1
|
Prakash P, Manchanda P, Paouri E, Bisht K, Sharma K, Rajpoot J, Wendt V, Hossain A, Wijewardhane PR, Randolph CE, Chen Y, Stanko S, Gasmi N, Gjojdeshi A, Card S, Fine J, Jethava KP, Clark MG, Dong B, Ma S, Crockett A, Thayer EA, Nicolas M, Davis R, Hardikar D, Allende D, Prayson RA, Zhang C, Davalos D, Chopra G. Amyloid β Induces Lipid Droplet-Mediated Microglial Dysfunction in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.04.543525. [PMID: 37333071 PMCID: PMC10274698 DOI: 10.1101/2023.06.04.543525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Several microglia-expressed genes have emerged as top risk variants for Alzheimer's disease (AD). Impaired microglial phagocytosis is one of the main proposed outcomes by which these AD-risk genes may contribute to neurodegeneration, but the mechanisms translating genetic association to cellular dysfunction remain unknown. Here we show that microglia form lipid droplets (LDs) upon exposure to amyloid-beta (Aβ), and that their LD load increases with proximity to amyloid plaques in brains from human patients and the AD mouse model 5xFAD. LD formation is dependent on age and disease progression and is prominent in the hippocampus in mice and humans. Despite differences in microglial LD load between brain regions and sexes in mice, LD-laden microglia exhibited a deficit in Aβ phagocytosis. Unbiased lipidomic analysis identified a decrease in free fatty acids (FFAs) and a parallel increase in triacylglycerols (TGs) as the key metabolic transition underlying LD formation. DGAT2, a key enzyme for converting FFAs to TGs, promotes microglial LD formation and is increased in 5xFAD and human AD brains. Inhibition or degradation of DGAT2 improved microglial uptake of Aβ and drastically reduced plaque load in 5xFAD mice, respectively. These findings identify a new lipid-mediated mechanism underlying microglial dysfunction that could become a novel therapeutic target for AD.
Collapse
Affiliation(s)
- Priya Prakash
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Palak Manchanda
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Evi Paouri
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Kanchan Bisht
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kaushik Sharma
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jitika Rajpoot
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Victoria Wendt
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ahad Hossain
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Yihao Chen
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Stanko
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Nadia Gasmi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Anxhela Gjojdeshi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Sophie Card
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Jonathan Fine
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Krupal P. Jethava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew G. Clark
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bin Dong
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Seohee Ma
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Alexis Crockett
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | | | - Marlo Nicolas
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ryann Davis
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Dhruv Hardikar
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Daniela Allende
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Richard A. Prayson
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, OH 44106, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Nsiah ST, Fabijanczuk KC, McLuckey SA. Structural characterization of fatty acid anions via gas-phase charge inversion using Mg(tri-butyl-terpyridine) 2 2+ reagent ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9741. [PMID: 38567638 DOI: 10.1002/rcm.9741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
RATIONALE Free fatty acids and lipid classes containing fatty acid esters are major components of lipidome. In the absence of a chemical derivatization step, FA anions do not yield all of the structural information that may be of interest under commonly used collision-induced dissociation (CID) conditions. A line of work that avoids condensed-phase derivatization takes advantage of gas-phase ion/ion chemistry to charge invert FA anions to an ion type that provides the structural information of interest using conventional CID. This work was motivated by the potential for significant improvement in overall efficiency for obtaining FA chain structural information. METHODS A hybrid triple quadrupole/linear ion-trap tandem mass spectrometer that has been modified to enable the execution of ion/ion reaction experiments was used to evaluate the use of 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine (ttb-Terpy) as the ligand in divalent magnesium complexes for charge inversion of FA anions. RESULTS Mg(ttb-Terpy)2 2+ complexes provide significantly improved efficiency in producing structurally informative products from FA ions relative to Mg(Terpy)2 2+ complexes, as demonstrated for straight-chain FAs, branched-chain FAs, unsaturated FAs, and cyclopropane-containing FAs. It was discovered that most of the structurally informative fragmentation from [FA-H + Mg(ttb-Terpy)]+ results from the loss of a methyl radical from the ligand followed by radical-directed dissociation (RDD), which stands in contrast to the charge-remote fragmentation (CRF) believed to be operative with the [FA-H + Mg(Terpy)]+ ions. CONCLUSIONS This work demonstrates that a large fraction of product ions from the CID of ions of the form [FA-H + Mg(ttb-Terpy)]+ are derived from RDD of the FA backbone, with a very minor fraction arising from structurally uninformative dissociation channels. This ligand provides an alternative to previously used ligands for the structural characterization of FAs via CRF.
