1
|
Hu Z, Zou Y, Ma Z, Liu W, Jin X, Yang J. Rapid screening and identification of targeted and non-targeted illegal added drugs in functional foods by MRSIT-HRMS based on NIST screening database. Food Chem 2024; 446:138913. [PMID: 38452505 DOI: 10.1016/j.foodchem.2024.138913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The last few decades have witnessed the increasing consumption of functional foods, leading to the expansion of the worldwide market. However, the illegal addition drugs in functional foods remains incessant despite repeated prohibition, making it a key focus of strict crackdowns by regulatory authorities. Effective analytical tools and procedures are desperately needed to rapidly screen and identify illegally added drugs in a large number of samples, given the growing amount and diversity of these substances in functional foods. The MRSIT-HRMS (Multiple Sample Rapid Introduction combined with High Resolution Mass Spectrometry) without chromatographic separation, after direct sampling, utilizes NIST software (National Institute of Standards and Technology) matching with a home-built library to target identification and non-targeted screen of illegal additives. When applied to 50 batches of suspicious samples, the targeted method detected illegal added drugs in 41 batches of samples, while the non-targeted method screened a new phosphodiesterase-5 (PDE-5) inhibitor type structural derivative. The positive results obtained by the targeted method were consistent with LC-MS/MS (QQQ). The novel MRSIT-HRMS with a limit of quantification (LOD) of 1 μg/mL achieved 100 % correct identification for all 50 batches of actual samples, demonstrating its potential as a highly promising and powerful tool for fast screening of illegally added drugs in functional food, especially when compared to traditional LC-MS/MS methods. This is essential for ensuring drug safety and public health.
Collapse
Affiliation(s)
- Ziyan Hu
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China; Key Laboratory of Food Authenticity Identification Technology for Jiangsu Province Market Regulation, Nanjing 211198, China.
| | - Yixuan Zou
- National Institute of Metrology, Beijing 100029, China
| | - Zhi Ma
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China; Key Laboratory of Food Authenticity Identification Technology for Jiangsu Province Market Regulation, Nanjing 211198, China
| | - Wenting Liu
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China; Key Laboratory of Food Authenticity Identification Technology for Jiangsu Province Market Regulation, Nanjing 211198, China
| | - Xin Jin
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China; Key Laboratory of Food Authenticity Identification Technology for Jiangsu Province Market Regulation, Nanjing 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China; Key Laboratory of Food Authenticity Identification Technology for Jiangsu Province Market Regulation, Nanjing 211198, China.
| |
Collapse
|
2
|
Wang Y. Recent advances in the application of direct analysis in real time-mass spectrometry (DART-MS) in food analysis. Food Res Int 2024; 188:114488. [PMID: 38823841 DOI: 10.1016/j.foodres.2024.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Direct analysis in real time-mass spectrometry (DART-MS) has evolved as an effective analytical technique for the rapid and accurate analysis of food samples. The current advancements of DART-MS in food analysis are described in this paper. We discussed the DART principles, which include devices, ionization mechanisms, and parameter settings. Numerous applications of DART-MS in the fields of food and food products analysis published during 2018-2023 were reviewed, including contamination detection, food authentication and traceability, and specific analyte analysis in the food matrix. Furthermore, the challenges and limitations of DART-MS, such as matrix effect, isobaric component analysis, cost considerations and accessibility, and compound selectivity and identification, were discussed as well.
