1
|
Jäckering A, Göttsch F, Schäffler M, Doerr M, Bornscheuer UT, Wei R, Strodel B. From Bulk to Binding: Decoding the Entry of PET into Hydrolase Binding Pockets. JACS AU 2024; 4:4000-4012. [PMID: 39483243 PMCID: PMC11522925 DOI: 10.1021/jacsau.4c00718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 11/03/2024]
Abstract
Plastic-degrading enzymes facilitate the biocatalytic recycling of poly(ethylene terephthalate) (PET), a significant synthetic polymer, and substantial progress has been made in utilizing PET hydrolases for industrial applications. To fully exploit the potential of these enzymes, a deeper mechanistic understanding followed by targeted protein engineering is essential. Through advanced molecular dynamics simulations and free energy analysis methods, we elucidated the complete pathway from the initial binding of two PET hydrolases-the thermophilic leaf-branch compost cutinase (LCC) and polyester hydrolase 1 (PES-H1)-to an amorphous PET substrate, ultimately leading to a PET chain entering the active site in a hydrolyzable conformation. Our findings indicate that initial PET binding is nonspecific and driven by polar and hydrophobic interactions. We demonstrate that the subsequent entry of PET into the active site can occur via one of three key pathways, identifying barriers related to both PET-PET and PET-enzyme interactions, as well as specific residues highlighted through in silico and in vitro mutagenesis. These insights not only enhance our understanding of the mechanisms underlying PET degradation and facilitate the development of targeted enzyme enhancement strategies but also provide a novel framework applicable to enzyme studies across various disciplines.
Collapse
Affiliation(s)
- Anna Jäckering
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University, Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Frederike Göttsch
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Moritz Schäffler
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University, Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Mark Doerr
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Ren Wei
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Birgit Strodel
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University, Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
2
|
Rennison AP, Prestel A, Westh P, Møller MS. Comparative biochemistry of PET hydrolase-carbohydrate-binding module fusion enzymes on a variety of PET substrates. Enzyme Microb Technol 2024; 180:110479. [PMID: 39047349 DOI: 10.1016/j.enzmictec.2024.110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Enzyme-driven recycling of PET has now become a fully developed industrial process. With the right pre-treatment, PET can be completely depolymerized within workable timeframes. This has been realized due to extensive research conducted over the past decade, resulting in a large set of engineered PET hydrolases. Among various engineering strategies to enhance PET hydrolases, fusion with binding domains has been used to tune affinity and boost activity of the enzymes. While fusion enzymes have demonstrated higher activity in many cases, these results are primarily observed under conditions that would not be economically viable at scale. Furthermore, the wide variation in PET substrates, conditions, and combinations of PET hydrolases and binding domains complicates direct comparisons. Here, we present a self-consistent and thorough analysis of two leading PET hydrolases, LCCICCG and PHL7. Both enzymes were evaluated both without and with a substrate-binding domain across a range of industrially relevant PET substrates. We demonstrate that the presence of a substrate-binding module does not significantly affect the affinity of LCCICCG and PHL7 for PET. However, significant differences exist in how the fusion enzymes act on different PET substrates and solid substrate loading, ranging from a 3-fold increase in activity to a 6-fold decrease. These findings could inform the tailoring of enzyme choice to different industrial scenarios.
Collapse
Affiliation(s)
- Andrew Philip Rennison
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs Lyngby DK-2800, Denmark
| | - Andreas Prestel
- Department of Biology, Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej, København N 2200, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs Lyngby DK-2800, Denmark
| | - Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs Lyngby DK-2800, Denmark.
| |
Collapse
|
3
|
Hernández-Sancho JM, Boudigou A, Alván-Vargas MVG, Freund D, Arnling Bååth J, Westh P, Jensen K, Noda-García L, Volke DC, Nikel PI. A versatile microbial platform as a tunable whole-cell chemical sensor. Nat Commun 2024; 15:8316. [PMID: 39333077 PMCID: PMC11436707 DOI: 10.1038/s41467-024-52755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Biosensors are used to detect and quantify chemicals produced in industrial microbiology with high specificity, sensitivity, and portability. Most biosensors, however, are limited by the need for transcription factors engineered to recognize specific molecules. In this study, we overcome the limitations typically associated with traditional biosensors by engineering Pseudomonas putida for whole-cell sensing of a variety of chemicals. Our approach integrates fluorescent reporters with synthetic auxotrophies within central metabolism that can be complemented by target analytes in growth-coupled setups. This platform enables the detection of a wide array of structurally diverse chemicals under various conditions, including co-cultures of producer cell factories and sensor strains. We also demonstrate the applicability of this versatile biosensor platform for monitoring complex biochemical processes, including plastic degradation by either purified hydrolytic enzymes or engineered bacteria. This microbial system provides a rapid, sensitive, and readily adaptable tool for monitoring cell factory performance and for environmental analyzes.