Collapse
Affiliation(s)
- Sarah T Nsiah
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Shenault DM, Fabijanczuk KC, Murtada R, Finn S, Gonzalez LE, Gao J, McLuckey SA. Gas-Phase Ion/Ion Reactions to Enable Radical-Directed Dissociation of Fatty Acid Ions: Application to Localization of Methyl Branching. Anal Chem 2024; 96:3389-3401. [PMID: 38353412 DOI: 10.1021/acs.analchem.3c04510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Methyl branching on the carbon chains of fatty acids and fatty esters is among the structural variations encountered with fatty acids and fatty esters. Branching in fatty acid/ester chains is particularly prominent in bacterial species and, for example, in vernix caseosa and sebum. The distinction of branched chains from isomeric straight-chain species and the localization of branching can be challenging to determine by mass spectrometry (MS). Condensed-phase derivatization strategies, often used in conjunction with separations, are most commonly used to address the identification and characterization of branched fatty acids. In this work, a gas-phase ion/ion strategy is presented that obviates condensed-phase derivatization and introduces a radical site into fatty acid ions to facilitate radical-directed dissociation (RDD). The gas-phase approach is also directly amenable to fatty acid anions generated via collision-induced dissociation from lipid classes that contain fatty esters. Specifically, divalent magnesium complexes bound to two terpyridine ligands that each incorporate a ((2,2,6,6-tetramethyl-1-piperidine-1-yl)oxy) (TEMPO) moiety are used to charge-invert fatty acid anions. Following the facile loss of one of the ligands and the TEMPO group of the remaining ligand, a radical site is introduced into the complex. Subsequent collision-induced dissociation (CID) of the complex exhibits preferred cleavages that localize the site(s) of branching. The approach is illustrated with iso-, anteiso-, and isoprenoid branched-chain fatty acids and an intact glycerophospholipid and is applied to a mixture of branched- and straight-chain fatty acids derived from Bacillus subtilis.
Collapse
Affiliation(s)
- De'Shovon M Shenault
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly C Fabijanczuk
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Shane Finn
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - L Edwin Gonzalez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Wang Z, Yang T, Brenna JT, Wang DH. Fatty acid isomerism: analysis and selected biological functions. Food Funct 2024; 15:1071-1088. [PMID: 38197562 DOI: 10.1039/d3fo03716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The biological functions of fatty acids and the lipids in which they are esterified are determined by their chain length, double bond position and geometry and other structural motifs such as the presence of methyl branches. Unusual isomeric features in fatty acids of human foods such as conjugated double bonds or chain branching found in dairy products, some seeds and nuts, and marine foods potentially have important effects on human health. Recent advancements in identifying fatty acids with unusual double bond positions and pinpointing the position of methyl branches have empowered the study of their biological functions. We present recent advances in fatty acid structural elucidation by mass spectrometry in comparison with the more traditional methods. The double bond position can be determined by purely instrumental methods, specifically solvent-mediated covalent adduct chemical ionization (SM-CACI) and ozone induced dissociation (OzID), with charge inversion methods showing promise. Prior derivatization using the Paternò-Büchi (PB) reaction to yield stable structures that, upon collisional activation, yield the double bond position has emerged. The chemical ionization (CI) based three ion monitoring (MRM) method has been developed to simultaneously identify and quantify low-level branched chain fatty acids (BCFAs), unattainable by electron ionization (EI) based methods. Accurate identification and quantification of unusual fatty acid isomers has led to research progress in the discovery of biomarkers for cancer, diabetes, nonalcoholic fatty liver disease (NAFLD) and atherosclerosis. Modulation of eicosanoids, weight loss and the health significance of BCFAs are also presented. This review clearly shows that the improvement of analytical capacity is critical in the study of fatty acid biological functions, and stronger coupling of the methods discussed here with fatty acid mechanistic research is promising in generating more refined outcomes.