Collapse
Affiliation(s)
- Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
3
|
Moorthy AS, Erisman EP, Kearsley AJ, Liang Y, Sisco E, Wallace WE. On the challenge of unambiguous identification of fentanyl analogs: Exploring measurement diversity using standard reference mass spectral libraries. J Forensic Sci 2023; 68:1494-1503. [PMID: 37431311 PMCID: PMC10517722 DOI: 10.1111/1556-4029.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Fentanyl analogs are a class of designer drugs that are particularly challenging to unambiguously identify due to the mass spectral and retention time similarities of unique compounds. In this paper, we use agglomerative hierarchical clustering to explore the measurement diversity of fentanyl analogs and better understand the challenge of unambiguous identifications using analytical techniques traditionally available to drug chemists. We consider four measurements in particular: gas chromatography retention indices, electron ionization mass spectra, electrospray ionization tandem mass spectra, and direct analysis in real time mass spectra. Our analysis demonstrates how simultaneously considering data from multiple measurement techniques increases the observable measurement diversity of fentanyl analogs, which can reduce identification ambiguity. This paper further supports the use of multiple analytical techniques to identify fentanyl analogs (among other substances), as is recommended by the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG).
Collapse
Affiliation(s)
- Arun S Moorthy
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Edward P Erisman
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Anthony J Kearsley
- Mathematical Analysis and Modeling Group, Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Yuxue Liang
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Edward Sisco
- Surface and Trace Chemical Analysis Group, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - William E Wallace
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
4
|
Wallace WE, Moorthy AS. NIST Mass Spectrometry Data Center standard reference libraries and software tools: Application to seized drug analysis. J Forensic Sci 2023; 68:1484-1493. [PMID: 37203286 PMCID: PMC10517720 DOI: 10.1111/1556-4029.15284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
The standard reference libraries and associated custom software provided by the National Institute of Standards and Technology's Mass Spectrometry Data Center (NIST MSDC) are described with a focus on assisting the seized drug analyst with the identification of fentanyl-related substances (FRS). These tools are particularly useful when encountering novel substances when no certified sample is available. The MSDC provides three standard reference mass spectral libraries, as well as six software packages for mass spectral analysis, reference library searching, data interpretation, and measurement uncertainty estimation. Each of these libraries and software packages are described with references to the original publications provided. Examples of fentanyl identification by gas chromatography-mass spectrometry (GC-MS) and by direct analysis in real-time (DART) mass spectrometry are given. A link to online tutorials is provided.
Collapse
Affiliation(s)
- William E Wallace
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Arun S Moorthy
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
5
|
Sisco E, Urbas A. A Collaborative Platform for Novel Compound Identification - Characterization of Designer Phencyclidines (PCPs) POXP, PTHP, and P2AP. Forensic Chem 2023; 34:10.1016/j.forc.2023.100505. [PMID: 38716063 PMCID: PMC11070955 DOI: 10.1016/j.forc.2023.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
With the sustained prevalence and introduction of new emerging drugs throughout the world there is a need for continued development and maintenance of platforms that enable rapid identification and characterization of unknown compounds. To complement existing efforts, a collaborative platform between the National Institute of Standards and Technology (NIST) and practicing forensic agencies is being deployed which enables laboratories to leverage techniques and expertise that may not exist at their facilities. Using this approach, unknown compounds are identified and characterized using a suite of analytical tools to obtain (1) a rapid preliminary identification followed by (2) a more complete characterization and confirmation of the preliminary identification. To demonstrate this platform, the characterization of three previously unreported analogs of phencyclidine (PCP) - POXP, PTHP, and P2AP - are described. A preliminary identification of the three substances was obtained using direct analysis in real time mass spectrometry (DART-MS) with confirmation by nuclear magnetic resonance (NMR) spectroscopy, gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detection (GC-FID).
