also manipulating the electronic structures (coordination structure, long-range interactions, etc.) of their metal sites. This review summarizes the thermodynamics and kinetic processes involved in the synthesis of SACs to unveil the fundamental principles involved in their synthesis. For a better understanding of the effect of migration, the migration of both metal (including ions, atoms, and molecules) and nonmetal species is outlined. Moreover, we propose the research directions to guide the rational design of SACs in the future and deepen the fundamental understanding in the formation of catalysts.
Collapse
Affiliation(s)
- Xu Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shibin Wang
- Institute of Industrial Catalysis, College of Chemical Engineering Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
2
|
Yasumura S, Nagai K, Miyazaki S, Qian Y, Chen D, Toyao T, Kamiya Y, Shimizu KI. Low-Temperature Methane Combustion Using Ozone over Coβ Catalyst. J Am Chem Soc 2024. [PMID: 39031765 DOI: 10.1021/jacs.4c05967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Catalytic methane (CH4) combustion is a promising approach to reducing the release of unburned methane in exhaust gas. Here, we report Co-exchanged β zeolite (Coβ) as an efficient catalyst for CH4 combustion using O3. A series of ion-exchanged β zeolites (Co, Ni, Mn, Fe, and Pd) are subjected to the catalytic test, and Coβ exhibits a superior performance in a low-temperature region (<100 °C). The results of X-ray absorption spectroscopy (XAS) and catalytic tests for Coβ with different Co loadings indicate the isolated Co species is the plausible active site. The reaction mechanism of CH4 combustion over the isolated Co2+ cation is theoretically investigated by the single-component artificial force-induced reaction (SC-AFIR) method to thoroughly search for possible reaction routes. The resulting path toward CO2 formation shows an activation energy of 73 kJ/mol for the rate-determining step and an exothermicity of 1025 kJ/mol, which supports the experimental results. During a long-term catalytic test for 160 h without external heating, the CH4 conversion gradually decreases from 80 to 40%, but the conversion fully recovers after dehydration at 500 °C (0.5 h). The copresence of H2O and CO exhibits a negative impact on the catalytic activity, while NO and SO2 do not markedly change the catalytic activity.
Collapse
Affiliation(s)
- Shunsaku Yasumura
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
| | - Ken Nagai
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Shinta Miyazaki
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Yucheng Qian
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Duotian Chen
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| | - Yuichi Kamiya
- Faculty of Environmental Earth Science, Hokkaido University, N-5, K-10, Kita-ku, Sapporo 060-0810, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
3
|
Hashimoto N, Mori K, Matsuzaki S, Iwama K, Kitaura R, Kamiuchi N, Yoshida H, Yamashita H. Sub-nanometric High-Entropy Alloy Cluster: Hydrogen Spillover Driven Synthesis on CeO 2 and Structural Reversibility. JACS AU 2023; 3:2131-2143. [PMID: 37654591 PMCID: PMC10466320 DOI: 10.1021/jacsau.3c00210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023]
Abstract
High-entropy alloy (HEA) nanoparticles (NPs) have attracted significant attention as promising catalysts owing to the various unique synergistic effects originating from the nanometer-scale, near-equimolar mixing of five or more components to produce single-phase solid solutions. However, the study of sub-nanometer HEA clusters having sizes of less than 1 nm remains incomplete despite the possibility of novel functions related to borderline molecular states with discrete quantum energy levels. The present work demonstrates the synthesis of CeO2 nanorods (CeO2-NRs) on which sub-nanometer CoNiCuZnPd HEA clusters were formed with the aid of a pronounced hydrogen spillover effect on readily reducible CeO2 (110) facets. The CoNiCuZnPd HEA sub-nanoclusters exhibited higher activity during the reduction of NO by H2 even at low temperatures compared with the corresponding monometallic catalysts. These clusters also showed a unique structural reversibility in response to repeated exposure to oxidative/reductive conditions, based on the sacrificial oxidation of the non-noble metals. Both experimental and theoretical analyses established that multielement mixing in quantum-sized regions endowed the HEA clusters with entirely novel catalytic properties.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Mori
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuichiro Matsuzaki
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuki Iwama
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ryota Kitaura
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Naoto Kamiuchi
- The
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hideto Yoshida
- The
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiromi Yamashita