Collapse
Affiliation(s)
- Zhen Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tingxiang Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Dong Hao Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
5
|
Fabijanczuk KC, Foreman DJ, McLuckey SA. Charge Inversion of Mono- and Dianions to Cations via Triply Charged Metal Complexes: Application to Lipid Mixtures. Anal Chem 2023; 95:16289-16297. [PMID: 37871251 DOI: 10.1021/acs.analchem.3c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Electrospray ionization (ESI) of mixtures can give rise to ions with different masses and charges with overlapping mass-to-charge (m/z) ratios. Such a scenario can be particularly problematic for the detection of low-abundance species in the presence of more highly abundant mixture components. For example, negative mode ESI of polar lipid extracts can result in highly abundant singly charged glyerophospholipids (GPLs), such as phosphatidylethanolamines (PE) and phosphatidylglycerols (PG), that can obscure much less abundant cardiolipins (CLs), which are complex phospholipids with masses roughly double those of GPLs that mostly form doubly charged anions. Despite their low relative abundance, CLs are lipidome components that perform vital biological functions. To facilitate the study of CLs in lipid mixtures without resorting to offline or online separations, we have developed a gas-phase approach employing ion/ion reactions to charge invert anionic lipid species using a trivalent metal-complex. Specifically, ytterbium(III) is shown to readily complex with three neutral ligands, N,N,N',N'-tetra-2-ethylhexyl diglycolamide (TEHDGA), to form [Yb(TEHDGA3)]3+ using ESI. Herein, we describe pilot studies to evaluate [Yb(TEHDGA)3]3+ as an ion/ion reagent to allow for chemical separation of doubly and singly charged anions, using lipid mixtures as examples, without neutralizing ions of either charge state.
Collapse
Affiliation(s)
- Kimberly C Fabijanczuk
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - David J Foreman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
6
|
Hormann FL, Sommer S, Heiles S. Formation and Tandem Mass Spectrometry of Doubly Charged Lipid-Metal Ion Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37315187 DOI: 10.1021/jasms.3c00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phospholipids are major components of most eukaryotic cell membranes. Changes in metabolic states are often accompanied by phospholipid structure variations. The structural changes of phospholipids are the hallmark of disease states, or specific lipid structures have been associated with distinct organisms. Prime examples are microorganisms that synthesize phospholipids with, for example, different branched chain fatty acids. Assignment and relative quantitation of structural isomers of phospholipids that arise from attachment of different fatty acids to the glycerophospholipid backbone are difficult with routine tandem mass spectrometry or with liquid chromatography without authentic standards. In this work, we report on the observation that all investigated phospholipid classes form doubly charged lipid-metal ion complexes during electrospray ionization (ESI) and show that these complexes can be used to assign lipid classes and fatty acid moieties, distinguish isomers of branched chain fatty acids, and relatively quantify these isomers in positive-ion mode. Use of water free methanol and addition of divalent metal salts (100 mol %) to ESI spray solutions afford highly abundant doubly charged lipid-metal ion complexes (up to 70 times of protonated compounds). Higher-energy collisional dissociation and collision-induced dissociation of doubly charged complexes yield a diverse set of lipid class-dependent fragment ions. In common for all lipid classes is the liberation of fatty acid-metal adducts that yield fragment ions from the fatty acid hydrocarbon chain upon activation. This ability is used to pinpoint sites of branching in saturated fatty acids and is showcased for free fatty acids as well as glycerophospholipids. The analytical utility of doubly charged phospholipid-metal ion complexes is demonstrated by distinguishing fatty acid branching-site isomers in phospholipid mixtures and relatively quantifying the corresponding isomeric compounds.