Collapse
Affiliation(s)
- Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Arnaud Boudigou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria V G Alván-Vargas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dekel Freund
- Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jenny Arnling Bååth
- Department of Biotechnology and Biomedicine Interfacial Enzymology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine Interfacial Enzymology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Lianet Noda-García
- Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Feng J, Li H, Lu Y, Li R, Cavaco-Paulo A, Fu J. Non-ionic surfactant PEG: Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate. Int J Biol Macromol 2024; 273:133049. [PMID: 38857727 DOI: 10.1016/j.ijbiomac.2024.133049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
To enhance the enzymatic digestibility of polyethylene terephthalate (PET), which is highly oriented and crystallized, a polyethylene glycol (PEG) surfactant of varying molecular weights was utilized to improve the stability of mutant cutinase from Humicola insolens (HiC) and to increase the accessibility of the enzyme to the substrate. Leveraging the optimal conditions for HiC hydrolysis of PET, the introduction of 1 % w/v PEG significantly increased the yield of PET hydrolysis products. PEG600 was particularly effective, increasing the yield by 64.58 % compared to using HiC alone. Moreover, the mechanisms by which PEG600 and PEG6000 enhance enzyme digestion were extensively examined using circular dichroism and fluorescence spectroscopy. The results from CD and fluorescence analyses indicated that PEG alters the protein conformation, thereby affecting the catalytic effect of the enzyme. Moreover, PEG improved the affinity between HiC and PET by lowering the surface tension of the solution, substantially enhancing PET hydrolysis. This study suggests that PEG holds considerable promise as an enzyme protector, significantly aiding in the hydrophilic modification and degradation of PET in an environmentally friendly and sustainable manner.
Collapse
Affiliation(s)
- Jundan Feng
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Huimin Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Yuzheng Lu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; Mechanical Engineering College, Tarim University, Alar, Xinjiang, China
| | - Rong Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | | | - Jiajia Fu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China.
| |
Collapse
|
5
|
Taxeidis G, Nikolaivits E, Nikodinovic-Runic J, Topakas E. Mimicking the enzymatic plant cell wall hydrolysis mechanism for the degradation of polyethylene terephthalate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124347. [PMID: 38857840 DOI: 10.1016/j.envpol.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Plastic pollution presents a global challenge, impacting ecosystems, wildlife, and economies. Polyethylene terephthalate (PET), widely used in products like bottles, significantly contributes to this issue due to poor waste collection. In recent years, there has been increasing interest in plant biomass-degrading enzymes for plastic breakdown, due to the structural and physicochemical similarities between natural and synthetic polymers. Filamentous fungi involved in hemicellulose degradation have developed a complex mode of action that includes not only enzymes but also biosurfactants; surface-active molecules that facilitate enzyme-substrate interactions. For this reason, this study aimed to mimic the mechanism of biomass degradation by repurposing plant cell wall degrading enzymes including a cutinase and three esterases to cooperatively contribute to PET degradation. Surfactants of different charge were also introduced in the reactions, as their role is similar to biosurfactants, altering the surface tension of the polymers and thus improving enzymes' accessibility. Notably, Fusarium oxysporum cutinase combined with anionic surfactant exhibited a 2.3- and 1.6-fold higher efficacy in hydrolyzing amorphous and semi-crystalline PET, respectively. When cutinase was combined with either of two ferulic acid esterases, it resulted in complete conversion of PET intermediate products to TPA, increasing the overall product release up to 1.9- fold in presence of surfactant. The combination of cutinase with a glucuronoyl esterase demonstrated significant potential in plastic depolymerization, increasing degradation yields in semi-crystalline PET by up to 1.4-fold. The approach of incorporating enzyme cocktails and surfactants emerge as an efficient solution for PET degradation in mild reaction conditions, with potential applications in eco-friendly plastic waste management.
Collapse
Affiliation(s)
- George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou, 15772, Athens, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou, 15772, Athens, Greece
| | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou, 15772, Athens, Greece.
| |
Collapse
|
6
|
Schubert SW, Thomsen TB, Clausen KS, Malmendal A, Hunt CJ, Borch K, Jensen K, Brask J, Meyer AS, Westh P. Relationships of crystallinity and reaction rates for enzymatic degradation of poly (ethylene terephthalate), PET. CHEMSUSCHEM 2024; 17:e202301752. [PMID: 38252197 DOI: 10.1002/cssc.202301752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Biocatalytic degradation of plastic waste is anticipated to play an important role in future recycling systems. However, enzymatic degradation of crystalline poly (ethylene terephthalate) (PET) remains consistently poor. Herein, we employed functional assays to elucidate the molecular underpinnings of this limitation. This included utilizing complementary activity assays to monitor the degradation of PET disks with varying crystallinity (XC), as well as determining enzymatic kinetic parameters for soluble PET fragments. The results indicate that an efficient PET-hydrolase, LCCICCG, operates through an endolytic mode of action, and that its activity is limited by conformational constraints in the PET polymer. Such constraints become more pronounced at high XC values, and this limits the density of productive sites on the PET surface. Endolytic chain-scissions are the dominant reaction type in the initial stage, and this means that little or no soluble organic product are released. However, endolytic cuts gradually and locally promote chain mobility and hence the density of attack sites on the surface. This leads to an upward concave progress curve; a behavior sometimes termed lag-phase kinetics.
