1
|
Watanabe Y, Hashishin T, Sato H, Matsuyama T, Nakajima M, Haruta JI, Uchiyama M. DFT Study on Retigerane-Type Sesterterpenoid Biosynthesis: Initial Conformation of GFPP Regulates Biosynthetic Pathway, Ring-Construction Order and Stereochemistry. JACS AU 2024; 4:3484-3491. [PMID: 39328767 PMCID: PMC11423320 DOI: 10.1021/jacsau.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
Retigerane-type sesterterpenoids, which feature a unique 5/6/5/5/5 fused pentacyclic structure with an angular-type triquinane moiety, are biosynthesized via successive carbocation-mediated reactions triggered by terpene cyclases. However, the precise biosynthetic pathways/mechanisms, wherein steric inversion of the carbon skeleton occurs at least once, remain elusive. Two plausible reaction pathways have been proposed, which differ in the order of ring cyclization: A → B/C → D/E-ring(s) (Route 1) and A → E → B → C/D-ring(s) (Route 2). Since the reaction intermediates of these complicated domino-type reaction sequences are experimentally inaccessible, we employed comprehensive density functional theory (DFT) calculations to evaluate these routes. The results indicate that retigeranin biosynthesis proceeds via Route 2 involving a multistep carbocation cascade, in which the order of ring cyclization (A → E → B → C/D) is the key to constructing the angular 5/5/5 triquinane structure with the correct stereochemistry at C3. The result also suggests that slight differences in the initial conformation have a significant effect on the order of cyclization and steric inversion. The computed pathway/mechanism also provides a rational basis for the formation of various related terpenes/terpenoids.
Collapse
Affiliation(s)
- Yuichiro Watanabe
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate
School of Pharmaceutical Sciences, Osaka
University, Suita-shi, Osaka 565-0871, Japan
| | - Takahiro Hashishin
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Sato
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Interdisciplinary
Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Taro Matsuyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Nakajima
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jun-ichi Haruta
- Graduate
School of Pharmaceutical Sciences, Osaka
University, Suita-shi, Osaka 565-0871, Japan
| | - Masanobu Uchiyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research
Initiative for Supra-Materials (RISM), Shinshu
University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
2
|
Guo W, Kong WY, Tantillo DJ. Revisiting a classic carbocation - DFT, coupled-cluster, and ab initio molecular dynamics computations on barbaralyl cation formation and rearrangements. Chem Sci 2024; 15:d4sc04829f. [PMID: 39268206 PMCID: PMC11385376 DOI: 10.1039/d4sc04829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Density functional theory computations were used to model the formation and rearrangement of the barbaralyl cation (C9H+ 9). Two highly delocalized minima were located for C9H+ 9, one of C s symmetry and the other of D 3h symmetry, with the former having lower energy. Quantum chemistry-based NMR predictions affirm that the lower energy structure is the best match with experimental spectra. Partial scrambling was found to proceed through a C 2 symmetric transition structure associated with a barrier of only 2.3 kcal mol-1. The full scrambling was found to involve a C 2v symmetric transition structure associated with a 5.0 kcal mol-1 barrier. Ab initio molecular dynamics simulations initiated from the D 3h C9H+ 9 structure revealed its connection to six minima, due to the six-fold symmetry of the potential energy surface. The effects of tunneling and boron substitution on this complex reaction network were also examined.
Collapse
Affiliation(s)
- Wentao Guo
- Department of Chemistry, Univeristy of California Davis USA
| | - Wang-Yeuk Kong
- Department of Chemistry, Univeristy of California Davis USA
| | | |
Collapse
|
3
|
Luo P, Huang JH, Lv JM, Wang GQ, Hu D, Gao H. Biosynthesis of fungal terpenoids. Nat Prod Rep 2024; 41:748-783. [PMID: 38265076 DOI: 10.1039/d3np00052d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
McNamee RE, Frank N, Christensen KE, Duarte F, Anderson EA. Taming nonclassical carbocations to control small ring reactivity. SCIENCE ADVANCES 2024; 10:eadj9695. [PMID: 38215201 PMCID: PMC10786418 DOI: 10.1126/sciadv.adj9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Prediction of the outcome of ring opening of small organic rings under cationic conditions can be challenging due to the intermediacy of nonclassical carbocations. For example, the solvolysis of cyclobutyl or cyclopropylmethyl derivatives generates up to four products on nucleophilic capture or elimination via cyclopropylcarbinyl and bicyclobutonium ions. Here, we show that such reaction outcomes can be controlled by subtle changes to the structure of nonclassical carbocation. Using bicyclo[1.1.0]butanes as cation precursors, the regio- and stereochemistry of ring opening is shown to depend on the degree and nature of the substituents on the cationic intermediates. Reaction outcomes are rationalized using computational models, resulting in a flowchart to predict product formation from a given cation precursor.