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Li Y, Chen D, Xu X, Wang X, Kang R, Fu M, Guo Y, Chen P, Li Y, Ye D. Cold-Start NO x Mitigation by Passive Adsorption Using Pd-Exchanged Zeolites: From Material Design to Mechanism Understanding and System Integration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3467-3485. [PMID: 36802541 DOI: 10.1021/acs.est.2c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It remains a major challenge to abate efficiently the harmful nitrogen oxides (NOx) in low-temperature diesel exhausts emitted during the cold-start period of engine operation. Passive NOx adsorbers (PNA), which could temporarily capture NOx at low temperatures (below 200 °C) and release the stored NOx at higher temperatures (normally 250-450 °C) to downstream selective catalytic reduction unit for complete abatement, hold promise to mitigate cold-start NOx emissions. In this review, recent advances in material design, mechanism understanding, and system integration are summarized for PNA based on palladium-exchanged zeolites. First, we discuss the choices of parent zeolite, Pd precursor, and synthetic method for the synthesis of Pd-zeolites with atomic Pd dispersions, and review the effect of hydrothermal aging on the properties and PNA performance of Pd-zeolites. Then, we show how different experimental and theoretical methodologies can be integrated to gain mechanistic insights into the nature of Pd active sites, the NOx storage/release chemistry, as well as the interactions between Pd and typical components/poisons in engine exhausts. This review also gathers several novel designs of PNA integration into modern exhaust after-treatment systems for practical application. At the end, we discuss the major challenges, as well as important implications, for the further development and real application of Pd-zeolite-based PNA in cold-start NOx mitigation.
Collapse
Affiliation(s)
- Ying Li
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Dongdong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Xin Xu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Xinyu Wang
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Running Kang
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Mingli Fu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Yanbing Guo
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, 430079 Wuhan, China
| | - Peirong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Yongdan Li
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Daiqi Ye
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
5
|
Cai J, Zhao H, Li X, Jing G, Schwank JW. Improving the hydrothermal stability of Pd/SSZ-13 for low-temperature NO adsorption: promotional effect of the Mg 2+ co-cation. REACT CHEM ENG 2023. [DOI: 10.1039/d3re00024a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Insufficient hydrothermal stability is an issue that restricts application of Pd/SSZ-13 for low-temperature NO adsorption from vehicle emissions.
Collapse
Affiliation(s)
- Jinhuang Cai
- Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Huawang Zhao
- Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xiang Li
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Guohua Jing
- Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Johannes W. Schwank
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Ghampson IT, Yun GN, Kaneko A, Vargheese V, Bando KK, Shishido T, Oyama ST. Effect of Support and Pd Cluster Size on Catalytic Methane Partial Oxidation to Dimethyl Ether Using a NO/O 2 Shuttle. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. Tyrone Ghampson
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Gwang-Nam Yun
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Arisa Kaneko
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Vibin Vargheese
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko K. Bando
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - S. Ted Oyama
- School of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Ge J, Ohata Y, Ohnishi T, Moteki T, Ogura M. Highly Dispersed Co/Zn-Doped Zeolitic Imidazolate Framework-Derived Carbon Nanoparticles with High NO Adsorption Capacity at Low Operating Temperature. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiachen Ge
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | - Yusuke Ohata
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Takeshi Ohnishi
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | - Takahiko Moteki
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Masaru Ogura
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
9
|
|
10
|
Oda A, Horie M, Murata N, Sawabe K, Satsuma A. Highly Efficient CO-Assisted Conversion of Methane to Acetic Acid over Rh-Encapsulated MFI Zeolite Prepared Using RhCl 3 Molten Salt. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01471h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct catalytic conversion of methane to value-added chemicals with a high reaction rate and selectivity under mild conditions remains a great challenge. Rh-supported zeolite is one of the promising heterogeneous...
