1
|
Jorbenadze S, Giunashvili L, Khatiashvili T, Chelidze A, Tkemaladze V, Sprega G, Lo Faro AF, Basile G, Farkas T, Busardo FP, Chankvetadze B. Investigation of stereochemical stability of 2-, 3- and 4-chloromethcathinones in various biological matrixes. J Pharm Biomed Anal 2024; 249:116350. [PMID: 39047462 DOI: 10.1016/j.jpba.2024.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
The stereochemical stability of the popular drugs of abuse 2-, 3- and 4-chloromethcathinone was studied in the mobile phase used for the isolation of their enantiomers by high-performance liquid chromatography, as well as in various biological matrixes such as whole blood, saliva and urine. For 2-, 3-, and 4-chloromethcathinones the rate constants and half-lives of their first order racemization reaction was assessed. It was found that at 25 °C the racemization rate constant decreases in the order 2-CMC > 3-CMC > 4-CMC while their stereochemical stability in biological matrixes decreases in the order urine > saliva > whole blood. This information must be considered for the adequate storage of purified enantiomers in the collected fractions, as well as in the studies focused on their enantioselective transformation in the human body.
Collapse
Affiliation(s)
- Saba Jorbenadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia
| | - Lasha Giunashvili
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia
| | - Tamar Khatiashvili
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia
| | - Aluda Chelidze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia
| | - Vazha Tkemaladze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia
| | - Giorgia Sprega
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Giuseppe Basile
- Department of Trauma Surgery, IRCCS Galeazzi Orthopedic Institute, Via Riccardo Galeazzi 4, Milan 20161, Italy
| | - Tivadar Farkas
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia
| | - Francesco Paolo Busardo
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy.
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia.
| |
Collapse
|
2
|
Kobidze G, Sprega G, Balloni A, Lo Faro AF, Basile G, Wille SM, Farkas T, Busardo FP, Chankvetadze B. Simultaneous chemo- and enantio-separation of 2-, 3- and 4-chloro-methcatinones by high-performance liquid chromatography-tandem mass spectrometry and its application to oral fluid samples. J Pharm Biomed Anal 2024; 248:116293. [PMID: 38901154 DOI: 10.1016/j.jpba.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
A method of analysis was developed for the simultaneous chemo- and enantioseparation of 2-, 3-, and 4-chloromethcathinones by high-performance liquid chromatography tandem mass-spectrometry. The fast method enables the reliable identification of positional isomers of chloromethcathinones in biological samples. In addition, the same method can be used for the enantioselective quantitative determination of one of these compounds and its major phase-1 metabolites in biological fluids. The developed method was applied to oral fluid samples collected by police during routine random traffic control in Belgium from January to November, 2023. It was found that 3-CMC was more frequently abused compared to 4-CMC. Although some differences were observed between the concentrations of enantiomers in OF, most likely the drugs were abused in the racemic form. No abuse of 2-CMC was detected at the timepoint of sample collection.
Collapse
Affiliation(s)
- Giorgi Kobidze
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Giorgia Sprega
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Aurora Balloni
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy.
| | - Giuseppe Basile
- Department of Trauma Surgery, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Sarah Mr Wille
- Laboratory of Toxicology, National Institute of Criminalistics and Criminology (NICC), Brussels 1120, Belgium
| | - Tivadar Farkas
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, 1 Ilia Chavchavadze Avenue, Tbilisi 0179, Georgia
| | - Francesco Paolo Busardo
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy.
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, 1 Ilia Chavchavadze Avenue, Tbilisi 0179, Georgia.
| |
Collapse
|
3
|
Liliedahl RE, Hutzell E, Haley M, Predecki DP, Davidson JT. The differentiation of N-butyl pentylone isomers using GC-EI-MS and NMR. Forensic Sci Int 2023; 351:111815. [PMID: 37713773 DOI: 10.1016/j.forsciint.2023.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
Forensic laboratories are faced with an ever-expanding seized drug landscape including the increasing prevalence of novel psychoactive substances (NPS), such as synthetic cathinones, that have varying potencies and scheduling. This study demonstrates a combined gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) and nuclear magnetic resonance (NMR) spectroscopy approach for the differentiation of N-butyl pentylone isomers based on distinct retention times, characteristic EI mass spectra, and NMR characterization. Retention time reproducibility was assessed from 60 replicate measurements for each isomer over the course of a month. In addition, the effect of the mass spectrometer tune and the stability of an identified characteristic ion ratio using spectral data from ± 1 scan on either side of the peak apex were also statistically assessed using Welch's ANOVA testing. The presence of diastereomers for N-sec-butyl pentylone was identified using the developed GC-EI-MS method, which was confirmed using one-dimensional and two-dimensional NMR spectroscopy. The retention time reproducibility of the chromatographic method was ± 0.076% or less over the course of a month. An identified characteristic ion ratio between the abundance of the fragment ion at m/z 128 and the fragment ion at m/z 72 enabled the differentiation of the four N-butyl pentylone isomers, even when accounting for the effect of the mass spectrometer tune and mass spectral scans used to calculate the characteristic ion ratio. The 95% confidence interval mean abundance ratio of the fragment ions at m/z 128 and m/z 72 was 17.14 ± 0.14 for N-butyl pentylone, 6.44 ± 0.05 for N-isobutyl pentylone, 3.38 ± 0.02 for N-sec-butyl pentylone, and 0.75 ± 0.01 for N-tert-butyl pentylone. These results highlight the capabilities of a combined GC-EI-MS and NMR approach for the differentiation and characterization of synthetic cathinone isomers.