Collapse
Affiliation(s)
- Sune W Schubert
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kgs. Lyngby, Denmark
| | - Thore B Thomsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kgs. Lyngby, Denmark
| | - Kristine S Clausen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kgs. Lyngby, Denmark
| | - Anders Malmendal
- Institute of Natural Science and Environmental Chemistry., Roskilde University, Universitetsvej 1, 28 C.1, DK-4000, Roskilde, Denmark
| | - Cameron J Hunt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kgs. Lyngby, Denmark
| | - Kim Borch
- Novozymes A/S, Biologiens Vej 2, DK-2800, Kgs. Lyngby, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Biologiens Vej 2, DK-2800, Kgs. Lyngby, Denmark
| | - Jesper Brask
- Novozymes A/S, Biologiens Vej 2, DK-2800, Kgs. Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Chiba Y, Ooka H, Wintzer ME, Tsunematsu N, Nogawa T, Suzuki T, Dohmae N, Nakamura R. Rationalizing the Influence of the Binding Affinity on the Activity of Phosphoserine Phosphatases. Angew Chem Int Ed Engl 2024; 63:e202318635. [PMID: 38408266 DOI: 10.1002/anie.202318635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 02/28/2024]
Abstract
The Sabatier principle states that catalytic activity can be maximized when the substrate binding affinity is neither too strong nor too weak. Recent studies have shown that the activity of several hydrolases is maximized at intermediate values of the binding affinity (Michaelis-Menten constant: Km ). However, it remains unclear whether this concept of artificial catalysis is applicable to enzymes in general, especially for those which have evolved under different reaction environments. Herein, we show that the activity of phosphoserine phosphatase is also enhanced at an intermediate Km value of approximately 0.5 mM. Within our dataset, the variation of Km by three orders of magnitude accounted for a roughly 18-fold variation in the activity. Owing to the high phylogenetic and physiological diversity of our dataset, our results support the importance of optimizing Km for enzymes in general. On the other hand, a 77-fold variation in the activity was attributed to other physicochemical parameters, such as the Arrhenius prefactor of kcat , and could not be explained by the Sabatier principle. Therefore, while tuning the binding affinity according to the Sabatier principle is an important consideration, the Km value is only one of many physicochemical parameters which must be optimized to maximize enzymatic activity.
Collapse
Affiliation(s)
- Yoko Chiba
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Faculty of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Hideshi Ooka
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Marie E Wintzer
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Nao Tsunematsu
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Toshihiko Nogawa
- Molecular Structure Characterization unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ryuhei Nakamura
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
8
|
Rennison AP, Nousi A, Westh P, Marie R, Møller MS. Unveiling PET Hydrolase Surface Dynamics through Fluorescence Microscopy. Chembiochem 2024; 25:e202300661. [PMID: 38224131 DOI: 10.1002/cbic.202300661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/16/2024]
Abstract
PET hydrolases are an emerging class of enzymes that are being heavily researched for their use in bioprocessing polyethylene terephthalate (PET). While work has been done in studying the binding of PET oligomers to the active site of these enzymes, the dynamics of PET hydrolases binding to a bulk PET surface is an unexplored area. Here, methods were developed for total internal reflection fluorescence (TIRF) microscopy and fluorescence recovery after photobleaching (FRAP) microscopy to study the adsorption and desorption dynamics of these proteins onto a PET surface. TIRF microscopy was employed to measure both on and off rates of two of the most commonly studied PET hydrolases, PHL7 and LCC, on a PET surface. It was found that these proteins have a much slower off rates on the order of 10-3 s-1 , comparable to non-productive binding in enzymes such as cellulose. In combination with FRAP microscopy, a dynamic model is proposed in which adsorption and desorption dominates over lateral diffusion over the surface. The results of this study could have implications for the future engineering of PET hydrolases, either to target them to a PET surface or to modulate interaction with their substrate.