Collapse
Affiliation(s)
| | | | | | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
5
|
Sato H. Theoretical Study of Natural Product Biosynthesis Using Computational Chemistry. Chem Pharm Bull (Tokyo) 2024; 72:524-528. [PMID: 38825452 DOI: 10.1248/cpb.c24-00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The biosynthetic pathways of natural products are complicated, and it is difficult to fully elucidate their details using experimental chemistry alone. In recent years, efforts have been made to elucidate the biosynthetic reaction mechanisms by combining computational and experimental methods. In this review, we will discuss the biosynthetic studies using computational chemistry for various terpene compounds such as cyclooctatin, sesterfisherol, quiannulatene, trichobrasilenol, asperterpenol, preasperterpenoid, spiroviolene, and mangicol.
Collapse
Affiliation(s)
- Hajime Sato
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
- PRESTO, Japan Science and Technology Agency
| |
Collapse
|
6
|
Gu B, Goldfuss B, Schnakenburg G, Dickschat JS. Subrutilane-A Hexacyclic Sesterterpene from Streptomyces subrutilus. Angew Chem Int Ed Engl 2023; 62:e202313789. [PMID: 37846897 DOI: 10.1002/anie.202313789] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
Mining of a terpene synthase from Streptomyces subrutilus resulted in the identification of the hexacyclic sesterterpene subrutilane, besides eight pentacyclic side products. Subrutilane represents the first case of a saturated sesterterpene hydrocarbon. Its structure, including the absolute configuration, was unambiguously determined through X-ray crystallographic analysis and stereoselective deuteration. The cyclisation mechanism to subrutilane and its side products was investigated in all detail by isotopic labelling experiments and DFT calculations. The subrutilane synthase (SrS) also converted (2Z)-GFPP into one major product. Additional compounds were obtained from the substrate analogues (7R)-6,7-dihydro-GFPP and (2Z,7R)-6,7-dihydro-GFPP with blocked reactivity at the C6-C7 bond. Interestingly, the early steps of the cyclisation cascade with (2Z)-GFPP and the saturated substrate analogues were analogous to those of GFPP, but then deviations from the natural cyclisation mode occur.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Gregor Schnakenburg
- Institute for Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
7
|
Nakano M, Gemma R, Sato H. Unraveling the role of prenyl side-chain interactions in stabilizing the secondary carbocation in the biosynthesis of variexenol B. Beilstein J Org Chem 2023; 19:1503-1510. [PMID: 37799177 PMCID: PMC10548252 DOI: 10.3762/bjoc.19.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Terpene cyclization reactions involve a number of carbocation intermediates. In some cases, these carbocations are stabilized by through-space interactions with π orbitals. Several terpene/terpenoids, such as sativene, santalene, bergamotene, ophiobolin and mangicol, possess prenyl side chains that do not participate in the cyclization reaction. The role of these prenyl side chains has been partially investigated, but remains elusive in the cyclization cascade. In this study, we focus on variexenol B that is synthesized from iso-GGPP, as recently reported by Dickschat and co-workers, and investigate the possibility of through-space interactions with prenyl side chains using DFT calculations. Our calculations show that (i) the unstable secondary carbocation is stabilized by the cation-π interaction from prenyl side chains, thereby lowering the activation energy, (ii) the four-membered ring formation is completed through bridging from the exomethylene group, and (iii) the annulation from the exomethylene group proceeds in a barrier-free manner.