Collapse
Affiliation(s)
- Ruby E Liliedahl
- Department of Forensic Science, Sam Houston State University, Huntsville, TX, USA
| | - Elise Hutzell
- Department of Chemistry, Shippensburg University, Shippensburg, PA, USA
| | - Madison Haley
- Department of Chemistry, Shippensburg University, Shippensburg, PA, USA
| | - Daniel P Predecki
- Department of Chemistry, Shippensburg University, Shippensburg, PA, USA.
| | - J Tyler Davidson
- Department of Forensic Science, Sam Houston State University, Huntsville, TX, USA.
| |
Collapse
|
4
|
Xiong Z, Yang M, Chen X, Gong Y. Influence of Metal Coordination on the Gas-Phase Chemistry of the Positional Isomers of Fluorobenzoate Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2181-2190. [PMID: 36251055 DOI: 10.1021/jasms.2c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The fragmentation behaviors of the o-, m-, and p-fluorobenzoate complexes of La3+, Ce3+, Fe3+, Cu2+, and UO22+ were investigated by electrospray ionization mass spectrometry, and the corresponding reaction mechanisms were explored by density functional theory (DFT) calculations. Fluoride transfer product LaIIIFCl3-/CeIIIFCl3- and decarboxylation product LaIIICl3(C6H4F)-/CeIIICl3(C6H4F)- were observed when the carboxylate precursors LaIIICl3(C6H4FCO2)-/CeIIICl3(C6H4FCO2)- were subjected to collision-induced dissociation. The variation in product ratios, which is not obvious in the meta and para cases, qualitatively follows the increasing overall energy barrier and reaction endothermicity of the two-step CO2/C6H4 elimination mechanism, and this aligns with the increase in U-F distance in the ortho, meta, and para decarboxylation product isomers. In contrast, the mass spectra of FeIIICl3(C6H4FCO2)-/CuIICl2(C6H4FCO2)- are dominated by the reduction product FeCl3-/CuCl2- regardless of the fluorobenzoate isomer. DFT/B3LYP calculations show that the two-step CO2/C6H4F elimination pathways are comparable in energy for all three positional isomers. It is energetically more favorable to give the reduction product than the fluoride transfer product, which is opposite to the lanthanum cases. Although the decarboxylation product was observed for all three UVIO2Cl2(C6H4FCO2)- isomers, the ortho isomer behaves more similarly to LaIIICl3(C6H4FCO2)-/CeIIICl3(C6H4FCO2)- as evidenced by the formation of UVIO2FCl2-, and the appearance of UVO2Cl2- in the cases of the meta and para isomers indicates the similarity with FeIIICl3(C6H4FCO2)-/CuIICl2(C6H4FCO2)-. The shorter U-F distance in UVIO2Cl2(o-C6H4F)- causes the decrease in the fluoride transfer barrier and thus makes this process more favorable over o-C6H4F radical loss to give UVO2Cl2-.
Collapse
Affiliation(s)
- Zhixin Xiong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixian Yang
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuting Chen
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
5
|
Chen X, Xiong Z, Yang M, Gong Y. Discrimination and quantitation of halobenzoic acid positional isomers upon Th(IV) coordination by mass spectrometry. Chem Commun (Camb) 2022; 58:2658-2661. [PMID: 35137751 DOI: 10.1039/d1cc06925j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A fast and reliable mass spectrometry-based method has been developed to discriminate the positional isomers of o-, m- and p-C6H4XCO2H (X = F, Cl and Br). This is based on the distinct fragmentation patterns of isomeric ThCl4(C6H4XCO2)- ions generated by electrospray ionization of the solutions with C6H4XCO2H isomers and ThCl4. Moreover, the composition of these positional isomers can be conveniently quantified without any pre-treatment according to the proportion of gas-phase fragmentation products.
Collapse
Affiliation(s)
- Xiuting Chen
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Zhixin Xiong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixian Yang
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| |
Collapse
|
6
|
Liliedahl RE, Davidson JT. The differentiation of synthetic cathinone isomers using GC-EI-MS and multivariate analysis. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|