1
|
Zi S, Zhu J, Zhai Y, Hu Y, Zhang N, Li S, Liu L, An L, Xi P, Yan CH. Surface Cladding Engineering via Oxygen Sulfur Distribution for Stable Electrocatalytic Oxygen Production. Angew Chem Int Ed Engl 2025; 64:e202413348. [PMID: 39185626 DOI: 10.1002/anie.202413348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Inevitable leaching and corrosion under anodic oxidative environment greatly restrict the lifespan of most catalysts with excellent primitive activity for oxygen production. Here, based on Fick' s Law, we present a surface cladding strategy to mitigate Ni dissolution and stabilize lattice oxygen triggering by directional flow of interfacial electrons and strong electronic interactions via constructing elaborately cladding-type NiO/NiS heterostructure with controlled surface thickness. Multiple in situ characterization technologies indicated that this strategy can effectively prevent the irreversible Ni ions leaching and inhibit lattice oxygen from participating in anodic reaction. Combined with density functional theory calculations, we reveal that the stable interfacial O-Ni-S arrangement can facilitate the accumulation of electrons on surficial NiO side and weaken its Ni-O covalency. This would suppress the overoxidation of Ni and simultaneously fixing the lattice oxygen, thus enabling catalysts with boosted corrosion resistance without sacrificing its activity. Consequently, this cladding-type NiO/NiS heterostructure exhibits excellent performance with a low overpotential of 256 mV after 500 h. Based on Fick's law, this work demonstrates the positive effect of surface modification through precisely adjusting of the oxygen-sulfur exchange process, which has paved an innovative and effective way to solve the instability problem of anodic oxidation.
Collapse
Affiliation(s)
- Shengjie Zi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Jiamin Zhu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Yue Zhai
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, 730000, Lanzhou, China
| | - Nan Zhang
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Shuhui Li
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Luohua Liu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| |
Collapse
|
2
|
Zhang K, Zhao Z, Chen H, Pan Y, Niu B, Long D, Zhang Y. A Review of Advances in Heterostructured Catalysts for Li-S Batteries: Structural Design and Mechanism Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409674. [PMID: 39544121 DOI: 10.1002/smll.202409674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Lithium-sulfur (Li-S) batteries, acclaimed for their high energy density, cost-effectiveness, and environmental benefits, are widely considered as a leading candidate for the next-generation energy storage systems. However, their commercialization is impeded by critical challenges, such as the shuttle effect of lithium polysulfides and sluggish reaction kinetics. These issues can be effectively mitigated through the design of heterojunction catalysts. Despite the remarkable advancements in this field, a comprehensive elucidation of the underlying mechanisms and structure-performance relationships of heterojunction catalysts in sulfur electrocatalysis systems remains conspicuously absent. Here, it is expounded upon the mechanisms underlying heterostructure engineering in Li-S batteries and the latest advancements in heterostructure catalysts guided by these multifarious mechanisms are examined. Furthermore, it illuminates groundbreaking paradigms in heterostructure design, encompassing the realms of composition, structure, function, and application. Finally, the research trends and future development directions for the novel heterojunction materials are extensively deliberated. This study not only provides a comprehensive and profound understanding of heterostructure catalysts in Li-S batteries but also facilitates the exploration of new electrocatalyst systems.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiqiang Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huan Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yukun Pan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Bo Niu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Donghui Long
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yayun Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
3
|
Wang M, Muhich BA, He Z, Yang Z, Yang D, Lucero M, Nguyen HKK, Sterbinsky GE, Árnadóttir L, Zhou H, Fei L, Feng Z. Metal Doping Regulates Electrocatalysts Restructuring During Oxygen Evolution Reaction. CHEMSUSCHEM 2024; 17:e202400332. [PMID: 38728628 DOI: 10.1002/cssc.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
High-efficiency and low-cost catalysts for oxygen evolution reaction (OER) are critical for electrochemical water splitting to generate hydrogen, which is a clean fuel for sustainable energy conversion and storage. Among the emerging OER catalysts, transition metal dichalcogenides have exhibited superior activity compared to commercial standards such as RuO2, but inferior stability due to uncontrolled restructuring with OER. In this study, we create bimetallic sulfide catalysts by adapting the atomic ratio of Ni and Co in CoxNi1-xSy electrocatalysts to investigate the intricate restructuring processes. Surface-sensitive X-ray photoelectron spectroscopy and bulk-sensitive X-ray absorption spectroscopy confirmed the favorable restructuring of transition metal sulfide material following OER processes. Our results indicate that a small amount of Ni substitution can reshape the Co local electronic structure, which regulates the restructuring process to optimize the balance between OER activity and stability. This work represents a significant advancement in the development of efficient and noble metal-free OER electrocatalysts through a doping-regulated restructuring approach.