Collapse
Affiliation(s)
- Edward Sisco
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Aaron Urbas
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
6
|
Appley MG, Robinson EL, Thomson A, Russell E, Sisco E. An Analytical Platform for Near Real-Time Drug Landscape Monitoring using Paraphernalia Residues. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
8
|
Sisco E, Appley MG, Tennyson SS, Moorthy AS. Qualitative Analysis of Real Drug Evidence Using DART-MS and the Inverted Library Search Algorithm. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1784-1793. [PMID: 36005287 PMCID: PMC9780707 DOI: 10.1021/jasms.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chromatographic-less mass spectrometry techniques like direct analysis in real-time mass spectrometry (DART-MS) are steadily being employed as seized drug screening tools. However, these newer analytical platforms require new computational methods to best make use of the collected data. The inverted library search algorithm (ILSA) is a recently developed method designed specifically for working with mass spectra of mixtures collected with DART-MS and has been implemented as a function in the NIST/NIJ DART-MS data interpretation tool (DIT). This paper demonstrates how DART-MS and the ILSA/DIT can be used to analyze seized drug evidence, while discussing insights gathered during the evaluation of 92 adjudicated case samples. The evaluation verified that the combination of DART-MS and the ILSA/DIT can be used as an informative tool to help analysts screen seized drug evidence but also revealed several factors─such as the influence of incorporating multiple in-source fragmentation spectra and the effect of scoring thresholds─an analyst must consider while employing these methods. Use cases demonstrating the benefit of the nonscoring metrics provided by the ILSA/DIT and demonstrating how the ILSA/DIT can be used to identify novel substances are also presented. A summary of considerations for using the ILSA/DIT for drug screening concludes this paper.
Collapse
Affiliation(s)
- Edward Sisco
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Meghan G. Appley
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Stephen S. Tennyson
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Arun S. Moorthy
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
9
|
Sharp J, Do D, Tyler Davidson J. Assessment of the similarity between in-source collision-induced dissociation (IS-CID) fragment ion spectra and tandem mass spectrometry (MS/MS) product ion spectra for seized drug identifications. Forensic Chem 2022. [DOI: 10.1016/j.forc.2022.100441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Sisco E. Algorithms and Databases: Unlocking Non-Targeted Screening of Small Molecules with Ambient Ionization Mass Spectrometry. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.xm8779p2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Almost all sectors of analytical chemistry are finding applications for ambient ionization mass spectrometry (AI–MS) because of its ease of use, speed of analysis, and sensitivity. Although emphasis has been placed on developing new hardware that can help analyze unique samples across various applications, there has not been much innovation in the functionality of software tools and mass spectral libraries to support applications like non-targeted searching. In this article, we discuss new algorithms and libraries that have enabled non-targeted analysis of small molecules using AI–MS, as well as some of the key considerations and outstanding questions in the field.
Collapse
Affiliation(s)
- Edward Sisco
- National Institute of Standards and Technology (NIST)
| |
Collapse
|
11
|
Incorporating measurement variability when comparing sets of high-resolution mass spectra. Anal Chim Acta 2022; 1230:340247. [DOI: 10.1016/j.aca.2022.340247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022]
|
12
|
Moorthy AS, Tennyson SS, Sisco E. Updates to the Inverted Library Search Algorithm for Mixture Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1260-1266. [PMID: 35675198 PMCID: PMC9808410 DOI: 10.1021/jasms.2c00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identifying mixture components is a well-known challenge in analytical chemistry. The Inverted Library Search Algorithm is a recently proposed method for identifying mixture components using in-source collision induced dissociation (is-CID) mass spectra of a query mixture and a reference library of pure compound is-CID mass spectra ( J. Am. Soc. Mass Spectrom. 2021, 32 (7), 1725-1734). This article presents several subtle but important advances to the algorithm, including updated compound matching strategies that improve result explainability and spectral filtering to better handle noisy mass spectra as is often observed with real-world samples such as seized drug evidence.
