1
|
Tomoiaga RB, Ágoston G, Boros K, Nagy LC, Toşa MI, Paizs C, Bencze LC. The Biocatalytic Potential of Aromatic Ammonia-Lyase from Loktanella atrilutea. Chembiochem 2024; 25:e202400011. [PMID: 38415939 DOI: 10.1002/cbic.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Characterization of the aromatic ammonia-lyase from Loktanella atrilutea (LaAAL) revealed reduced activity towards canonical AAL substrates: l-Phe, l-Tyr, and l-His, contrasted by its pronounced efficiency towards 3,4-dimethoxy-l-phenylalanine. Assessing the optimal conditions, LaAAL exhibited maximal activity at pH 9.5 in the ammonia elimination reaction route, distinct from the typical pH ranges of most PALs and TALs. Within the exploration of the ammonia source for the opposite, synthetically valuable ammonia addition reaction, the stability of LaAAL exhibited a positive correlation with the ammonia concentration, with the highest stability in 4 M ammonium carbamate of unadjusted pH of ~9.5. While the enzyme activity increased with rising temperatures yet, the highest operational stability and highest stationary conversions of LaAAL were observed at 30 °C. The substrate scope analysis highlighted the catalytic adaptability of LaAAL in the hydroamination of diverse cinnamic acids, especially of meta-substituted and di-/multi-substituted analogues, with structural modelling exposing steric clashes between the substrates' ortho-substituents and catalytic site residues. LaAAL showed a predilection for ammonia elimination, while classifying as a tyrosine ammonia-lyase (TAL) among the natural AAL classes. However, its distinctive attributes, such as genomic context, unique substrate specificity and catalytic fingerprint, suggest a potential natural role beyond those of known AAL classes.
Collapse
Affiliation(s)
- R B Tomoiaga
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - G Ágoston
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - K Boros
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - L C Nagy
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - M I Toşa
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - C Paizs
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| | - L C Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş Bolyai University, Arany János Str. 11, RO-400028, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Tomoiagă RB, Ursu M, Boros K, Nagy LC, Bencze LC. Ancestral l-amino acid oxidase: From substrate scope exploration to phenylalanine ammonia-lyase assay. J Biotechnol 2023; 377:43-52. [PMID: 37890533 DOI: 10.1016/j.jbiotec.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
In this study we assessed the applicability of the recently reported ancestral l-amino acid oxidase (AncLAAO), for the development of an enzyme-coupled phenylalanine ammonia-lyase (PAL) activity assay. Firstly, the expression and isolation of the AncLAAO-N1 was optimized, followed by activity tests of the obtained octameric N-terminal His-tagged enzyme towards various phenylalanine analogues to assess the compatibility of its substrate scope with that of the well-characterized PALs. AncLAAO-N1 showed high catalytic efficiency towards phenylalanines mono-, di-, or multiple-substituted in the meta- or para-positions, with ortho- substituted substrates being poorly transformed, these results highlighting the significant overlap between its substrate scope and those of PALs. After successful set-up of the AncLAAO-PAL coupled solid phase assay, in a 'proof of concept' approach we demonstrated its applicability for the high-throughput activity screens of PAL-libraries, by screening the saturation mutagenesis-derived I460NNK variant library of PAL from Petroselinum crispum, using p-MeO-phenylalanine as model substrate. Notably, the hits revealed by the coupled assay comprised all the active PAL variants: I460V, I460T, I460S, I460L, previously identified from the tested PAL-library by other assays. Our results validate the applicability of AncLAAO for coupled enzyme systems with phenylalanine ammonia-lyases, including cell-based assays suitable for the high-throughput screening of directed evolution-derived PAL-libraries.