Collapse
Affiliation(s)
- Moe Nakano
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Rintaro Gemma
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Hajime Sato
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan
| |
Collapse
|
8
|
Kurita D, Sato H, Miyamoto K, Uchiyama M. Mechanistic Investigation of the Degradation Pathways of α-β/α-α Bridged Epipolythiodioxopiperazines (ETPs). J Org Chem 2023; 88:12797-12801. [PMID: 37574909 DOI: 10.1021/acs.joc.3c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) make up a class of biologically active fungal metabolites with a transannular disulfide bridge. In this work, we used DFT calculations to examine in detail the degradation (desulfurization) pathways of α-β/α-α bridged ETPs. The chemical stability of ETPs is influenced by the type of sulfur bridge, the structural features, and the storage conditions. Our results suggest appropriate protection of the phenolic OH of ETPs would improve various pharmaceutically relevant properties, including bioavailability.
Collapse
Affiliation(s)
- Daiki Kurita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Sato
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
9
|
Wei J, Li JY, Feng XL, Zhang Y, Hu X, Hui H, Xue X, Qi J. Unprecedented Neoverrucosane and Cyathane Diterpenoids with Anti-Neuroinflammatory Activity from Cultures of the Culinary-Medicinal Mushroom Hericium erinaceus. Molecules 2023; 28:6380. [PMID: 37687209 PMCID: PMC10489798 DOI: 10.3390/molecules28176380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The culinary medicinal mushroom Hericium erinaceus holds significant global esteem and has garnered heightened interest within increasingly ageing societies due to its pronounced neuroprotective and anti-neuroinflammatory properties. Within this study, two novel diterpenes, 16-carboxy-13-epi-neoverrucosane (1) and Erinacine L (2); three known xylosyl cyathane diterpenoids, Erinacine A (3), Erinacine C (4), and Erinacine F (5); and four lanostane-type triterpenoids, and three cyclic dipeptides (10-12), in addition to orcinol (13), were isolated from the rice-based cultivation medium of H. erinaceus. Their structures were determined by NMR, HR-ESI-MS, ECD, and calculated NMR. Compound 1 marks a pioneering discovery as the first verrucosane diterpene originating from basidiomycetes, amplifying the scope of fungal natural product chemistry, and the intricate stereochemistry of Compound 5 has been comprehensively assessed for the first time. Compounds 2-5 not only showed encouraging neurotrophic activity in rat adrenal pheochromocytoma PC-12 cells, but also significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglia cell cultures with IC50 values as low as 5.82 ± 0.18 μM. To elucidate the mechanistic underpinnings of these bioactivities, molecular docking simulation was used to analyze and support the interaction of 1 and 2 with inducible NO synthase (iNOS), respectively. In particular, compound 2, a cyathane-xyloside containing an unconventional hemiacetal moiety, is a compelling candidate for the prevention of neurodegenerative diseases. In summation, this investigation contributes substantively to the panorama of fungal diterpene structural diversity, concurrently furnishing additional empirical substantiation for the role of cyathane diterpenes in the amelioration of neurodegenerative afflictions.
Collapse
Affiliation(s)
- Jing Wei
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo 726000, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Hanzhong 723000, China
| | - Jia-yao Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Xi-long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Yilin Zhang
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo 726000, China
| | - Xuansheng Hu
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo 726000, China
| | - Heping Hui
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo 726000, China
| | - Xiaodong Xue
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo 726000, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
10
|
Matsuyama T, Togashi K, Nakano M, Sato H, Uchiyama M. Revision of the Peniroquesine Biosynthetic Pathway by Retro-Biosynthetic Theoretical Analysis: Ring Strain Controls the Unique Carbocation Rearrangement Cascade. JACS AU 2023; 3:1596-1603. [PMID: 37388688 PMCID: PMC10301677 DOI: 10.1021/jacsau.3c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023]
Abstract
Peniroquesine, a sesterterpenoid featuring a unique 5/6/5/6/5 fused pentacyclic ring system, has been known for a long time, but its biosynthetic pathway/mechanism remains elusive. Based on isotopic labeling experiments, a plausible biosynthetic pathway to peniroquesines A-C and their derivatives was recently proposed, in which the characteristic peniroquesine-type 5/6/5/6/5 pentacyclic skeleton is synthesized from geranyl-farnesyl pyrophosphate (GFPP) via a complex concerted A/B/C-ring formation, repeated reverse-Wagner-Meerwein alkyl shifts, three successive secondary (2°) carbocation intermediates, and a highly distorted trans-fused bicyclo[4.2.1]nonane intermediate. However, our density functional theory calculations do not support this mechanism. By applying a retro-biosynthetic theoretical analysis strategy, we were able to find a preferred pathway for peniroquesine biosynthesis, involving a multistep carbocation cascade including triple skeletal rearrangements, trans-cis isomerization, and 1,3-H shift. This pathway/mechanism is in good agreement with all of the reported isotope-labeling results.