Collapse
|
13
|
Ravi P, Somu P, Acharya D, Gomez LA, Thathapudi JJ, Ramachandra YL, Rudraiah SB, Isaq M, Karua CS, Arifullah M, Poojari CC, Lee YR. Isolation and Phytochemical Screening of Endophytic Fungi Isolated from Medicinal Plant Mappia foetida and Evaluation of Its In Vitro Cytotoxicity in Cancer. Appl Biochem Biotechnol 2022; 194:4570-4586. [PMID: 35536539 DOI: 10.1007/s12010-022-03929-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Isolated endophyte fungi from Mappia foetida have been explored as a potential source for the mass production of anticancer drug lead compounds in the current study. Since medical plants are not feasible economically for mass production of bioactive pharmaceutical important molecules using plant tissue culture due to factors like media design and fungal contamination, endophyte fungal mass culture have been an alternative for the relatively easy and inexpensive production. Two endophytic fungi isolated, Alternaria alternata and Fusarium species were mass cultured and their prepared alcoholic extract subjected to standard procedures to identify the phytochemical screening by gas chromatography-mass spectrometry (GCMS), high-performance liquid chromatography (HPLC), UV visible spectrophotometry (UV-VIS), and Fourier transform infrared spectroscopy (FTIR). GC-MS analysis revealed the presence of three major compounds in the extracts. The phytochemical screening confirmed the presence of an anticancer compound (camptothecin) in their extract. Moreover, the dose-dependent anticancer activity of ethanol extract was demonstrated against cervical carcinoma (HeLa), breast carcinoma (MCF-7), non-small cell lung carcinoma (H1975), and hepatocellular carcinoma cell line (Hep G2) by MTT assay where doxorubicin was used as the positive control. Furthermore, the microscopic examination also confirmed the cytotoxic effect of extract of endophytic fungi Alternaria alternata and Fusarium species against tested cancer cells. Hence, endophytic fungi Alternaria alternata and Fusarium species might be exploited for mass production of phytochemicals having anticancer activity.
Collapse
Affiliation(s)
- Pooja Ravi
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Prathap Somu
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea. .,Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to Be University), Saveetha Nagar, Thandalam, Chennai, 602105, India.
| | - Diptikanta Acharya
- Department of Biotechnology, GIET University, Gunupur, Odisha, India, 765022
| | - Levin Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore, Tamil Nadu, 641114, India
| | - Jesse Joel Thathapudi
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore, Tamil Nadu, 641114, India
| | - Yerappa Lakshmikanth Ramachandra
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Sunitha Bommanahalli Rudraiah
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Mona Isaq
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Chetan Shekhar Karua
- Department of Chemical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Mohammed Arifullah
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli, 17600, Kelantan, Malaysia
| | - Chandrappa Chinna Poojari
- Department of Biotechnology, Shridevi Institute of Engineering & Technology, Sira Road, Tumkur, Karnataka, India, 572106.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
14
|
Rankin‐Turner S, Reynolds JC, Turner MA, Heaney LM. Applications of ambient ionization mass spectrometry in 2021: An annual review. ANALYTICAL SCIENCE ADVANCES 2022; 3:67-89. [PMID: 38715637 PMCID: PMC10989594 DOI: 10.1002/ansa.202100067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/26/2024]
Abstract
Ambient ionization mass spectrometry (AIMS) has revolutionized the field of analytical chemistry, enabling the rapid, direct analysis of samples in their native state. Since the inception of AIMS almost 20 years ago, the analytical community has driven the further development of this suite of techniques, motivated by the plentiful advantages offered in addition to traditional mass spectrometry. Workflows can be simplified through the elimination of sample preparation, analysis times can be significantly reduced and analysis remote from the traditional laboratory space has become a real possibility. As such, the interest in AIMS has rapidly spread through analytical communities worldwide, and AIMS techniques are increasingly being integrated with standard laboratory operations. This annual review covers applications of AIMS techniques throughout 2021, with a specific focus on AIMS applications in a number of key fields of research including disease diagnostics, forensics and security, food safety testing and environmental sciences. While some new techniques are introduced, the focus in AIMS research is increasingly shifting from the development of novel techniques toward efforts to improve existing AIMS techniques, particularly in terms of reproducibility, quantification and ease-of-use.