Collapse
Affiliation(s)
- Maoyu Wang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Brian A Muhich
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Zizhou He
- Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA 70504, United States
| | - Zhenzhen Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Dongqi Yang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Marcos Lucero
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Hoan Kim Khai Nguyen
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - George E Sterbinsky
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Líney Árnadóttir
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - Hua Zhou
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, United States
| | - Ling Fei
- Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA 70504, United States
| | - Zhenxing Feng
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
4
|
Wyss V, Dinu IA, Marot L, Palivan CG, Delley MF. Thermocatalytic epoxidation by cobalt sulfide inspired by the material's electrocatalytic activity for oxygen evolution reaction. Catal Sci Technol 2024; 14:4550-4565. [PMID: 39139589 PMCID: PMC11318377 DOI: 10.1039/d4cy00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
New discoveries in catalysis by earth-abundant materials can be guided by leveraging knowledge across two sub-disciplines of heterogeneous catalysis: electrocatalysis and thermocatalysis. Cobalt sulfide has been reported to be a highly active electrocatalyst for the oxygen evolution reaction (OER). Under these oxidative conditions, cobalt sulfide forms oxidized surfaces that outperform directly prepared cobalt oxide in OER catalysis. We postulated that the catalytic activity of oxidized cobalt sulfide for OER could reflect a more general ability to catalyze O-transfer reactions. Herein, we show that cobalt sulfide (CoS x ) indeed catalyzes the epoxidation of cyclooctene, a thermal O-transfer reaction. Similarly to OER, the surface-oxidized CoS x formed under reaction conditions outperformed the directly prepared cobalt oxide, hydroxide, and oxyhydroxide for epoxidation catalysis. Another notable phenomenological parallel to OER was revealed by the electron paramagnetic resonance (EPR) analysis of all spent Co-based catalysts that showed significant structural changes and the formation of paramagnetic Co(ii) and Co(iv) species. Mechanistic investigations suggest that a higher density of Co(ii) and/or an easier formation of high-valent Co species in the case of surface-oxidized cobalt sulfide is responsible for its high activity as an epoxidation catalyst. Our results provide important insight into the surface chemistry of Co-based catalysts and show the potential of oxidized CoS x as an earth-abundant catalyst for O-transfer reactivity beyond OER. This work highlights the utility of bridging electrocatalysis and thermocatalysis for the development of more sustainable chemical processes.
Collapse
Affiliation(s)
- Vanessa Wyss
- Department of Chemistry, University of Basel 4058 Basel Switzerland
| | | | - Laurent Marot
- Department of Physics, University of Basel 4056 Basel Switzerland
| | | | | |
Collapse
|
5
|
Guo L, Zhang Z, Mu Z, Da P, An L, Shen W, Hou Y, Xi P, Yan CH. Ceria-Optimized Oxygen-Species Exchange in Hierarchical Bimetallic Hydroxide for Electrocatalytic Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406682. [PMID: 38837816 DOI: 10.1002/adma.202406682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 06/07/2024]
Abstract
The utilization of rare earth elements to regulate the interaction between catalysts and oxygen-containing species holds promising prospects in the field of oxygen electrocatalysis. Through structural engineering and adsorption regulation, it is possible to achieve high-performance catalytic sites with a broken activity-stability tradeoff. Herein, this work fabricates a hierarchical CeO2/NiCo hydroxide for electrocatalytic oxygen evolution reaction (OER). This material exhibits superior overpotentials and enhanced stability. Multiple potential-dependent experiments reveal that CeO2 promotes oxygen-species exchange, especially OH- ions, between catalyst and environment, thereby optimizing the redox transformation of hydroxide and the adsorption of oxygen-containing intermediates during OER. This is attributed to the reduction in the adsorption energy barrier of Ni to *OH facilitated by CeO2, particularly the near-interfacial Ni sites. The less-damaging adsorbate evolution mechanism and the CeO2 hierarchical shell significantly enhance the structural robustness, leading to exceptional stability. Additionally, the observed "self-healing" phenomenon provides further substantiation for the accelerated oxygen exchange. This work provides a neat strategy for the synthesis of ceria-based complex hollow electrocatalysts, as well as an in-depth insight into the co-catalytic role of CeO2 in terms of oxygen transfer.