Collapse
Affiliation(s)
- Taro Matsuyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ko Togashi
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Moe Nakano
- Interdisciplinary
Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Hajime Sato
- Interdisciplinary
Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Masanobu Uchiyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research
Initiative for Supra-Materials (RISM), Shinshu
University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
11
|
Larmore SP, Champagne PA. Cyclopropylcarbinyl-to-Homoallyl Carbocation Equilibria Influence the Stereospecificity in the Nucleophilic Substitution of Cyclopropylcarbinols. J Org Chem 2023. [PMID: 37141426 DOI: 10.1021/acs.joc.3c00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The synthesis of quaternary homoallylic halides and trichloroacetates from cyclopropylcarbinols, as reported by Marek (J. Am. Chem. Soc. 2020, 142, 5543-5548), is one of the few reported examples of stereospecific nucleophilic substitution involving chiral bridged carbocations. However, for the phenyl-substituted substrates, poor specificity is observed and mixtures of diastereomers are obtained. To understand the nature of the intermediates involved and explain the loss of specificity for certain substrates, we have performed a computational investigation of the reaction mechanism using ωB97X-D optimizations and DLPNO-CCSD(T) energy refinements. Our results indicate that cyclopropylcarbinyl cations are stable intermediates in this reaction, while bicyclobutonium structures are high-energy transition structures that are not involved. Instead, multiple rearrangement pathways of cyclopropylcarbinyl cations were located, including ring openings to homoallylic cations. The activation barriers required to reach such structures are correlated to the nature of the substituents; while direct nucleophilic attack on the chiral cyclopropylcarbinyl cations is kinetically favored for most systems, the rearrangements become competitive with nucleophilic attack for the phenyl-substituted systems, leading to a loss of specificity through rearranged carbocation intermediates. As such, stereospecific reactions of chiral cyclopropylcarbinyl cations depend on the energies required to access their corresponding homoallylic structures, from which selectivity is not guaranteed.
Collapse
Affiliation(s)
- Sean P Larmore
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
12
|
Sato H, Nakano M. Concertedness and Activation Energy Control by Distal Methyl Group during Ring Contraction/Expansion in Scalarane-Type Sesterterpenoid Biosynthesis. Chemistry 2023; 29:e202203076. [PMID: 36411271 DOI: 10.1002/chem.202203076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Salmahyritisol A, similan A, and hippospongide A, which are scalarane-type sesterterpenoids, feature 6/6/5/7/5 pentacyclic skeletons. Although their biosyntheses have been previously proposed to involve a unique skeletal rearrangement reaction, the detailed reaction mechanism remains unclear as none of the corresponding biosynthetic enzymes for this reaction have been reported. Herein, this skeletal rearrangement reaction was investigated using computational techniques, which revealed the following four key features: (i) the distal 24-Me substituent controls both the concertedness and activation energy of this transformation, (ii) enzymes are not responsible for the observed regioselectivity of C12-C20 bond formation, (iii) stereoselectivity is enzyme-regulated, and (iv) protonation is a key step in this skeletal rearrangement process. These new findings provide insight into the C-ring-contraction and D-ring-expansion mechanisms in scalarane-type sesterterpenoid biosyntheses.