Collapse
|
11
|
Kubota H, Mine S, Toyao T, Maeno Z, Shimizu KI. Redox-Driven Reversible Structural Evolution of Isolated Silver Atoms Anchored to Specific Sites on γ-Al2O3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hiroe Kubota
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
12
|
Chen D, Lei H, Xiong W, Li Y, Ji X, Yang JY, Peng B, Fu M, Chen P, Ye D. Unravelling Phosphorus-Induced Deactivation of Pd-SSZ-13 for Passive NO x Adsorption and CO Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongdong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Huarong Lei
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Wuwan Xiong
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Ying Li
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Xiang Ji
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Shandong University, 266237 Qingdao, China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Mingli Fu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Peirong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Daiqi Ye
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
13
|
Yasumura S, Ueda T, Ide H, Otsubo K, Liu C, Tsunoji N, Toyao T, Maeno Z, Shimizu KI. Local structure and NO adsorption/desorption property of Pd 2+ cations at different paired Al sites in CHA zeolite. Phys Chem Chem Phys 2021; 23:22273-22282. [PMID: 34644369 DOI: 10.1039/d1cp02668b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, Pd-exchanged CHA zeolites (Pd-CHA) have attracted attention as promising passive NOx adsorbers (PNAs) for reducing NOx emissions during the cold start period of a vehicle engine. In this work, the relationship between the local structures and the NO adsorption/desorption properties of the Pd cations in CHA zeolites was investigated. Pd cation formation and NO adsorption were theoretically explored by density functional theory (DFT) calculations for different paired Al sites in six-/eight-membered rings (6MR/8MR). Furthermore, we prepared a series of Pd-CHAs with different Pd loadings (0.5-5.4 wt%) and evaluated their NO adsorption/desorption properties by in situ infrared (IR) spectroscopy and temperature-programmed desorption (TPD) measurements. The increase in the Pd loading resulted in a shift in the NO desorption temperature toward a higher temperature regime. This phenomenon was ascribed to the increase in the proportion of less stable Pd cations, resulting in improved NO adsorption. Furthermore, the effect of Al distribution on the NO adsorption property of Pd-CHA was examined using CHA zeolites containing different proportions of paired Al sites in 6MR while maintaining similar Si/Al ratios (Si/Al = 12.0-16.5). The present study, based on a combination of theoretical and experimental techniques, shows that the NO adsorption/desorption properties over Pd-CHA can be tuned by controlling the Pd loading amount and the type of paired Al sites.
Collapse
Affiliation(s)
- Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
| | - Taihei Ueda
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
| | - Hajime Ide
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
| | - Katsumasa Otsubo
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Chong Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan. .,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan. .,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
14
|
Yasumura S, Toyao T, Maeno Z, Shimizu KI. Lean NO x Reduction by In-Situ-Formed NH 3 under Periodic Lean/Rich Conditions over Rhodium-Loaded Al-Rich Beta Zeolites. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
15
|
Jing Y, Wang G, Ting KW, Maeno Z, Oshima K, Satokawa S, Nagaoka S, Shimizu KI, Toyao T. Roles of the basic metals La, Ba, and Sr as additives in Al2O3-supported Pd-based three-way catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Zhao H, Hill AJ, Ma L, Bhat A, Jing G, Schwank JW. Progress and future challenges in passive NO adsorption over Pd/zeolite catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01084k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proposed NO adsorption cycles over Pd/zeolite materials.
Collapse
Affiliation(s)
- Huawang Zhao
- Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Alexander J. Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Adarsh Bhat
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guohua Jing
- Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Johannes W. Schwank
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|