Collapse
Affiliation(s)
- Felix-Levin Hormann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Simon Sommer
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
7
|
Shenault DM, McLuckey SA, Franklin ET. Localization of cyclopropyl groups and alkenes within glycerophospholipids using gas-phase ion/ion chemistry. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4913. [PMID: 36916143 PMCID: PMC10014902 DOI: 10.1002/jms.4913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Shotgun lipid analysis using electrospray ionization tandem mass spectrometry (ESI-MS/MS) is a common approach for the identification and characterization of glycerophohspholipids GPs. ESI-MS/MS, with the aid of collision-induced dissociation (CID), enables the characterization of GP species at the headgroup and fatty acyl sum compositional levels. However, important structural features that are often present, such as carbon-carbon double bond(s) and cyclopropane ring(s), can be difficult to determine. Here, we report the use of gas-phase charge inversion reactions that, in combination with CID, allow for more detailed structural elucidation of GPs. CID of a singly deprotonated GP, [GP - H]- , generates FA anions, [FA - H]- . The fatty acid anions can then react with doubly charged cationic magnesium tris-phenanthroline complex, [Mg(Phen)3 ]2+ , to form charge inverted complex cations of the form [FA - H + MgPhen2 ]+ . CID of the complex generates product ion spectral patterns that allow for the identification of carbon-carbon double bond position(s) as well as the sites of cyclopropyl position(s) in unsaturated lipids. This approach to determining both double bond and cyclopropane positions is demonstrated with GPs for the first time using standards and is applied to lipids extracted from Escherichia coli.
Collapse
Affiliation(s)
- De’Shovon M. Shenault
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| | - Elissia T. Franklin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| |
Collapse
|
8
|
Song Y, Song Q, Liu W, Li J, Tu P. High-confidence structural identification of metabolites relying on tandem mass spectrometry through isomeric identification: A tutorial. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Chao HC, McLuckey SA. Recent Advances in Gas-phase Ion/Ion Chemistry for Lipid Analysis. Trends Analyt Chem 2023; 158:116852. [PMID: 36583222 PMCID: PMC9794197 DOI: 10.1016/j.trac.2022.116852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gas-phase ion/ion reactions can be used to alter analyte ion-types for subsequent dissociation both quickly and efficiently without the need for altering analyte ionization conditions. This capability can be particularly useful when the ion-type that is most efficiently generated by the ionization method at hand does not provide the structural information of interest using available dissociation methods. This situation often arises in the analysis of lipids, which constitute a diverse array of chemical species with many possibilities for isomers. Gas-phase ion/ion reactions have been demonstrated to be capable of enhancing the ability of tandem mass spectrometry to characterize the structures of various lipid classes. This review summarizes progress to date in the application of gas-phase ion/ion reactions to lipid structural characterization.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
10
|
Fabijanczuk KC, Chao HC, Fischer JL, McLuckey SA. Structural elucidation and isomeric differentiation/quantitation of monophosphorylated phosphoinositides using gas-phase ion/ion reactions and dissociation kinetics. Analyst 2022; 147:5000-5010. [PMID: 36254743 PMCID: PMC9651020 DOI: 10.1039/d2an00792d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Phosphoinositides, phosphorylated derivatives of phosphatidylinositols, are essential signaling phospholipids in all mammalian cellular membranes. With three known phosphorylated derivatives of phosphatidylinositols at the 3-, 4-, and 5-positions along the myo-inositol ring, various fatty acyl chain lengths, and varying degrees of unsaturation, numerous isomers can be present. It is challenging for shotgun-MS to accurately identify and characterize phosphoinositides and their isomers using the most readily available precursor ion types. To overcome this challenge, novel gas-phase ion/ion chemistry was used to expand the range of precursor ion-types for subsequent structural characterization of phosphoinositides using shot-gun tandem mass spectrometry. The degree of phosphorylation and fatty acyl sum composition are readily obtained by ion-trap CID of deprotonated phosphoinositides. Carbon-carbon double bond position of the fatty acyl chains can be localized via a charge inversion ion/ion reaction. Utilizing sequential ion/ion reactions and subsequent activation yields product ion information that is of limited utility for phosphorylation site localization. However, the kinetics of dissociation allowed for isomeric differentiation of the position of the phosphate group. Furthermore, employing the same kinetics method, relative quantitative information was gained for the isomeric species.