Collapse
Affiliation(s)
- Linchuan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhuang Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhaori Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wei Shen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yichao Hou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
6
|
Gupta N, Segre C, Nickel C, Streb C, Gao D, Glusac KD. Catalytic Water Electrolysis by Co-Cu-W Mixed Metal Oxides: Insights from X-ray Absorption Spectroelectrochemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35793-35804. [PMID: 38949083 DOI: 10.1021/acsami.4c06365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Mixed metal oxides (MMOs) are a promising class of electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Despite their importance for sustainable energy schemes, our understanding of relevant reaction pathways, catalytically active sites, and synergistic effects is rather limited. Here, we applied synchrotron-based X-ray absorption spectroscopy (XAS) to explore the evolution of the amorphous Co-Cu-W MMO electrocatalyst, shown previously to be an efficient bifunctional OER and HER catalyst for water splitting. Ex situ XAS measurements provided structural environments and the oxidation state of the metals involved, revealing Co2+ (octahedral), Cu+/2+ (tetrahedral/square-planar), and W6+ (octahedral) centers. Operando XAS investigations, including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), elucidated the dynamic structural transformations of Co, Cu, and W metal centers during the OER and HER. The experimental results indicate that Co3+ and Cu0 are the active catalytic sites involved in the OER and HER, respectively, while Cu2+ and W6+ play crucial roles as structure stabilizers, suggesting strong synergistic interactions within the Co-Cu-W MMO system. These results, combined with the Tafel slope analysis, revealed that the bottleneck intermediate during the OER is Co3+ hydroperoxide, whose formation is accompanied by changes in the Cu-O bond lengths, pointing to a possible synergistic effect between Co and Cu ions. Our study reveals important structural effects taking place during MMO-driven OER/HER electrocatalysis and provides essential experimental insights into the complex catalytic mechanism of emerging noble-metal-free MMO electrocatalysts for full water splitting.
Collapse
Affiliation(s)
- Nikita Gupta
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Carlo Segre
- Department of Physics & Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Christean Nickel
- Department of Chemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Dandan Gao
- Department of Chemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
7
|
Zhao Y, Wan W, Erni R, Pan L, Patzke GR. Operando Spectroscopic Monitoring of Metal Chalcogenides for Overall Water Splitting: New Views of Active Species and Sites. Angew Chem Int Ed Engl 2024; 63:e202400048. [PMID: 38587199 DOI: 10.1002/anie.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Metal-based chalcogenides exhibit great promise for overall water splitting, yet their intrinsic catalytic reaction mechanisms remain to be fully understood. In this work, we employed operando X-ray absorption (XAS) and in situ Raman spectroscopy to elucidate the structure-activity relationships of low-crystalline cobalt sulfide (L-CoS) catalysts toward overall water splitting. The operando results for L-CoS catalyzing the alkaline hydrogen evolution reaction (HER) demonstrate that the cobalt centers in the bulk are predominantly coordinated by sulfur atoms, which undergo a kinetic structural rearrangement to generate metallic cobalt in S-Co-Co-S moieties as the true catalytically active species. In comparison, during the acidic HER, L-CoS undergoes local structural optimization of Co centers, and H2 production proceeds with adsorption/desorption of key intermediates atop the Co-S-Co configurations. Further operando characterizations highlight the crucial formation of high-valent Co4+ species in L-CoS for the alkaline oxygen evolution reaction (OER), and the formation of such active species was found to be far more facile than in crystalline Co3O4 and Co-LDH references. These insights offer a clear picture of the complexity of active species and site formation in different media, and demonstrate how their restructuring influences the catalytic activity.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Wenchao Wan
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, D-45470, Mülheim an der Ruhr, Germany
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
8
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
9
|
Mariappan A, Mannu P, Ranjith KS, Nga TTT, Han YK, Dong CL, Dharman RK, Oh TH. Novel Heterostructure-Based CoFe and Cobalt Oxysulfide Nanocubes for Effective Bifunctional Electrocatalytic Water and Urea Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310112. [PMID: 38221688 DOI: 10.1002/smll.202310112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Indexed: 01/16/2024]
Abstract
The development of effective oxygen evolution reaction (OER) and urea oxidation reaction (UOR) on heterostructure electrocatalysts with specific interfaces and characteristics provides a distinctive character. In this study, heterostructure nanocubes (NCs) comprising inner cobalt oxysulfide (CoOS) NCs and outer CoFe (CF) layered double hydroxide (LDH) are developed using a hydrothermal methodology. During the sulfidation process, the divalent sulfur ions (S2-) are released from the breakdown of the sulfur source and react with the Co-precursors on the surface leading to the transformation of CoOH nanorods into CoOS nanocubes. Further, X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analyses reveal that the interactions at the interface of the CF@CoOS NCs significantly altered the electronic structure, thus enhancing the electrocatalytic performance. The optimal catalysts exhibited effective OER and UOR activities, the attained potentials are 1.51 and 1.36 V. This remarkable performance is attributable to the induction of electron transfer from the CoFe LDH to CoOS, which reduces the energy barrier of the intermediates for the OER and UOR. Furthermore, an alkaline water and urea two-cell electrolyzer assembled using CF@CoOS-2 NCs and Pt/C as the anode and cathode requires a cell voltage of 1.63 and 1.56 V along with a durability performance.