Collapse
Affiliation(s)
- A P Rennison
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - A Nousi
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - P Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - R Marie
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - M S Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Jiang Y, Ding N, Shao Q, Stull SL, Cheng Z, Yang ZJ. Substrate Positioning Dynamics Involves a Non-Electrostatic Component to Mediate Catalysis. J Phys Chem Lett 2023; 14:11480-11489. [PMID: 38085952 PMCID: PMC11211065 DOI: 10.1021/acs.jpclett.3c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Substrate positioning dynamics (SPD) orients the substrate in the active site, thereby influencing catalytic efficiency. However, it remains unknown whether SPD effects originate primarily from electrostatic perturbation inside the enzyme or can independently mediate catalysis with a significant non-electrostatic component. In this work, we investigated how the non-electrostatic component of SPD affects transition state (TS) stabilization. Using high-throughput enzyme modeling, we selected Kemp eliminase variants with similar electrostatics inside the enzyme but significantly different SPD. The kinetic parameters of these mutants were experimentally characterized. We observed a valley-shaped, two-segment linear correlation between the TS stabilization free energy (converted from kinetic parameters) and substrate positioning index (a metric to quantify SPD). The energy varies by approximately 2 kcal/mol. Favorable SPD was observed for the distal mutant R154W, increasing the proportion of reactive conformations and leading to the lowest activation free energy. These results indicate the substantial contribution of the non-electrostatic component of SPD to enzyme catalytic efficiency.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sebastian L. Stull
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zihao Cheng
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J. Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
10
|
Acosta DJ, Alper HS. Advances in enzymatic and organismal technologies for the recycling and upcycling of petroleum-derived plastic waste. Curr Opin Biotechnol 2023; 84:103021. [PMID: 37980777 DOI: 10.1016/j.copbio.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023]
Abstract
Biological catalysts are emerging with the capability to depolymerize a wide variety of plastics. Improving and discovering these catalysts has leveraged a range of tools, including microbial ecology studies, high-throughput selections, and computationally guided mutational studies. In this review, we discuss the prospects for biological solutions to plastic recycling and upcycling with a focus on major advances in polyethylene terephthalate depolymerization, expanding the range of polymers with known biological catalysts, and the utilization of derived products. We highlight several recent improvements in enzymes and reaction properties, the discovery of a wide variety of novel plastic-depolymerizing biocatalysts, and how depolymerization products can be utilized in recycling and upcycling.
Collapse
Affiliation(s)
- Daniel J Acosta
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
11
|
Yang ZJ, Shao Q, Jiang Y, Jurich C, Ran X, Juarez RJ, Yan B, Stull SL, Gollu A, Ding N. Mutexa: A Computational Ecosystem for Intelligent Protein Engineering. J Chem Theory Comput 2023; 19:7459-7477. [PMID: 37828731 PMCID: PMC10653112 DOI: 10.1021/acs.jctc.3c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/14/2023]
Abstract
Protein engineering holds immense promise in shaping the future of biomedicine and biotechnology. This Review focuses on our ongoing development of Mutexa, a computational ecosystem designed to enable "intelligent protein engineering". In this vision, researchers will seamlessly acquire sequences of protein variants with desired functions as biocatalysts, therapeutic peptides, and diagnostic proteins through a finely-tuned computational machine, akin to Amazon Alexa's role as a versatile virtual assistant. The technical foundation of Mutexa has been established through the development of a database that combines and relates enzyme structures and their respective functions (e.g., IntEnzyDB), workflow software packages that enable high-throughput protein modeling (e.g., EnzyHTP and LassoHTP), and scoring functions that map the sequence-structure-function relationship of proteins (e.g., EnzyKR and DeepLasso). We will showcase the applications of these tools in benchmarking the convergence conditions of enzyme functional descriptors across mutants, investigating protein electrostatics and cavity distributions in SAM-dependent methyltransferases, and understanding the role of nonelectrostatic dynamic effects in enzyme catalysis. Finally, we will conclude by addressing the future steps and fundamental challenges in our endeavor to develop new Mutexa applications that assist the identification of beneficial mutants in protein engineering.
Collapse
Affiliation(s)
- Zhongyue J. Yang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data
Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christopher Jurich
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Xinchun Ran
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Reecan J. Juarez
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Bailu Yan
- Department
of Biostatistics, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Sebastian L. Stull
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anvita Gollu
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
12
|
Arnal G, Anglade J, Gavalda S, Tournier V, Chabot N, Bornscheuer UT, Weber G, Marty A. Assessment of Four Engineered PET Degrading Enzymes Considering Large-Scale Industrial Applications. ACS Catal 2023; 13:13156-13166. [PMID: 37881793 PMCID: PMC10594578 DOI: 10.1021/acscatal.3c02922] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Indexed: 10/27/2023]
Abstract
In recent years, enzymatic recycling of the widely used polyester polyethylene terephthalate (PET) has become a complementary solution to current thermomechanical recycling for colored, opaque, and mixed PET. A large set of promising hydrolases that depolymerize PET have been found and enhanced by worldwide initiatives using various methods of protein engineering. Despite the achievements made in these works, it remains difficult to compare enzymes' performance and their applicability to large-scale reactions due to a lack of homogeneity between the experimental protocols used. Here, we pave the way for a standardized enzymatic PET hydrolysis protocol using reaction conditions relevant for larger scale hydrolysis and apply these parameters to four recently reported PET hydrolases (LCCICCG, FAST-PETase, HotPETase, and PES-H1L92F/Q94Y). We show that FAST-PETase and HotPETase have intrinsic limitations that may not permit their application on larger reaction scales, mainly due to their relatively low depolymerization rates. With 80% PET depolymerization, PES-H1L92F/Q94Y may be a suitable candidate for industrial reaction scales upon further rounds of enzyme evolution. LCCICCG outperforms the other enzymes, converting 98% of PET into the monomeric products terephthalic acid (TPA) and ethylene glycol (EG) in 24 h. In addition, we optimized the reaction conditions of LCCICCG toward economic viability, reducing the required amount of enzyme by a factor of 3 and the temperature of the reaction from 72 to 68 °C. We anticipate our findings to advance enzymatic PET hydrolysis toward a coherent assessment of the enzymes and materialize feasibility at larger reaction scales.