Collapse
Affiliation(s)
| | - Hsi-Chun Chao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Joshua L Fischer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
11
|
Randolph CE, Beveridge CH, Iyer S, Blanksby SJ, McLuckey SA, Chopra G. Identification of Monomethyl Branched-Chain Lipids by a Combination of Liquid Chromatography Tandem Mass Spectrometry and Charge-Switching Chemistries. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2156-2164. [PMID: 36218280 PMCID: PMC10173259 DOI: 10.1021/jasms.2c00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
While various mass spectrometric approaches have been applied to lipid analysis, unraveling the extensive structural diversity of lipids remains a significant challenge. Notably, these approaches often fail to differentiate between isomeric lipids─a challenge that is particularly acute for branched-chain fatty acids (FAs) that often share similar (or identical) mass spectra to their straight-chain isomers. Here, we utilize charge-switching strategies that combine ligated magnesium dications with deprotonated fatty acid anions. Subsequent activation of these charge inverted anions yields mass spectra that differentiate anteiso-branched- from straight-chain and iso-branched-chain FA isomers with the predictable fragmentation enabling de novo assignment of anteiso branch points. The application of these charge-inversion chemistries in both gas- and solution-phase modalities is demonstrated to assign the position of anteiso-methyl branch-points in FAs and, with the aid of liquid chromatography, can be extended to de novo assignment of additional branching sites via predictable fragmentation patterns as methyl branching site(s) move closer to the carboxyl carbon. The gas-phase approach is shown to be compatible with top-down structure elucidation of complex lipids such as phosphatidylcholines, while the integration of solution-phase charge-inversion with reversed phase liquid chromatography enables separation and unambiguous identification of FA structures within isomeric mixtures. Taken together, the presented charge-switching MS-based technique, in combination with liquid chromatography, enables the structural identification of branched-chain FA without the requirement of authentic methyl-branched FA reference standards.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Connor H. Beveridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Sanjay Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J. Blanksby
- Central Analytical Research Facility and the School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
- Department of Computer Science (by courtesy), Purdue Institutes of Drug Discovery and Integrative Neuroscience, Purdue Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
12
|
Ma X. Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques. Molecules 2022; 27:6466. [PMID: 36235003 PMCID: PMC9572214 DOI: 10.3390/molecules27196466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometry (MS) has become the central technique that is extensively used for the analysis of molecular structures of unknown compounds in the gas phase. It manipulates the molecules by converting them into ions using various ionization sources. With high-resolution MS, accurate molecular weights (MW) of the intact molecular ions can be measured so that they can be assigned a molecular formula with high confidence. Furthermore, the application of tandem MS has enabled detailed structural characterization by breaking the intact molecular ions and protonated or deprotonated molecules into key fragment ions. This approach is not only used for the structural elucidation of small molecules (MW < 2000 Da), but also crucial biopolymers such as proteins and polypeptides; therefore, MS has been extensively used in multiomics studies for revealing the structures and functions of important biomolecules and their interactions with each other. The high sensitivity of MS has enabled the analysis of low-level analytes in complex matrices. It is also a versatile technique that can be coupled with separation techniques, including chromatography and ion mobility, and many other analytical instruments such as NMR. In this review, we aim to focus on the technical advances of MS-based structural elucidation methods over the past five years, and provide an overview of their applications in complex mixture analysis. We hope this review can be of interest for a wide range of audiences who may not have extensive experience in MS-based techniques.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA 30332, USA