Collapse
Affiliation(s)
- Athibala Mariappan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Pandian Mannu
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Kugalur Shanmugam Ranjith
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100-715, Republic of Korea
| | - Ta Thi Thuy Nga
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100-715, Republic of Korea
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | | | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| |
Collapse
|
10
|
Huang A, Kong L, Zhang B, Liu X, Wang L, Li L, Xu J. Electrochemical Restructuring Driven Catalytic Cycle of Bi-Based Heterojunctions for High-Performance Lithium-Sulfur Batteries. ACS NANO 2024; 18:12795-12807. [PMID: 38719733 DOI: 10.1021/acsnano.3c12279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Restructuring is an important phenomenon in catalytic reactions. Conversion-type materials with suitable redox potential may undergo in situ electrochemically driven restructurings and induce highly active catalytic sites in a working lithium-sulfur battery. Herein, driven by the electrochemical conversion reaction of BiVO4, a reversible catalytic cycle of Bi/amorphous Li3VO4 (a-Li3VO4) and Bi2S3/a-Li3VO4 heterojunctions is constructed, which targets the oxidation of Li2S and the conversion of polysulfide, respectively. The heterostructures and electrochemically driven size confinement provide abundant sites for shuttle restraining and sulfur conversion. Especially, the p-block Bi and Bi2S3 could dramatically reduce the conversion energy barriers of Li2S and polysulfide by virtue of the p-p orbital hybridization, promoting bidirectional reactions of the sulfur cathode. As a result, the corresponding sulfur cathode possesses a high reversible capacity of 7.5 mAh cm-2 after 120 cycles under a high sulfur loading of 10.3 mg cm-2 with a current density of 0.38 mA cm-2. This study furnishes a feasible scheme to obtain highly effective catalysts for bidirectional sulfur redox by utilizing the electrochemically induced restructuring.
Collapse
Affiliation(s)
- Ao Huang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Linglong Kong
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, School of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Bowen Zhang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Xuefan Liu
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Lu Wang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Lifang Li
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| | - Jing Xu
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
11
|
Vigil SA, Moreno-Hernandez IA. Dissolution Heterogeneity Observed in Anisotropic Ruthenium Dioxide Nanocrystals via Liquid-Phase Transmission Electron Microscopy. J Am Chem Soc 2024; 146. [PMID: 38597585 PMCID: PMC11048125 DOI: 10.1021/jacs.3c13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Noble metal oxides such as ruthenium dioxide are highly active electrocatalysts for anodic reactions in acidic electrolytes, but dissolution during electrochemical operation impedes wide-scale applications in renewable energy technologies. Improving the fundamental understanding of the dissolution dynamics of application-relevant morphologies such as nanocrystals is critical for the grid-scale implementation of these materials. Herein, we report the nanoscale heterogeneity observed via liquid-phase transmission electron microscopy during ruthenium dioxide nanocrystal dissolution under oxidizing conditions. Single-crystalline ruthenium dioxide nanocrystals enabled the direct observation of dissolution along different crystallographic facets, allowing an unprecedented direct comparison of crystal facet stability. The nanoscale observations revealed substantial heterogeneity in the relative stability of crystallographic facets across different nanocrystals, attributed to the nanoscale strains present in these crystals. These findings highlight the importance of nanoscale heterogeneity in determining macroscale properties such as electrocatalyst stability and provide a characterization methodology that can be integrated into next-generation electrocatalyst discovery efforts.
Collapse
Affiliation(s)
- S. Avery Vigil
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | | |
Collapse
|
12
|
Ghosh S, Haycock D, Mehra N, Bera S, Johnson H, Roiban IL, Aouine M, Vernoux P, Thüne P, Schneider WF, Tsampas MN. Climbing the Hydrogen Evolution Volcano with a NiTi Shape Memory Alloy. J Phys Chem Lett 2024; 15:933-939. [PMID: 38241729 DOI: 10.1021/acs.jpclett.3c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Alkaline water electrolysis is a sustainable way to produce green hydrogen using renewable electricity. Even though the rates of the cathodic hydrogen evolution reaction (HER) are 2-3 orders of magnitude less under alkaline conditions than under acidic conditions, the possibility of using non-precious metal catalysts makes alkaline HER appealing. We identify a novel and facile route for substantially improving HER performance via the use of commercially available NiTi shape memory alloys, which upon heating undergo a phase transformation from the monoclinic martensite to the cubic austenite structure. While the room-temperature performance is modest, austenitic NiTi outperforms Pt (which is the state-of-the-art HER electrocatalyst) in terms of current density by ≤50% at 80 °C. Surface ensembles presented by the austenite phase are computed with density functional theory to bind hydrogen more weakly than either metallic Ni or Ti and to have binding energies ideally suited for HER.