Collapse
Affiliation(s)
- Grégory Arnal
- Carbios, Parc Cataroux—Bâtiment
B80, 8 Rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Julien Anglade
- Toulouse
Biotechnology Institute, TBI, Université
de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Sabine Gavalda
- Carbios, Parc Cataroux—Bâtiment
B80, 8 Rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Vincent Tournier
- Carbios, Parc Cataroux—Bâtiment
B80, 8 Rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Nicolas Chabot
- Carbios, Parc Cataroux—Bâtiment
B80, 8 Rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Uwe T. Bornscheuer
- Institute
of Biochemistry, Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Gert Weber
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin
für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Alain Marty
- Carbios, Parc Cataroux—Bâtiment
B80, 8 Rue de la Grolière, 63100 Clermont-Ferrand, France
| |
Collapse
|
13
|
Sui B, Wang T, Fang J, Hou Z, Shu T, Lu Z, Liu F, Zhu Y. Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes. Front Microbiol 2023; 14:1265139. [PMID: 37849919 PMCID: PMC10577388 DOI: 10.3389/fmicb.2023.1265139] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Polyethylene terephthalate (PET) is a synthetic polymer in the polyester family. It is widely found in objects used daily, including packaging materials (such as bottles and containers), textiles (such as fibers), and even in the automotive and electronics industries. PET is known for its excellent mechanical properties, chemical resistance, and transparency. However, these features (e.g., high hydrophobicity and high molecular weight) also make PET highly resistant to degradation by wild-type microorganisms or physicochemical methods in nature, contributing to the accumulation of plastic waste in the environment. Therefore, accelerated PET recycling is becoming increasingly urgent to address the global environmental problem caused by plastic wastes and prevent plastic pollution. In addition to traditional physical cycling (e.g., pyrolysis, gasification) and chemical cycling (e.g., chemical depolymerization), biodegradation can be used, which involves breaking down organic materials into simpler compounds by microorganisms or PET-degrading enzymes. Lipases and cutinases are the two classes of enzymes that have been studied extensively for this purpose. Biodegradation of PET is an attractive approach for managing PET waste, as it can help reduce environmental pollution and promote a circular economy. During the past few years, great advances have been accomplished in PET biodegradation. In this review, current knowledge on cutinase-like PET hydrolases (such as TfCut2, Cut190, HiC, and LCC) was described in detail, including the structures, ligand-protein interactions, and rational protein engineering for improved PET-degrading performance. In particular, applications of the engineered catalysts were highlighted, such as improving the PET hydrolytic activity by constructing fusion proteins. The review is expected to provide novel insights for the biodegradation of complex polymers.
Collapse
Affiliation(s)
- Beibei Sui
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Jingxiang Fang
- Rizhao Administration for Market Regulation, Rizhao, Shandong, China
| | - Zuoxuan Hou
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Ting Shu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Zhenhua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Youshuang Zhu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
14
|
Ooka H, Chiba Y, Nakamura R. Thermodynamic principle to enhance enzymatic activity using the substrate affinity. Nat Commun 2023; 14:4860. [PMID: 37620340 PMCID: PMC10449852 DOI: 10.1038/s41467-023-40471-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Understanding how to tune enzymatic activity is important not only for biotechnological applications, but also to elucidate the basic principles guiding the design and optimization of biological systems in nature. So far, the Michaelis-Menten equation has provided a fundamental framework of enzymatic activity. However, there is still no concrete guideline on how the parameters should be optimized towards higher activity. Here, we demonstrate that tuning the Michaelis-Menten constant ([Formula: see text]) to the substrate concentration ([Formula: see text]) enhances enzymatic activity. This guideline ([Formula: see text]) was obtained mathematically by assuming that thermodynamically favorable reactions have higher rate constants, and that the total driving force is fixed. Due to the generality of these thermodynamic considerations, we propose [Formula: see text] as a general concept to enhance enzymatic activity. Our bioinformatic analysis reveals that the [Formula: see text] and in vivo substrate concentrations are consistent across a dataset of approximately 1000 enzymes, suggesting that even natural selection follows the principle [Formula: see text].