| |
Collapse
|
13
|
Kuo ST, Tang S, Russell DH, Yan X. Characterization of lipid carbon-carbon double-bond isomerism via ion mobility-mass spectrometry (IMS-MS) combined with cuprous ion-induced fragmentation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 479:116889. [PMID: 37577146 PMCID: PMC10421641 DOI: 10.1016/j.ijms.2022.116889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Characterization of phospholipid isomers is challenging due to their identical masses and similarities in structures. Here, we report that copper (I) ion complexed with phospholipids can be used to characterize both carbon-carbon double-bond (C=C bond) positional and geometric isomers. We investigate the distinct fragmentation patterns induced by the π-Cu+ interaction and developed strategies to rapidly characterize the isomerism of phospholipids. The multi-stage fragmentation of Cu+-adducted lipids by collision-induced dissociation can generate diagnostic ions to locate C=C bonds in unsaturated lipids. Furthermore, the collision cross sections of Cu+-adducted parent lipids and product ions can be used as molecular descriptors in distinguishing C=C bond geometric isomers. A bovine heart lipid extract containing Z-configuration lipids spiked with an E-configuration lipid was analyzed to demonstrate rapidness and effectiveness of the method in distinguishing lipid geometric isomers from a real sample.
Collapse
Affiliation(s)
| | | | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
14
|
Wu F, Wu X, Chi C, Ding CF. Simultaneous Differentiation of C═C Position Isomerism in Fatty Acids through Ion Mobility and Theoretical Calculations. Anal Chem 2022; 94:12213-12220. [PMID: 36008361 DOI: 10.1021/acs.analchem.2c02706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty acids play a pivotal role in biological processes and have many isomers, particularly at the C═C position, that influence their biological function. Distinguishing between isomers is crucial to investigating their role in health and disease. However, separating the isomers poses a significant analytical challenge. In this study, we developed a simple and rapid strategy combining ion mobility spectrometry and theoretical chemical calculations to differentiate and quantify the C═C positional isomers in 2-/3-butenoic acid (BA), 2-/3-/4-pentenoic acid (PA), and 2-/3-/5-hexenoic acid (HA). C═C positional isomerism was mobility-differentiated by simple complexation with crown ethers (12C4, 15C5, and 18C6) and divalent metal ions (Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Sr2+, and Ba2+), that is, converting C═C positional isomers with small structural differences into complexes with large structural differences through the interaction with metal ions and crown ethers. Metallized isomers were formed but could not be differentiated due to their complex and overlapping extracted ion mobiliograms (EIMs). Binary crown ether-isomer complexes were not observed, indicating that C═C positional isomers could not be separated by simple mixing with crown ethers. However, significant EIM differences were obtained for the formed ternary complexes, allowing baseline separation for the isomers. Notably, all crown ethers and metal ions have a separation effect with the isomers, with a calculated separation resolution (Rp-p) of 0.07-2.44. Theoretical chemical calculations were performed to provide in-depth structural information for the complexes and explain the separation principle. Theoretical conformational space showed that the divalent metal ions act as a bridge connecting the crown ether and the isomer. Additionally, the ternary complex becomes more compact as the distance between C═C and -COOH increases. Theoretical results can reflect the features of mobility experiments, with relative errors between the experiment collision cross-section (CCS) and theoretical CCS of no more than ±8.06%. This method was also evaluated in terms of quantification, accuracy, and precision repeatability. Overall, this study establishes that the crown ether-metal ion pair can function as a robust unit for differentiating C═C positional isomerism.