Collapse
Affiliation(s)
- Sreetama Ghosh
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612AJ Eindhoven, The Netherlands
- CO2 Research and Green Technologies Centre, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Denver Haycock
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Neha Mehra
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Susanta Bera
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612AJ Eindhoven, The Netherlands
| | - Hannah Johnson
- Toyota Motor Europe NV/SA, Hoge Wei 33, 1930 Zaventem, Belgium
| | - Ioan-Lucian Roiban
- Univ. Lyon, Insa-Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5510, Mateis, 69621 Villeurbanne Cedex, France
| | - Mimoun Aouine
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 69626 Villeurbanne, France
| | - Philippe Vernoux
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS - UMR 5256, IRCELYON, 69626 Villeurbanne, France
| | - Peter Thüne
- Fontys University of Applied Sciences, Postbus 2, 5600 AA Eindhoven, The Netherlands
| | - William F Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mihalis N Tsampas
- Dutch Institute for Fundamental Energy Research (DIFFER), 5612AJ Eindhoven, The Netherlands
| |
Collapse
|
13
|
Lei R, Tang Y, Qiu W, Yan S, Tian X, Wang Q, Chen Q, Wang Z, Qian W, Xu Q, Yang S, Wang X. Prompt Hole Extraction Suppresses V 5+ Dissolution and Sustains Large-Area BiVO 4 Photoanodes for Over 2100 h Water Oxidation. NANO LETTERS 2023; 23:11785-11792. [PMID: 38078823 DOI: 10.1021/acs.nanolett.3c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nanostructured bismuth vanadate (BiVO4) is at the forefront of emerging photoanodes in photoelectrochemical tandem devices for solar water splitting owing to the suitable band edge position and efficient charge separation capability. However, the (photo)chemical corrosion involving V5+ dissolution limits the long-term stability of BiVO4. Herein, guided by DFT calculations, we introduce an ALD-derived NiOx catalyst layer on BiVO4 to stabilize the surface Bi-O bonds, facilitate hole extraction, and thus suppress the V5+ dissolution. At the same time, the ALD NiOx catalyst layer could efficiently suppress the surface recombination and accelerate the surface OER kinetics, boosting the half-cell applied bias photon-to-current efficiency of BiVO4 to 2.05%, as well as a fill factor of 47.1%. By adding trace NaVO3 to the electrolyte, the NiOx/BiVO4 photoanode with an illumination area of 10.5 cm2 shows a record operational stability of more than 2100 h.
Collapse
Affiliation(s)
- Renbo Lei
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Yupu Tang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Weitao Qiu
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Shihan Yan
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Xu Tian
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Qian Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Qindong Chen
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Zhenhui Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Wei Qian
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Qiyong Xu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Shihe Yang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Xinwei Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
14
|
Kumar RS, Mannu P, Prabhakaran S, Nga TTT, Kim Y, Kim DH, Chen J, Dong C, Yoo DJ. Trimetallic Oxide Electrocatalyst for Enhanced Redox Activity in Zinc-Air Batteries Evaluated by In Situ Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303525. [PMID: 37786295 PMCID: PMC10646265 DOI: 10.1002/advs.202303525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Indexed: 10/04/2023]
Abstract
Researchers are investigating innovative composite materials for renewable energy and energy storage systems. The major goals of this studies are i) to develop a low-cost and stable trimetallic oxide catalyst and ii) to change the electrical environment of the active sites through site-selective Mo substitution. The effect of Mo on NiCoMoO4 is elucidated using both in situ X-ray absorption spectroscopy and X-ray diffraction analysis. Also, density functional theory strategies show that NiCoMoO4 has extraordinary catalytic redox activity because of the high adsorption energy of the Mo atom on the active crystal plane. Further, it is demonstrated that hierarchical nanoflower structures of NiCoMoO4 on reduced graphene oxide can be employed as a powerful bifunctional electrocatalyst for oxygen reduction/evolution reactions in alkaline solutions, providing a small overpotential difference of 0.75 V. Also, Zn-air batteries based on the developed bifunctional electrocatalyst exhibit outstanding cycling stability and a high-power density of 125.1 mW cm-2 . This work encourages the use of Zn-air batteries in practical applications and provides an interesting concept for designing a bifunctional electrocatalyst.