Collapse
Affiliation(s)
- Hideshi Ooka
- Biofunctional Catalyst Research Team, Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yoko Chiba
- Biofunctional Catalyst Research Team, Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Faculty of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ryuhei Nakamura
- Biofunctional Catalyst Research Team, Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
15
|
Tian Y, Wang Y, Zhong Y, Møller MS, Westh P, Svensson B, Blennow A. Interfacial Catalysis during Amylolytic Degradation of Starch Granules: Current Understanding and Kinetic Approaches. Molecules 2023; 28:molecules28093799. [PMID: 37175208 PMCID: PMC10180094 DOI: 10.3390/molecules28093799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Enzymatic hydrolysis of starch granules forms the fundamental basis of how nature degrades starch in plant cells, how starch is utilized as an energy resource in foods, and develops efficient, low-cost saccharification of starch, such as bioethanol and sweeteners. However, most investigations on starch hydrolysis have focused on its rates of degradation, either in its gelatinized or soluble state. These systems are inherently more well-defined, and kinetic parameters can be readily derived for different hydrolytic enzymes and starch molecular structures. Conversely, hydrolysis is notably slower for solid substrates, such as starch granules, and the kinetics are more complex. The main problems include that the surface of the substrate is multifaceted, its chemical and physical properties are ill-defined, and it also continuously changes as the hydrolysis proceeds. Hence, methods need to be developed for analyzing such heterogeneous catalytic systems. Most data on starch granule degradation are obtained on a long-term enzyme-action basis from which initial rates cannot be derived. In this review, we discuss these various aspects and future possibilities for developing experimental procedures to describe and understand interfacial enzyme hydrolysis of native starch granules more accurately.
Collapse
Affiliation(s)
- Yu Tian
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Interfacial Enzymology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
16
|
Avilan L, Lichtenstein BR, König G, Zahn M, Allen MD, Oliveira L, Clark M, Bemmer V, Graham R, Austin HP, Dominick G, Johnson CW, Beckham GT, McGeehan JE, Pickford AR. Concentration-Dependent Inhibition of Mesophilic PETases on Poly(ethylene terephthalate) Can Be Eliminated by Enzyme Engineering. CHEMSUSCHEM 2023; 16:e202202277. [PMID: 36811288 DOI: 10.1002/cssc.202202277] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Enzyme-based depolymerization is a viable approach for recycling of poly(ethylene terephthalate) (PET). PETase from Ideonella sakaiensis (IsPETase) is capable of PET hydrolysis under mild conditions but suffers from concentration-dependent inhibition. In this study, this inhibition is found to be dependent on incubation time, the solution conditions, and PET surface area. Furthermore, this inhibition is evident in other mesophilic PET-degrading enzymes to varying degrees, independent of the level of PET depolymerization activity. The inhibition has no clear structural basis, but moderately thermostable IsPETase variants exhibit reduced inhibition, and the property is completely absent in the highly thermostable HotPETase, previously engineered by directed evolution, which simulations suggest results from reduced flexibility around the active site. This work highlights a limitation in applying natural mesophilic hydrolases for PET hydrolysis and reveals an unexpected positive outcome of engineering these enzymes for enhanced thermostability.
Collapse
Affiliation(s)
- Luisana Avilan
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| | - Bruce R Lichtenstein
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| | - Gerhard König
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| | - Michael Zahn
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| | - Mark D Allen
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| | - Liliana Oliveira
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| | - Matilda Clark
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| | - Victoria Bemmer
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| | - Rosie Graham
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| | - Harry P Austin
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, D-17487, Greifswald, Germany
| | - Graham Dominick
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, United States
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, United States
| | - Gregg T Beckham
- BOTTLE Consortium, Golden, CO 80401, United States
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, United States
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| | - Andrew R Pickford
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
- BOTTLE Consortium, Golden, CO 80401, United States
| |
Collapse
|
17
|
Rennison AP, Westh P, Møller MS. Protein-plastic interactions: The driving forces behind the high affinity of a carbohydrate-binding module for polyethylene terephthalate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161948. [PMID: 36739021 DOI: 10.1016/j.scitotenv.2023.161948] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Polyethylene terephthalate (PET) waste is a common pollutant in the environment, mainly due to resistance of the plastic to bio-degradation. Nevertheless, hydrolytic enzymes have been identified with activity on this substrate, which are continually being engineered to increase activity. Some insoluble biological polymers are degraded by enzymes with a multi-domain architecture, comprising of a catalytic domain, and a substrate-binding domain, such as a carbohydrate-binding module (CBM). Enzymes that degrade PET have been shown to have a higher activity when fused with these CBMs, indicating a promising route for engineering better enzymes for plastic bioprocessing. However, no detailed study of the affinity and binding mechanism of these domains on PET has yet been made. Here, we perform an in depth analysis of a binding domain from CBM family 2 on PET, showing that the affinity of the protein for the plastic is highly dependent on temperature and crystallinity of the plastic. We also investigate the mechanism of the interaction, and show how affinity may be engineered in both directions. CBM affinity for other synthetic polymers is also demonstrated for the first time. Our results demonstrate that the substrate affinity of fusion enzymes with binding modules can be tuned to the desired level.
