1
|
Shen B, Pade LR, Nemes P. Data-Independent Acquisition Shortens the Analytical Window of Single-Cell Proteomics to Fifteen Minutes in Capillary Electrophoresis Mass Spectrometry. J Proteome Res 2024. [PMID: 39325989 DOI: 10.1021/acs.jproteome.4c00491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Separation in single-cell mass spectrometry (MS) improves molecular coverage and quantification; however, it also elongates measurements, thus limiting analytical throughput to study large populations of cells. Here, we advance the speed of bottom-up proteomics by capillary electrophoresis (CE) high-resolution mass spectrometry (MS) for single-cell proteomics. We adjust the applied electrophoresis potential to readily control the duration of electrophoresis. On the HeLa proteome standard, shorter separation times curbed proteome detection using data-dependent acquisition (DDA) but not data-independent acquisition (DIA) on an Orbitrap analyzer. This DIA method identified 1161 proteins vs 401 proteins by the reference DDA within a 15 min effective separation from single HeLa-cell-equivalent (∼200 pg) proteome digests. Label-free quantification found these exclusively DIA-identified proteins in the lower domain of the concentration range, revealing sensitivity improvement. The approach also significantly advanced the reproducibility of quantification, where ∼76% of the DIA-quantified proteins had <20% coefficient of variation vs ∼43% by DDA. As a proof of principle, the method allowed us to quantify 1242 proteins in subcellular niches in a single, neural-tissue fated cell in the live Xenopus laevis (frog) embryo, including many canonical components of organelles. DIA integration enhanced throughput by ∼2-4 fold and sensitivity by a factor of ∼3 in single-cell (subcellular) CE-MS proteomics.
Collapse
Affiliation(s)
- Bowen Shen
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Leena R Pade
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Leduc A, Khoury L, Cantlon J, Khan S, Slavov N. Massively parallel sample preparation for multiplexed single-cell proteomics using nPOP. Nat Protoc 2024:10.1038/s41596-024-01033-8. [PMID: 39117766 DOI: 10.1038/s41596-024-01033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/27/2024] [Indexed: 08/10/2024]
Abstract
Single-cell proteomics by mass spectrometry (MS) allows the quantification of proteins with high specificity and sensitivity. To increase its throughput, we developed nano-proteomic sample preparation (nPOP), a method for parallel preparation of thousands of single cells in nanoliter-volume droplets deposited on glass slides. Here, we describe its protocol with emphasis on its flexibility to prepare samples for different multiplexed MS methods. An implementation using the plexDIA MS multiplexing method, which uses non-isobaric mass tags to barcode peptides from different samples for data-independent acquisition, demonstrates accurate quantification of ~3,000-3,700 proteins per human cell. A separate implementation with isobaric mass tags and prioritized data acquisition demonstrates analysis of 1,827 single cells at a rate of >1,000 single cells per day at a depth of 800-1,200 proteins per human cell. The protocol is implemented by using a cell-dispensing and liquid-handling robot-the CellenONE instrument-and uses readily available consumables, which should facilitate broad adoption. nPOP can be applied to all samples that can be processed to a single-cell suspension. It takes 1 or 2 d to prepare >3,000 single cells. We provide metrics and software (the QuantQC R package) for quality control and data exploration. QuantQC supports the robust scaling of nPOP to higher plex reagents for achieving reliable and scalable single-cell proteomics.
Collapse
Affiliation(s)
- Andrew Leduc
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA.
| | - Luke Khoury
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | - Saad Khan
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA.
- Parallel Squared Technology Institute, Watertown, MA, USA.
| |
Collapse
|
3
|
Zhang Y, Chang K, Ogunlade B, Herndon L, Tadesse LF, Kirane AR, Dionne JA. From Genotype to Phenotype: Raman Spectroscopy and Machine Learning for Label-Free Single-Cell Analysis. ACS NANO 2024; 18:18101-18117. [PMID: 38950145 DOI: 10.1021/acsnano.4c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Raman spectroscopy has made significant progress in biosensing and clinical research. Here, we describe how surface-enhanced Raman spectroscopy (SERS) assisted with machine learning (ML) can expand its capabilities to enable interpretable insights into the transcriptome, proteome, and metabolome at the single-cell level. We first review how advances in nanophotonics-including plasmonics, metamaterials, and metasurfaces-enhance Raman scattering for rapid, strong label-free spectroscopy. We then discuss ML approaches for precise and interpretable spectral analysis, including neural networks, perturbation and gradient algorithms, and transfer learning. We provide illustrative examples of single-cell Raman phenotyping using nanophotonics and ML, including bacterial antibiotic susceptibility predictions, stem cell expression profiles, cancer diagnostics, and immunotherapy efficacy and toxicity predictions. Lastly, we discuss exciting prospects for the future of single-cell Raman spectroscopy, including Raman instrumentation, self-driving laboratories, Raman data banks, and machine learning for uncovering biological insights.