Collapse
Affiliation(s)
- Ramasamy Santhosh Kumar
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Pandian Mannu
- Research Center for X‐ray ScienceDepartment of PhysicsTamkang UniversityTamsui25137Taiwan
| | - Sampath Prabhakaran
- Department of Nano Convergence EngineeringJeonbuk National UniversityJeonjuJeonbuk54896Republic of Korea
| | - Ta Thi Thuy Nga
- Research Center for X‐ray ScienceDepartment of PhysicsTamkang UniversityTamsui25137Taiwan
| | - Yangsoo Kim
- Korea Basic Science InstituteJeonju CenterJeonju‐siJeollabuk‐do54896Republic of Korea
| | - Do Hwan Kim
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
- Division of Science Education and Institute of Fusion ScienceJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Jeng‐Lung Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chung‐Li Dong
- Research Center for X‐ray ScienceDepartment of PhysicsTamkang UniversityTamsui25137Taiwan
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
- Department of Life ScienceJeonbuk National UniversityJeonju‐siJeollabuk‐do54896Republic of Korea
| |
Collapse
|
15
|
Ma H, Huang X, Li L, Peng W, Lin S, Ding Y, Mai L. Boosting the Hydrogen Evolution Reaction Performance of P-Doped PtTe 2 Nanocages via Spontaneous Defects Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302685. [PMID: 37312427 DOI: 10.1002/smll.202302685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Indexed: 06/15/2023]
Abstract
PtTe2 , a member of the noble metal dichalcogenides (NMDs), has aroused great interest in exploring its behavior in the hydrogen evolution reaction (HER) due to the unique type-II topological semimetallic nature. In this work, a simple template-free hydrothermal method to obtain the phosphorus-doped (P-doped) PtTe2 nanocages with abundant amorphous and crystalline interface (A/C-P-PtTe2 ) is developed. Revealed by density functional theory calculations, the atomic Te vacancies can spontaneously form on the basal planes of PtTe2 by the P doping, which results in the unsaturated Pt atoms exposed as the active sites in the amorphous layer for HER. Owing to the defective structure, the A/C-P-PtTe2 catalysts have the fast Tafel step determined kinetics in HER, which contributes to an ultralow overpotential (η = 28 mV at 10 mA cm-2 ) and a small Tafel slope of 37 mV dec-1 . More importantly, benefiting from the inner stable crystalline P-PtTe2 nanosheets, limited decay of the performance is observed after chronopotentiometry test. This work reveals the important role of the inherent relationship between structure and activity in PtTe2 for HER, which may bring another enlightenment for the design of efficient catalysts based on NMDs in the near future.
Collapse
Affiliation(s)
- Hancheng Ma
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Luyu Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Peng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sheng Lin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yao Ding
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Mai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
16
|
Zhu J, Zi S, Zhang N, Hu Y, An L, Xi P. Surface Reconstruction of Covellite CuS Nanocrystals for Enhanced OER Catalytic Performance in Alkaline Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301762. [PMID: 37150854 DOI: 10.1002/smll.202301762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Indexed: 05/09/2023]
Abstract
Oxygen evolution reaction (OER) is one of the important half-reactions in energy conversion equipment such as water-spitting devices, rechargeable metal-air batteries, and so on. It is beneficial to develop efficient and low-cost catalysts that understand the reaction mechanism of OER and analyze the reconstruction phenomenon of transition metal sulfide. Interestingly, copper sulfide and cuprous sulfide with the same components possess different reconstruction behaviors due to their different metal ion valence states and different atomic arrangement modes. Because of a unique atomic arrangement sequence and certain cationic defects, the reconstruction phenomenon of CuS nanomaterials are that S2- is firstly oxidized to SO4 2- and then Cux + is converted into CuO via Cu(OH)2 . In addition, the specific "modified hourglass structure" of CuS with excellent conductivity is easier to produce intermediates. Compared with Cu2 S, CuS exhibits excellent OER activity with a lower overpotential of 192 mV at 10 mA cm-2 and remarkable electrochemical stability in 1.0 m KOH for 120 h. Herein, this study elucidates the reconstruction modes of CuS and Cu2 S in the OER process and reveals that CuS has a stronger CuS bond and a faster electronic transmission efficiency due to "modified hourglass structure," resulting in faster reconstruction of CuS than Cu2 S.