Collapse
Affiliation(s)
- Stephanie Rankin‐Turner
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - James C. Reynolds
- Department of ChemistryLoughborough UniversityLoughboroughLeicestershireUK
| | - Matthew A. Turner
- Department of ChemistryLoughborough UniversityLoughboroughLeicestershireUK
| | - Liam M. Heaney
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| |
Collapse
|
15
|
Cody RB. Mass Defect Filter for Removing Noise and Detector Oscillation Artifacts in Centroided Time-of-Flight Mass Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:603-606. [PMID: 35147424 DOI: 10.1021/jasms.1c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spurious peaks in centroided mass spectra resulting from detector oscillation or "ringing" can be identified by their unusual mass defects. Mass defect plots (fractional m/z vs measured m/z) for the single-charge mass spectrum of a pure compound show data points falling along lines with well-defined slopes. Detector oscillation and electronic noise peaks were removed from database spectra of pure compounds and mixtures by eliminating points outside two standard deviations of the slope of the major peaks. No loss of chemical information was observed, even for compounds with isobaric fragment peaks.
Collapse
Affiliation(s)
- Robert B Cody
- JEOL USA, Inc., Peabody, Massachusetts 03801, United States
| |
Collapse
|
16
|
Sisco E, Burns A, Schneider E, Ikpeama I. Evaluation of an internal standard for qualitative DART-MS analysis of seized drugs. Forensic Chem 2022. [DOI: 10.1016/j.forc.2021.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Sisco E, Burns A, Schneider E, Bobka L, Ikpeama I. A Template for the Validation of DART-MS for Qualitative Seized Drugs Analysis. Forensic Chem 2022. [DOI: 10.1016/j.forc.2022.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Forbes TP, Krauss ST. Confined DART-MS for Rapid Chemical Analysis of Electronic Cigarette Aerosols and Spiked Drugs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2274-2280. [PMID: 34184882 PMCID: PMC9969341 DOI: 10.1021/jasms.1c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A confined direct analysis in a real time mass spectrometry (DART-MS) system and method were developed for coupling directly with commercial electronic cigarettes for rapid analysis without sample preparation. The system consisted of a confining heated glass T-junction, DART ionization source, and Vapur interface to assist aerodynamic transport. Suction generated by positioning the electronic cigarette at the junction inlet allowed for direct chemical analysis of aerosolized electronic liquids from both automatic devices powered by drag and manual button-operated devices, which is unachievable with traditional DART-MS. Parametric analyses for the system investigated Vapur suction flow rate, junction heating, puff duration, and coil power levels. Using this method, rapid chemical analyses of electronic cigarette aerosols from electronic liquids, spiked illicit drugs, and polymeric or plasticizer contaminants were performed in <30 s. The confined DART-MS method provides a streamlined tool for rapid screening of illicit and hazardous chemical profiles emitting from electronic cigarettes.
Collapse
Affiliation(s)
- Thomas P. Forbes
- National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD 20899, USA
| | | |
Collapse
|
19
|
Moorthy AS, Sisco E. A New Library-Search Algorithm for Mixture Analysis Using DART-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1725-1734. [PMID: 34137604 PMCID: PMC9808406 DOI: 10.1021/jasms.1c00097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Forensic analysis of seized drug evidence often involves determining whether the components of an unknown mixture are illicit compounds. One approach to this task is to screen the evidence using direct analysis in real time mass spectrometry (DART-MS) to make presumptive identifications. This manuscript introduces a new library-search algorithm that enhances presumptive identifications of mixture components using a series of in-source collision-induced dissociation mass spectra collected through DART-MS. The multistage search, titled the Inverted Library-Search Algorithm (ILSA), identifies potential components in a mixture by first searching the lowest fragmentation mass spectrum for target peaks, assuming these peaks are protonated molecules, and then scoring each target peak with possible library matches. As a proof of concept, the ILSA is demonstrated through several example searches of model seized drug mixtures of acetyl fentanyl, benzyl fentanyl, amphetamine, and methamphetamine searched against a small library of select compounds and the freely available NIST DART-MS Forensics Database. Discussion of the search results and several open areas of research to further extend the method are provided. This new approach for presumptive identification provides analysts with refined information about mixture components and will be of immediate importance in forensic analysis using DART-MS. A prototype implementation of the ILSA is available at https://github.com/asm3-nist/DART-MS-DST.
Collapse
|