Collapse
Affiliation(s)
- Raluca Bianca Tomoiagă
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, Cluj-Napoca RO-400028, Romania
| | - Marcel Ursu
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, Cluj-Napoca RO-400028, Romania
| | - Krisztina Boros
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, Cluj-Napoca RO-400028, Romania
| | - Levente Csaba Nagy
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, Cluj-Napoca RO-400028, Romania
| | - László Csaba Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, Cluj-Napoca RO-400028, Romania.
| |
Collapse
|
3
|
Dolan JP, Benckendorff CM, Field RA, Miller GJ. Fluorinated nucleosides, nucleotides and sugar nucleotides. Future Med Chem 2023; 15:1111-1114. [PMID: 37466090 DOI: 10.4155/fmc-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Affiliation(s)
- Jonathan P Dolan
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Caecilie Mm Benckendorff
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
4
|
France SP, Lewis RD, Martinez CA. The Evolving Nature of Biocatalysis in Pharmaceutical Research and Development. JACS AU 2023; 3:715-735. [PMID: 37006753 PMCID: PMC10052283 DOI: 10.1021/jacsau.2c00712] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
Biocatalysis is a highly valued enabling technology for pharmaceutical research and development as it can unlock synthetic routes to complex chiral motifs with unparalleled selectivity and efficiency. This perspective aims to review recent advances in the pharmaceutical implementation of biocatalysis across early and late-stage development with a focus on the implementation of processes for preparative-scale syntheses.
Collapse
|
5
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
6
|
Tomoiagă RB, Tork SD, Filip A, Nagy LC, Bencze LC. Phenylalanine ammonia-lyases: combining protein engineering and natural diversity. Appl Microbiol Biotechnol 2023; 107:1243-1256. [PMID: 36662259 DOI: 10.1007/s00253-023-12374-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
In this study, rational design and saturation mutagenesis efforts for engineering phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) provided tailored PALs active towards challenging, highly valuable di-substituted substrates, such as the L-DOPA precursor 3,4-dimethoxy-L-phenylalanine or the 3-bromo-4-methoxy-phenylalanine. The rational design approach and saturation mutagenesis strategy unveiled identical PcPAL variants of improved activity, highlighting the limited mutational variety of the substrate specificity-modulator residues, L134, F137, I460 of PcPAL. Due to the restricted catalytic efficiency of the best performing L134A/I460V and F137V/I460V PcPAL variants, we imprinted these beneficial mutations to PALs of different origins. The variants of PALs from Arabidopsis thaliana (AtPAL) and Anabaena variabilis (AvPAL) showed higher catalytic efficiency than their PcPAL homologues. Further, the engineered PALs were also compared in terms of catalytic efficiency with a novel aromatic ammonia-lyase from Loktanella atrilutea (LaAAL), close relative of the metagenome-derived aromatic ammonia-lyase AL-11, reported recently to possess atypically high activity towards substrates with electron-donor aromatic substituents. Indeed, LaAAL outperformed the engineered Pc/At/AvPALs in the production of 3,4-dimethoxy-L-phenylalanine; however, in case of 3-bromo-4-methoxy derivatives it showed no activity, with computational results supporting the occurrence of steric hindrance. Transferring the unique array of selectivity modulator residues from LaAAL to the well-characterized PALs did not enhance their activity towards the targeted substrates. Moreover, applying the rational design strategy valid for these well-characterized PALs to LaAAL decreased its activity. These results suggest that distinct tailoring rationale is required for LaAAL/AL-11-like aromatic ammonia-lyases, which might represent a distinct PAL subclass, with natural reaction and substrate scope modified through evolutionary processes. KEY POINTS: • PAL-activity for challenging substrates generated by protein engineering • Rational/semi-rational protein engineering reveals constrained mutational variability • Engineered PALs are outperformed by novel ALs of distinct catalytic site signature.