Collapse
Affiliation(s)
- Jiamin Zhu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shengjie Zi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Nan Zhang
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
17
|
He XL, Shao B, Huang RK, Dong M, Tong YQ, Luo Y, Meng T, Yang FJ, Zhang Z, Huang J. A Mixed Protonic-Electronic Conductor Base on the Host-Guest Architecture of 2D Metal-Organic Layers and Inorganic Layers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205944. [PMID: 37076939 DOI: 10.1002/advs.202205944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The key to designing and fabricating highly efficient mixed protonic-electronic conductors materials (MPECs) is to integrate the mixed conductive active sites into a single structure, to break through the shortcomings of traditional physical blending. Herein, based on the host-guest interaction, an MPEC is consisted of 2D metal-organic layers and hydrogen-bonded inorganic layers by the assembly methods of layered intercalation. Noticeably, the 2D intercalated materials (≈1.3 nm) exhibit the proton conductivity and electron conductivity, which are 2.02 × 10-5 and 3.84 × 10-4 S cm-1 at 100 °C and 99% relative humidity, much higher than these of pure 2D metal-organic layers (>>1.0 × 10-10 and 2.01×10-8 S cm-1 ), respectively. Furthermore, combining accurate structural information and theoretical calculations reveals that the inserted hydrogen-bonded inorganic layers provide the proton source and a networks of hydrogen-bonds leading to efficient proton transport, meanwhile reducing the bandgap of hybrid architecture and increasing the band electron delocalization of the metal-organic layer to greatly elevate the electron transport of intrinsic 2D metal-organic frameworks.
Collapse
Affiliation(s)
- Xing-Lu He
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Bing Shao
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Rui-Kang Huang
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Min Dong
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Yu-Qing Tong
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yan Luo
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Ting Meng
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Fu-Jie Yang
- College Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510275, P. R. China
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jin Huang
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| |
Collapse
|
18
|
Hu Y, Zheng Y, Jin J, Wang Y, Peng Y, Yin J, Shen W, Hou Y, Zhu L, An L, Lu M, Xi P, Yan CH. Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction. Nat Commun 2023; 14:1949. [PMID: 37029185 PMCID: PMC10082196 DOI: 10.1038/s41467-023-37751-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Dynamic reconstruction of metal sulphides during electrocatalytic oxygen evolution reaction (OER) has hampered the acquisition of legible evidence for comprehensively understanding the phase-transition mechanism and electrocatalytic activity origin. Herein, modelling on a series of cobalt-nickel bimetallic sulphides, we for the first time establish an explicit and comprehensive picture of their dynamic phase evaluation pathway at the pre-catalytic stage before OER process. By utilizing the in-situ electrochemical transmission electron microscopy and electron energy loss spectroscopy, the lattice sulphur atoms of (NiCo)S1.33 particles are revealed to be partially substituted by oxygen from electrolyte to form a lattice oxygen-sulphur coexisting shell surface before the generation of reconstituted active species. Such S-O exchange process is benefitted from the subtle modulation of metal-sulphur coordination form caused by the specific Ni and Co occupation. This unique oxygen-substitution behaviour produces an (NiCo)OxS1.33-x surface to reduce the energy barrier of surface reconstruction for converting sulphides into active oxy/hydroxide derivative, therefore significantly increasing the proportion of lattice oxygen-mediated mechanism compared to the pure sulphide surface. We anticipate this direct observation can provide an explicit picture of catalysts' structural and compositional evolution during the electrocatalytic process.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yantao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yong Peng
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China.
- Electron Microscopy Centre, Lanzhou University, Lanzhou, 730000, China.
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Wei Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yichao Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Liu Zhu
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
- Electron Microscopy Centre, Lanzhou University, Lanzhou, 730000, China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China.
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
19
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Funaki S, Kawawaki T, Okada T, Takemae K, Hossain S, Niihori Y, Naito T, Takagi M, Shimazaki T, Kikkawa S, Yamazoe S, Tachikawa M, Negishi Y. Improved activity for the oxygen evolution reaction using a tiara-like thiolate-protected nickel nanocluster. NANOSCALE 2023; 15:5201-5208. [PMID: 36789780 DOI: 10.1039/d2nr06952k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Practical electrochemical water splitting and carbon-dioxide reduction are desirable for a sustainable energy society. In particular, facilitating the oxygen evolution reaction (OER, the reaction at the anode) will increase the efficiency of these reactions. Nickel (Ni) compounds are excellent OER catalysts under basic conditions, and atomically precise Ni clusters have been actively studied to understand their complex reaction mechanisms. In this study, we evaluated the geometric/electronic structure of tiara-like metal nanoclusters [Nin(PET)2n; n = 4, 5, 6, where PET refers to phenylethanethiolate] with the same SR ligand. The geometric structure of Ni5(SR)10 was determined for the first time using single-crystal X-ray diffraction. Additionally, combined electrochemical measurements and X-ray absorption fine structure measurements revealed that Ni5(SR)10 easily forms an OER intermediate and therefore exhibits a high specific activity.