Collapse
Affiliation(s)
- Fangling Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xishi Wu
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningo, Zhejiang 315201, China
| | - Chaoxian Chi
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
15
|
Shields SWJ, Sanders JD, Brodbelt JS. Enhancing the Signal-to-Noise of Diagnostic Fragment Ions of Unsaturated Glycerophospholipids via Precursor Exclusion Ultraviolet Photodissociation Mass Spectrometry (PEx-UVPD-MS). Anal Chem 2022; 94:11352-11359. [PMID: 35917227 PMCID: PMC9484799 DOI: 10.1021/acs.analchem.2c02128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and elucidating the diverse structures and functions of lipids has motivated the development of many innovative tandem mass spectrometry (MS/MS) strategies. Higher-energy activation methods, such as ultraviolet photodissociation (UVPD), generate unique fragment ions from glycerophospholipids that can be used to perform in-depth structural analysis and facilitate the deconvolution of isomeric lipid structures in complex samples. Although detailed characterization is central to the correlation of lipid structure to biological function, it is often impeded by the lack of sufficient instrument sensitivity for highly bioactive but low-abundance phospholipids. Here, we present precursor exclusion (PEx) UVPD, a simple yet powerful technique to enhance the signal-to-noise (S/N) of informative low-abundance fragment ions produced from UVPD of glycerophospholipids. Through the exclusion of the large population of undissociated precursor ions with an MS3 strategy, the S/N of diagnostic fragment ions from PC 18:0/18:2(9Z, 12Z) increased up to an average of 13x for PEx-UVPD compared to UVPD alone. These enhancements were extended to complex mixtures of lipids from bovine liver extract to confidently identify 35 unique structures using liquid chromatography PEx-UVPD. This methodology has the potential to advance lipidomics research by offering deeper structure elucidation and confident identification of biologically active lipids.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Lin Q, Li P, Jian R, Xia Y. Localization of Intrachain Modifications in Bacterial Lipids Via Radical-Directed Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:714-721. [PMID: 35195000 DOI: 10.1021/jasms.2c00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intrachain modifications of membrane glycerophospholipids (GPLs) due to formation of the carbon-carbon double bond (C═C), cyclopropane ring, and methyl branching are crucial for bacterial membrane homeostasis. Conventional collision-induced dissociation (CID) of even-electron ions of GPL favors charge-directed fragmentation channels, and thus little structurally informative fragments can be detected for locating intrachain modifications. In this study, we report a radical-directed dissociation (RDD) approach for characterization of the intrachain modifications within phosphoethanolamines (PEs), a major lipid component in bacterial membrane. In this method, a radical precursor that can produce benzyl or pyridine methyl radical upon low-energy CID at high efficiency is conjugated onto the amine group of PEs. The carbon-centered radical ions subsequently initiate RDD along the fatty acyl chain, producing fragment patterns key to the assignment and localization of intrachain modifications including C═C, cyclopropane rings, and methyl branching. Besides intrachain fragmentation, RDD on the glycerol backbone produces fatty acyl loss as radicals, allowing one to identify the fatty acyl chain composition of PE. Moreover, RDD of lyso-PEs produces radical losses for distinguishing the sn-isomers. The above RDD approach has been incorporated onto a liquid chromatography-mass spectrometry workflow and applied for the analysis of lipid extracts from Escherichia coli and Bacillus subtilis.