Collapse
Affiliation(s)
- Raluca Bianca Tomoiagă
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Souad Diana Tork
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Alina Filip
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Levente Csaba Nagy
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - László Csaba Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis. JACS AU 2023; 3:47-61. [PMID: 36711082 PMCID: PMC9875253 DOI: 10.1021/jacsau.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
8
|
A growth selection system for the directed evolution of amine-forming or converting enzymes. Nat Commun 2022; 13:7458. [PMID: 36460668 PMCID: PMC9718777 DOI: 10.1038/s41467-022-35228-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Fast screening of enzyme variants is crucial for tailoring biocatalysts for the asymmetric synthesis of non-natural chiral chemicals, such as amines. However, most existing screening methods either are limited by the throughput or require specialized equipment. Herein, we report a simple, high-throughput, low-equipment dependent, and generally applicable growth selection system for engineering amine-forming or converting enzymes and apply it to improve biocatalysts belonging to three different enzyme classes. This results in (i) an amine transaminase variant with 110-fold increased specific activity for the asymmetric synthesis of the chiral amine intermediate of Linagliptin; (ii) a 270-fold improved monoamine oxidase to prepare the chiral amine intermediate of Cinacalcet by deracemization; and (iii) an ammonia lyase variant with a 26-fold increased activity in the asymmetric synthesis of a non-natural amino acid. Our growth selection system is adaptable to different enzyme classes, varying levels of enzyme activities, and thus a flexible tool for various stages of an engineering campaign.
Collapse
|
9
|
Reetz M. Witnessing the Birth of Directed Evolution of Stereoselective Enzymes as Catalysts in Organic Chemistry. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Towards a general approach for tailoring the hydrophobic binding site of phenylalanine ammonia-lyases. Sci Rep 2022; 12:10606. [PMID: 35739148 PMCID: PMC9226071 DOI: 10.1038/s41598-022-14585-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Unnatural substituted amino acids play an important role as chiral building blocks, especially for pharmaceutical industry, where the synthesis of chiral biologically active molecules still represents an open challenge. Recently, modification of the hydrophobic binding pocket of phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) resulted in specifically tailored PcPAL variants, contributing to a rational design template for PAL-activity enhancements towards the differently substituted substrate analogues. Within this study we tested the general applicability of this rational design model in case of PALs, of different sources, such as from Arabidopsis thaliana (AtPAL) and Rhodosporidium toruloides (RtPAL). With some exceptions, the results support that the positions of substrate specificity modulating residues are conserved among PALs, thus the mutation with beneficial effect for PAL-activity enhancement can be predicted using the established rational design model. Accordingly, the study supports that tailoring PALs of different origins and different substrate scope, can be performed through a general method. Moreover, the fact that AtPAL variants I461V, L133A and L257V, all outperformed in terms of catalytic efficiency the corresponding, previously reported, highly efficient PcPAL variants, of identical catalytic site, suggests that not only catalytic site differences influence the PAL-activity, thus for the selection of the optimal PAL-biocatalysts for a targeted process, screening of PALs from different origins, should be included.
Collapse
|
11
|
Galman JL, Parmeggiani F, Seibt L, Birmingham WR, Turner NJ. One-Pot Biocatalytic In Vivo Methylation-Hydroamination of Bioderived Lignin Monomers to Generate a Key Precursor to L-DOPA. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112855. [PMID: 38505118 PMCID: PMC10947412 DOI: 10.1002/ange.202112855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/09/2022]
Abstract
Electron-rich phenolic substrates can be derived from the depolymerisation of lignin feedstocks. Direct biotransformations of the hydroxycinnamic acid monomers obtained can be exploited to produce high-value chemicals, such as α-amino acids, however the reaction is often hampered by the chemical autooxidation in alkaline or harsh reaction media. Regioselective O-methyltransferases (OMTs) are ubiquitous enzymes in natural secondary metabolic pathways utilising an expensive co-substrate S-adenosyl-l-methionine (SAM) as the methylating reagent altering the physicochemical properties of the hydroxycinnamic acids. In this study, we engineered an OMT to accept a variety of electron-rich phenolic substrates, modified a commercial E. coli strain BL21 (DE3) to regenerate SAM in vivo, and combined it with an engineered ammonia lyase to partake in a one-pot, two whole cell enzyme cascade to produce the l-DOPA precursor l-veratrylglycine from lignin-derived ferulic acid.