Collapse
Affiliation(s)
- Sota Funaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tomoshige Okada
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kana Takemae
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sakiat Hossain
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiki Niihori
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takumi Naito
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Makito Takagi
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Tomomi Shimazaki
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masanori Tachikawa
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
21
|
Zhang N, Hu Y, An L, Li Q, Yin J, Li J, Yang R, Lu M, Zhang S, Xi P, Yan CH. Surface Activation and Ni-S Stabilization in NiO/NiS 2 for Efficient Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202207217. [PMID: 35730933 DOI: 10.1002/anie.202207217] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 12/15/2022]
Abstract
Manipulating the active species and improving the structural stabilization of sulfur-containing catalysts during the OER process remain a tremendous challenge. Herein, we constructed NiO/NiS2 and Fe-NiO/NiS2 as catalyst models to study the effect of Fe doping. As expected, Fe-NiO/NiS2 exhibits a low overpotential of 270 mV at 10 mA cm-2 . The accumulation of hydroxyl groups on the surface of materials after Fe doping can promote the formation of highly active NiOOH at a lower OER potential. Moreover, we investigated the level of corrosion of M-S bonds and compared the stability variation of M-S bonds with Fe at different locations. Interestingly, Fe bonded with S in the bulk as the sacrificial agent can alleviate the oxidation corrosion of partial Ni-S bonds and thus endow Fe-NiO/NiS2 long-term durability. This work could motivate the community to focus more on resolving the corrosion of sulfur-containing materials.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qingyu Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianyi Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Rui Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Controlled synthesis and M-position regulation of perovskite fluoride KMF3 (M=Co/Fe) with high-efficiency OER performance. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Zhang N, Hu Y, An L, Li Q, Yin J, Li J, Yang R, Lu M, Zhang S, Xi P, Yan CH. Surface Activation and Ni‐S Stabilization in NiO/NiS2 for Efficient Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nan Zhang
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Yang Hu
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Li An
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Qingyu Li
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Jie Yin
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Jianyi Li
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Rui Yang
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| | - Min Lu
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Sen Zhang
- University of Virginia Department of Chemistry 222 South Tianshui Rd CHINA
| | - Pinxian Xi
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd 730000 Lanzhou CHINA
| | - Chun-Hua Yan
- Lanzhou University College of Chemistry and Chemical Engineering 222 South Tianshui Rd CHINA
| |
Collapse
|
24
|
Budiyanto E, Salamon S, Wang Y, Wende H, Tüysüz H. Phase Segregation in Cobalt Iron Oxide Nanowires toward Enhanced Oxygen Evolution Reaction Activity. JACS AU 2022; 2:697-710. [PMID: 35373196 PMCID: PMC8970005 DOI: 10.1021/jacsau.1c00561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The impact of reduction post-treatment and phase segregation of cobalt iron oxide nanowires on their electrochemical oxygen evolution reaction (OER) activity is investigated. A series of cobalt iron oxide spinel nanowires are prepared via the nanocasting route using ordered mesoporous silica as a hard template. The replicated oxides are selectively reduced through a mild reduction that results in phase transformation as well as the formation of grain boundaries. The detailed structural analyses, including the 57Fe isotope-enriched Mössbauer study, validated the formation of iron oxide clusters supported by ordered mesoporous CoO nanowires after the reduction process. This affects the OER activity significantly, whereby the overpotential at 10 mA/cm2 decreases from 378 to 339 mV and the current density at 1.7 V vs RHE increases by twofold from 150 to 315 mA/cm2. In situ Raman microscopy revealed that the surfaces of reduced CoO were oxidized to cobalt with a higher oxidation state upon solvation in the KOH electrolyte. The implementation of external potential bias led to the formation of an oxyhydroxide intermediate and a disordered-spinel phase. The interactions of iron clusters with cobalt oxide at the phase boundaries were found to be beneficial to enhance the charge transfer of the cobalt oxide and boost the overall OER activity by reaching a Faradaic efficiency of up to 96%. All in all, the post-reduction and phase segregation of cobalt iron oxide play an important role as a precatalyst for the OER.
Collapse
Affiliation(s)
- Eko Budiyanto
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Soma Salamon
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Yue Wang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Heiko Wende
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Harun Tüysüz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Ji Q, Kong Y, Tan H, Duan H, Li N, Tang B, Wang Y, Feng S, Lv L, Wang C, Hu F, Zhang W, Cai L, Yan W. Operando Identification of Active Species and Intermediates on Sulfide Interfaced by Fe 3O 4 for Ultrastable Alkaline Oxygen Evolution at Large Current Density. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yuan Kong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical, Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Na Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Sihua Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Liyang Lv
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Wenhua Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Liang Cai
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|