Collapse
Affiliation(s)
- Qiaohong Lin
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Pengyun Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ruijun Jian
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| |
Collapse
|
17
|
Macias LA, Brodbelt JS. Enhanced Characterization of Cardiolipins via Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:3268-3277. [PMID: 35135194 PMCID: PMC9284920 DOI: 10.1021/acs.analchem.1c05071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiolipins (CLs) constitute a structurally complex class of glycerophospholipids with a unique tetraacylated structure accompanied by distinctive functional roles. Aberrations in the composition of this lipid class have been associated with disease states, spurring interest in the development of new approaches to differentiate the structures of diverse CLs in complex mixtures. The structural characterization of these complex lipids using conventional methods, however, suffers from limited resolution and frequently proves unable to discern subtle yet biologically significant features such as unsaturation sites or acyl chain position assignments. Here, we describe the synergistic use of chemical derivatization and hybrid dissociation techniques to characterize CL from complex biological mixtures with both double bond and sn positional isomer resolution in a shotgun mass spectrometry strategy. Utilizing (trimethylsilyl)diazomethane (TMSD), CL phosphate groups were methylated to promote positive-mode ionization by the production of metal-cationized lipids, enabling structural interrogation via hybrid higher-energy collisional activation/ultraviolet photodissociation (HCD/UVPD). This combination of TMSD derivatization and HCD/UVPD fragmentation results in diagnostic product ions that permit distinction and relative quantitation of sn-stereoisomers and the localization of double bonds. Applying this strategy to a total lipid extract from a thyroid carcinoma revealed a previously unreported 18:2/18:1 motif, elucidating a structural feature unique to the lipid class.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
He Y, Yuan B, Lu Y, Zhao X, Shen C, Ji J, Lin L, Xu J, Xie T, Shan J. In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer. Anal Chim Acta 2021; 1180:338879. [PMID: 34538317 DOI: 10.1016/j.aca.2021.338879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023]
Abstract
Accumulated evidences suggest that cardiolipins (CLs) and cardiolipin oxidation products (oxCLs) are a class of essential molecules that play critical roles in many physiological functions. Diversity of four acyl chains leads to high structure complexity for cardiolipin species including CLs, monolysocardiolipins (MLCLs) and their oxCLs. The ability to rapidly identify CL species can be implemented by the match of mass spectrometry (MS)-based in-silico spectral database. In this study, after optimizing the chromatography conditions and MS detection, an in-silico library containing 377,754 simulated tandem mass spectra deducing from 31,578 CLs to 52,160 of MLCLs was successfully augmented based on LipidBlast templates. For the construction of the oxCLs' library, twenty-five fatty acyls oxidation products relating to nine oxidation types were permuted and combined. A total of 42,180 oxCL spectra were predicted based on the experimental measurements of oxCLs forming by artificially oxidation. Applying the in-silico database to murine mitochondria and cell samples enabled the sensitive and comprehensive annotation of 86 MLCLs, 307 CLs and 112 oxCLs with high annotation confidence. Compared to the conventional method, our proposed in-silico database provides a more comprehensive interpretation for CL species' characterization with high throughput and sensitivity in nontarget lipidomic study.
Collapse
Affiliation(s)
- Yu He
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Binghuan Yuan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao Lu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics-methods and applications. Anal Bioanal Chem 2021; 413:5927-5948. [PMID: 34142202 PMCID: PMC8440309 DOI: 10.1007/s00216-021-03425-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Metabolomics and lipidomics are new drivers of the omics era as molecular signatures and selected analytes allow phenotypic characterization and serve as biomarkers, respectively. The growing capabilities of untargeted and targeted workflows, which primarily rely on mass spectrometric platforms, enable extensive charting or identification of bioactive metabolites and lipids. Structural annotation of these compounds is key in order to link specific molecular entities to defined biochemical functions or phenotypes. Tandem mass spectrometry (MS), first and foremost collision-induced dissociation (CID), is the method of choice to unveil structural details of metabolites and lipids. But CID fragment ions are often not sufficient to fully characterize analytes. Therefore, recent years have seen a surge in alternative tandem MS methodologies that aim to offer full structural characterization of metabolites and lipids. In this article, principles, capabilities, drawbacks, and first applications of these "advanced tandem mass spectrometry" strategies will be critically reviewed. This includes tandem MS methods that are based on electrons, photons, and ion/molecule, as well as ion/ion reactions, combining tandem MS with concepts from optical spectroscopy and making use of derivatization strategies. In the final sections of this review, the first applications of these methodologies in combination with liquid chromatography or mass spectrometry imaging are highlighted and future perspectives for research in metabolomics and lipidomics are discussed.
Collapse
Affiliation(s)
- Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392, Giessen, Germany.
| |
Collapse
|