Collapse
Affiliation(s)
- James L. Galman
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
- FabricNano184–192 Drummond StreetNW1 3HPLondonUK
| | - Fabio Parmeggiani
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
- Department of ChemistryMaterials and Chemical Engineering “G. Natta”Politecnico di MilanoPiazza Leonardo Da Vinci 3220131MilanoItaly
| | - Lisa Seibt
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
| | - William R. Birmingham
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
| | - Nicholas J. Turner
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetM1 7DNManchesterUK
| |
Collapse
|
12
|
Machine learning modeling of family wide enzyme-substrate specificity screens. PLoS Comput Biol 2022; 18:e1009853. [PMID: 35143485 PMCID: PMC8865696 DOI: 10.1371/journal.pcbi.1009853] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/23/2022] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
Biocatalysis is a promising approach to sustainably synthesize pharmaceuticals, complex natural products, and commodity chemicals at scale. However, the adoption of biocatalysis is limited by our ability to select enzymes that will catalyze their natural chemical transformation on non-natural substrates. While machine learning and in silico directed evolution are well-posed for this predictive modeling challenge, efforts to date have primarily aimed to increase activity against a single known substrate, rather than to identify enzymes capable of acting on new substrates of interest. To address this need, we curate 6 different high-quality enzyme family screens from the literature that each measure multiple enzymes against multiple substrates. We compare machine learning-based compound-protein interaction (CPI) modeling approaches from the literature used for predicting drug-target interactions. Surprisingly, comparing these interaction-based models against collections of independent (single task) enzyme-only or substrate-only models reveals that current CPI approaches are incapable of learning interactions between compounds and proteins in the current family level data regime. We further validate this observation by demonstrating that our no-interaction baseline can outperform CPI-based models from the literature used to guide the discovery of kinase inhibitors. Given the high performance of non-interaction based models, we introduce a new structure-based strategy for pooling residue representations across a protein sequence. Altogether, this work motivates a principled path forward in order to build and evaluate meaningful predictive models for biocatalysis and other drug discovery applications. Predicting interactions between compounds and proteins represents a long-standing dream of drug discovery and protein engineering. Robust models of enzyme-substrate scope would dramatically advance our ability to design synthetic routes involving enzymatic catalysis. However, the lack of standardization between compound-protein interaction studies makes it difficult to evaluate the generalizability of such models. In this work we take a critical step forward by standardizing high-quality datasets measuring enzyme-substrate interactions, outlining rigorous evaluations, and proposing a new way to integrate structural information into protein representations. In testing previous modeling approaches, we highlight a surprising inability of existing models to effectively leverage compound-protein interactions to improve generalization, which challenges a perception in the literature. This establishes future opportunities for model development and integration of enzyme-substrate scope models into computer-aided synthesis planning software.
Collapse
|
13
|
Galman JL, Parmeggiani F, Seibt L, Birmingham WR, Turner NJ. One-Pot Biocatalytic In Vivo Methylation-Hydroamination of Bioderived Lignin Monomers to Generate a Key Precursor to L-DOPA. Angew Chem Int Ed Engl 2021; 61:e202112855. [PMID: 34882925 PMCID: PMC9304299 DOI: 10.1002/anie.202112855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/11/2022]
Abstract
Electron‐rich phenolic substrates can be derived from the depolymerisation of lignin feedstocks. Direct biotransformations of the hydroxycinnamic acid monomers obtained can be exploited to produce high‐value chemicals, such as α‐amino acids, however the reaction is often hampered by the chemical autooxidation in alkaline or harsh reaction media. Regioselective O‐methyltransferases (OMTs) are ubiquitous enzymes in natural secondary metabolic pathways utilising an expensive co‐substrate S‐adenosyl‐l‐methionine (SAM) as the methylating reagent altering the physicochemical properties of the hydroxycinnamic acids. In this study, we engineered an OMT to accept a variety of electron‐rich phenolic substrates, modified a commercial E. coli strain BL21 (DE3) to regenerate SAM in vivo, and combined it with an engineered ammonia lyase to partake in a one‐pot, two whole cell enzyme cascade to produce the l‐DOPA precursor l‐veratrylglycine from lignin‐derived ferulic acid.
Collapse
Affiliation(s)
| | - Fabio Parmeggiani
- Politecnico di Milano, Chemistry, Materials and Chemical Engineering "Giulio Natta", ITALY
| | - Lisa Seibt
- The University of Manchester, School of Chemistry, UNITED KINGDOM
| | | | - Nicholas John Turner
- University of Manchester, Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|