Collapse
Affiliation(s)
- Hajime Sato
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Moe Nakano
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| |
Collapse
|
13
|
de Oliveira MT, Alves JMA, Vrech NL, Braga AAC, Barboza CA. A comprehensive benchmark investigation of quantum chemical methods for carbocations. Phys Chem Chem Phys 2023; 25:1903-1922. [PMID: 36541431 DOI: 10.1039/d2cp04603b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of various density functional approximations (DFAs) and an emphasis on popular methods without any consensus have prevailed in computational studies dedicated to carbocations. More importantly, an extensive and rigorous benchmark investigation on density functionals for the class is still lacking. To close this gap, we present a comprehensive benchmark study of quantum chemical methods on a series of classical and nonclassical carbocations, the CARBO33 dataset. We evaluate a total of 107 DFT methods from all rungs giving particular attention to double hybrid density functionals as the potential of the class has been largely undermined in the context of carbocations. To support our findings, DLPNO-CCSD(T) at the complete basis set (CBS) limit and W1-F12 are used as reference methods. Our results indicate that the composite CBS-QB3 method performs poorly and should not be adopted for target energies. Oftentimes, the tested DFAs of a lower rung perform better than several DFAs in a higher rung of Perdew's "Jacob's ladder". Nonetheless, double hybrids DSD-PBEP86-NL and ωB97X-2-D3(BJ) stand out by showing the overall best performance. Among the hybrids evaluated, about half of them show mean absolute deviation (MAD) below 1.1 kcal mol-1, including the popular hybrids M06-2X and mPW1PW91. In this family, MN15-D3(BJ) performs particularly well (MAD = 0.77 kcal mol-1) displaying reliable results across various tests. Highly popular B3LYP exhibited one of the worst performances (MAD = 4.74 kcal mol-1), and we do not recommend its application to carbocations. We also assess the 24 general-purpose basis sets of single- up to quadruple-ζ quality. The best compromise between accuracy and computational cost is achieved with cc-pVTZ followed by def2-TZVP. Computations on larger structures of general interest, including terpene carbocations, are also presented for selected DFT methods confirming general trends in the results.
Collapse
Affiliation(s)
- Marcelo T de Oliveira
- Department of Chemistry and Physics, La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia. .,Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Júlia M A Alves
- Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense 400, 13566-590, São Carlos, SP, Brazil
| | - Natália L Vrech
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Ataualpa A C Braga
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Cristina A Barboza
- Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.,Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw, Poland
| |
Collapse
|
14
|
Sakamoto K, Sato H, Uchiyama M. DFT Study on the Biosynthesis of Asperterpenol and Preasperterpenoid Sesterterpenoids: Exclusion of Secondary Carbocation Intermediates and Origin of Structural Diversification. J Org Chem 2022; 87:6432-6437. [PMID: 35467870 DOI: 10.1021/acs.joc.2c00291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthetic pathway to asperterpenol, a sesterterpenoid featuring a 6/6/8/5 tetracyclic ring system, was proposed to involve three secondary (2°) carbocation intermediates (B, D, and I), but it remains controversial whether or not these are viable. Further, the proposed 11/6/5 tricyclic intermediate C has the same "ChemDraw" structure as an intermediate in the biosynthesis of preasperterpenoid, which has a very different 5/7/(3)6/5 pentacyclic skeleton. Here, we present a detailed scrutiny of the asperterpenol/preasperterpenoid biosynthetic pathways based on comprehensive DFT calculations.
Collapse
Affiliation(s)
- Kyoka Sakamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Sato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
15
|
Abstract
Five analogs of dimethylallyl diphosphate (DMAPP) with additional or shifted Me groups were converted with isopentenyl diphosphate (IPP) and the fungal variediene synthase from Aspergillus brasiliensis (AbVS). These enzymatic reactions resulted in the formation of several new terpene analogs that were isolated and structurally characterised by NMR spectroscopy. Several DMAPP analogs showed a changed reactivity giving access to compounds with unusual skeletons. Their formation is mechanistically rationalised and the absolute configurations of all obtained compounds were determined through a stereoselective deuteration strategy, revealing absolute configurations that are analogous to that of the natural enzyme product variediene.
Collapse
Affiliation(s)
- Lin‐Fu Liang
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
16
|
Sato H, Takagi T, Miyamoto K, Uchiyama M. Theoretical Study on the Mechanism of Spirocyclization in Spiroviolene Biosynthesis. Chem Pharm Bull (Tokyo) 2021; 69:1034-1038. [PMID: 34602572 DOI: 10.1248/cpb.c21-00536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spiroviolene is a spirocyclic triquinane diterpene produced by Streptomyces violens. Recently, a biosynthetic pathway that includes secondary carbocation intermediates and a complicated concerted skeletal rearrangement was proposed for spiroviolene, based upon careful labeling experiments. On the basis of density functional theory (DFT) calculations, we propose a revised pathway for spiroviolene biosynthesis, involving a multistep carbocation cascade that bypasses the formation of unstable secondary carbocations by breaking the adjacent C-C bond to form a more stable tertiary carbocation (IM3) and by Wagner-Meerwein 1,2-methyl rearrangement (IM7).
Collapse
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Taisei Takagi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | | | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Research Initiative for Supra-Materials (RISM), Shinshu University
| |
Collapse
|