Collapse
Affiliation(s)
- Andrew Philip Rennison
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
18
|
Hellesnes KN, Vijayaraj S, Fojan P, Petersen E, Courtade G. Biochemical Characterization and NMR Study of a PET-Hydrolyzing Cutinase from Fusarium solani pisi. Biochemistry 2023; 62:1369-1375. [PMID: 36967526 PMCID: PMC10116592 DOI: 10.1021/acs.biochem.2c00619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
In recent years, the drawbacks of plastics have become evident, with plastic pollution becoming a major environmental issue. There is an urgent need to find solutions to efficiently manage plastic waste by using novel recycling methods. Biocatalytic recycling of plastics by using enzyme-catalyzed hydrolysis is one such solution that has gained interest, in particular for recycling poly(ethylene terephthalate) (PET). To provide insights into PET hydrolysis by cutinases, we have here characterized the kinetics of a PET-hydrolyzing cutinase from Fusarium solani pisi (FsC) at different pH values, mapped the interaction between FsC and the PET analogue BHET by using NMR spectroscopy, and monitored product release directly and in real time by using time-resolved NMR experiments. We found that primarily aliphatic side chains around the active site participate in the interaction with BHET and that pH conditions and a mutation around the active site (L182A) can be used to tune the relative amounts of degradation products. Moreover, we propose that the low catalytic performance of FsC on PET is caused by poor substrate binding combined with slow MHET hydrolysis. Overall, our results provide insights into obstacles that preclude efficient PET hydrolysis by FsC and suggest future approaches for overcoming these obstacles and generating efficient PET-hydrolyzing enzymes.
Collapse
|
19
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
20
|
Mrigwani A, Pitaliya M, Kaur H, Kasilingam B, Thakur B, Guptasarma P. Rational mutagenesis of Thermobifida fusca cutinase to modulate the enzymatic degradation of polyethylene terephthalate. Biotechnol Bioeng 2023; 120:674-686. [PMID: 36514261 DOI: 10.1002/bit.28305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Thermobifida fusca cutinase (TfCut2) is a carboxylesterase (CE) which degrades polyethylene terephthalate (PET) as well as its degradation intermediates [such as oligoethylene terephthalate (OET), or bis-/mono-hydroxyethyl terephthalate (BHET/MHET)] into terephthalic acid (TPA). Comparisons of the surfaces of certain CEs (including TfCut2) were combined with docking and molecular dynamics simulations involving 2HE-(MHET)3, a three-terephthalate OET, to support the rational design of 22 variants with potential for improved generation of TPA from PET, comprising 15 single mutants (D12L, E47F, G62A, L90A, L90F, H129W, W155F, ΔV164, A173C, H184A, H184S, F209S, F209I, F249A, and F249R), 6 double mutants [H129W/T136S, A173C/A206C, A173C/A210C, G62A/L90F, G62A/F209I, and G62A/F249R], and 1 triple mutant [G62A/F209I/F249R]. Of these, nine displayed no activity, three displayed decreased activity, three displayed comparable activity, and seven displayed increased (~1.3- to ~7.2-fold) activity against solid PET, while all variants displayed activity against BHET. Of the variants that displayed increased activity against PET, four displayed more activity than G62A, the most-active mutant of TfCut2 known till date. Of these four, three displayed even more activity than LCC (G62A/F209I, G62A/F249R, and G62A/F209I/F249R), a CE known to be ~5-fold more active than wild-type TfCut2. These improvements derived from changes in PET binding and not changes in catalytic efficiency.
Collapse
Affiliation(s)
- Arpita Mrigwani
- Centre for Protein Science, Design and Engineering (CPSDE) and Hyperthermophile Enzyme Hydrolase Research Centre (HEHRC), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar (Mohali), Punjab, India
| | - Madhav Pitaliya
- Centre for Protein Science, Design and Engineering (CPSDE) and Hyperthermophile Enzyme Hydrolase Research Centre (HEHRC), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar (Mohali), Punjab, India
| | - Harman Kaur
- Centre for Protein Science, Design and Engineering (CPSDE) and Hyperthermophile Enzyme Hydrolase Research Centre (HEHRC), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar (Mohali), Punjab, India
| | - Bharathraj Kasilingam
- Centre for Protein Science, Design and Engineering (CPSDE) and Hyperthermophile Enzyme Hydrolase Research Centre (HEHRC), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar (Mohali), Punjab, India
| | - Bhishem Thakur
- Centre for Protein Science, Design and Engineering (CPSDE) and Hyperthermophile Enzyme Hydrolase Research Centre (HEHRC), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar (Mohali), Punjab, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE) and Hyperthermophile Enzyme Hydrolase Research Centre (HEHRC), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar (Mohali), Punjab, India
| |
Collapse
|
21
|
Orlando M, Molla G, Castellani P, Pirillo V, Torretta V, Ferronato N. Microbial Enzyme Biotechnology to Reach Plastic Waste Circularity: Current Status, Problems and Perspectives. Int J Mol Sci 2023; 24:3877. [PMID: 36835289 PMCID: PMC9967032 DOI: 10.3390/ijms24043877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. This review reports on the prospective of biotechnological tools for plastic bio-recycling within the framework of plastic waste management in Europe. Available biotechnology tools can support polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based depolymerization, even if this process is currently effective only on ideal polyester-based polymers. To extend the contribution of biotechnology to plastic circularity, optimization of collection and sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental impact in comparison with the present approaches should be developed to depolymerize (available or new) plastic materials, that should be designed for the required durability and for being susceptible to the action of enzymes.
Collapse
Affiliation(s)
- Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Pietro Castellani
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| | - Valentina Pirillo
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| | - Navarro Ferronato
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| |
Collapse
|
22
|
A new continuous assay for quantitative assessment of enzymatic degradation of poly(ethylene terephthalate) (PET). Enzyme Microb Technol 2023; 162:110142. [DOI: 10.1016/j.enzmictec.2022.110142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
23
|
Kawai F, Furushima Y, Mochizuki N, Muraki N, Yamashita M, Iida A, Mamoto R, Tosha T, Iizuka R, Kitajima S. Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190. AMB Express 2022; 12:134. [DOI: 10.1186/s13568-022-01474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractThe enzymatic recycling of polyethylene terephthalate (PET) can be a promising approach to tackle the problem of plastic waste. The thermostability and activity of PET-hydrolyzing enzymes are still insufficient for practical application. Pretreatment of PET waste is needed for bio-recycling. Here, we analyzed the degradation of PET films, packages, and bottles using the newly engineered cutinase Cut190. Using gel permeation chromatography and high-performance liquid chromatography, the degradation of PET films by the Cut190 variant was shown to proceed via a repeating two-step hydrolysis process; initial endo-type scission of a surface polymer chain, followed by exo-type hydrolysis to produce mono/bis(2-hydroxyethyl) terephthalate and terephthalate from the ends of fragmented polymer molecules. Amorphous PET powders were degraded more than twofold higher than amorphous PET film with the same weight. Moreover, homogenization of post-consumer PET products, such as packages and bottles, increased their degradability, indicating the importance of surface area for the enzymatic hydrolysis of PET. In addition, it was required to maintain an alkaline pH to enable continuous enzymatic hydrolysis, by increasing the buffer concentration (HEPES, pH 9.0) depending on the level of the acidic products formed. The cationic surfactant dodecyltrimethylammonium chloride promoted PET degradation via adsorption on the PET surface and binding to the anionic surface of the Cut190 variant. The Cut190 variant also hydrolyzed polyethylene furanoate. Using the best performing Cut190 variant (L136F/Q138A/S226P/R228S/D250C-E296C/Q123H/N202H/K305del/L306del/N307del) and amorphous PET powders, more than 90 mM degradation products were obtained in 3 days and approximately 80 mM in 1 day.
Graphical Abstract
Collapse
|
24
|
James A, De S. Cation–π and hydrophobic interaction controlled PET recognition in double mutated cutinase – identification of a novel binding subsite for better catalytic activity. RSC Adv 2022; 12:20563-20577. [PMID: 35919142 PMCID: PMC9284348 DOI: 10.1039/d2ra03394a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
Accelerated hydrolysis of polyethylene terephthalate (PET) by enzymatic surface modification of various hydrolases, which would not degrade the building blocks of PET in order to retain the quality of recycled PET, is a promising research area. Many studies have been reported to identify mutations of different hydrolases that can improve PET degradation. Recently, the mutation of glycine and phenyl alanine with alanine in cutinase was found to improve the activity of PET degradation 6-fold. Yet, a deep insight into the overall structural basis as well as the explicit role played by the amino acid residues for PET degradation is still elusive, which is nevertheless important for comparative analyses, structure–function relations and rational optimization of the degradation process. Our molecular dynamics simulations coupled with quantum mechanical study demonstrate that mutations of anchor residue phenyl alanine to alanine at the PET binding cleft of cutinase unveiled a distal yet novel binding subsite, which alters the nature of dispersive interaction for PET recognition and binding. The phenyl alanine engages in π–π interaction with the phenyl ring of PET (−8.5 kcal mol−1), which on one side helps in PET recognition, but on the other side restricts PET to attain fully extended conformations over the entire binding cleft. The loss of π–π interaction due to mutation of phenyl alanine to alanine is not only compensated by the favourable cation–π and hydrophobic interactions from the arginine residues (−17.1 kcal mol−1) found in the newly discovered subsite, but also favours the fully extended PET conformation. This subsequently impacts the overall increased catalytic activity of mutated cutinase. Molecular recognition and binding of PET on cutinase controlled by switching between π–π and cation–π interactions.![]()
Collapse
Affiliation(s)
- Anjima James
- Department of Applied Chemistry, Cochin University of Science and Technology, Thrikkakara, Kochi 682 022, Kerala, India
| | - Susmita De
- Department of Chemistry, Center for Computational Chemistry & Drug Discovery, University of Calicut, Calicut University P.O., Malappuram 673 635, Kerala, India
| |
Collapse
|