Collapse
Affiliation(s)
- Yirui Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Kai Chang
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Babatunde Ogunlade
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Liam Herndon
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Loza F Tadesse
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Jameel Clinic for AI & Healthcare, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda R Kirane
- Department of Surgery, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
4
|
Ctortecka C, Clark NM, Boyle BW, Seth A, Mani DR, Udeshi ND, Carr SA. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. Nat Commun 2024; 15:5707. [PMID: 38977691 PMCID: PMC11231172 DOI: 10.1038/s41467-024-49651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
The recent technological and computational advances in mass spectrometry-based single-cell proteomics have pushed the boundaries of sensitivity and throughput. However, reproducible quantification of thousands of proteins within a single cell remains challenging. To address some of those limitations, we present a dedicated sample preparation chip, the proteoCHIP EVO 96 that directly interfaces with the Evosep One. This, in combination with the Bruker timsTOF demonstrates double the identifications without manual sample handling and the newest generation timsTOF Ultra identifies up to 4000 with an average of 3500 protein groups per single HEK-293T without a carrier or match-between runs. Our workflow spans 4 orders of magnitude, identifies over 50 E3 ubiquitin-protein ligases, and profiles key regulatory proteins upon small molecule stimulation. This study demonstrates that the proteoCHIP EVO 96-based sample preparation with the timsTOF Ultra provides sufficient proteome depth to study complex biology beyond cell-type classifications.
Collapse
Affiliation(s)
| | | | - Brian W Boyle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Xie X, Truong T, Huang S, Johnston SM, Hovanski S, Robinson A, Webber KGI, Lin HJL, Mun DG, Pandey A, Kelly RT. Multicolumn Nanoflow Liquid Chromatography with Accelerated Offline Gradient Generation for Robust and Sensitive Single-Cell Proteome Profiling. Anal Chem 2024; 96:10534-10542. [PMID: 38915247 PMCID: PMC11482043 DOI: 10.1021/acs.analchem.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Peptide separations that combine high sensitivity, robustness, peak capacity, and throughput are essential for extending bottom-up proteomics to smaller samples including single cells. To this end, we have developed a multicolumn nanoLC system with offline gradient generation. One binary pump generates gradients in an accelerated fashion to support multiple analytical columns, and a single trap column interfaces with all analytical columns to reduce required maintenance and simplify troubleshooting. A high degree of parallelization is possible, as one sample undergoes separation while the next sample plus its corresponding mobile phase gradient are transferred into the storage loop and a third sample is loaded into a sample loop. Selective offline elution from the trap column into the sample loop prevents salts and hydrophobic species from entering the analytical column, thus greatly enhancing column lifetime and system robustness. With this design, samples can be analyzed as fast as every 20 min at a flow rate of just 40 nL/min with close to 100% MS utilization time and continuously for as long as several months without column replacement. We utilized the system to analyze the proteomes of single cells from a multiple myeloma cell line upon treatment with the immunomodulatory imide drug lenalidomide.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| | - Siqi Huang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Simon Hovanski
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Abigail Robinson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| |
Collapse
|
6
|
Martin KR, Le HT, Abdelgawad A, Yang C, Lu G, Keffer JL, Zhang X, Zhuang Z, Asare-Okai PN, Chan CS, Batish M, Yu Y. Development of an efficient, effective, and economical technology for proteome analysis. CELL REPORTS METHODS 2024; 4:100796. [PMID: 38866007 PMCID: PMC11228373 DOI: 10.1016/j.crmeth.2024.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
We present an efficient, effective, and economical approach, named E3technology, for proteomics sample preparation. By immobilizing silica microparticles into the polytetrafluoroethylene matrix, we develop a robust membrane medium, which could serve as a reliable platform to generate proteomics-friendly samples in a rapid and low-cost fashion. We benchmark its performance using different formats and demonstrate them with a variety of sample types of varied complexity, quantity, and volume. Our data suggest that E3technology provides proteome-wide identification and quantitation performance equivalent or superior to many existing methods. We further propose an enhanced single-vessel approach, named E4technology, which performs on-filter in-cell digestion with minimal sample loss and high sensitivity, enabling low-input and low-cell proteomics. Lastly, we utilized the above technologies to investigate RNA-binding proteins and profile the intact bacterial cell proteome.
Collapse
Affiliation(s)
- Katherine R Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ha T Le
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ahmed Abdelgawad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Canyuan Yang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Guotao Lu
- CDS Analytical, LLC, Oxford, PA 19363, USA
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
| | | | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Papa Nii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA; School of Marine Science and Policy, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
7
|
Colón Rosado J, Sun L. Solid-Phase Microextraction-Aided Capillary Zone Electrophoresis-Mass Spectrometry: Toward Bottom-Up Proteomics of Single Human Cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1120-1127. [PMID: 38514245 PMCID: PMC11157658 DOI: 10.1021/jasms.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Capillary zone electrophoresis-mass spectrometry (CZE-MS) has been recognized as a valuable technique for the proteomics of mass-limited biological samples (i.e., single cells). However, its broad adoption for single cell proteomics (SCP) of human cells has been impeded by the low sample loading capacity of CZE, only allowing us to use less than 5% of the available peptide material for each measurement. Here we present a reversed-phase-based solid-phase microextraction (RP-SPME)-CZE-MS platform to solve the issue, paving the way for SCP of human cells using CZE-MS. The RP-SPME-CZE system was constructed in one fused silica capillary with zero dead volume for connection via in situ synthesis of a frit, followed by packing C8 beads into the capillary to form a roughly 2 mm long SPME section. Peptides captured by SPME were eluted with a buffer containing 30% (v/v) acetonitrile and 50 mM ammonium acetate (pH 6.5), followed by dynamic pH junction-based CZE-MS. The SPME-CZE-MS enabled the injection of nearly 40% of the available peptide sample for each measurement. The system identified 257 ± 24 proteins and 523 ± 69 peptides (N = 2) using a Q-Exactive HF mass spectrometer when only 0.25 ng of a commercial HeLa cell digest was available in the sample vial and 0.1 ng of the sample was injected. The amount of available peptide is equivalent to the protein mass of one HeLa cell. The data indicate that SPME-CZE-MS is ready for SCP of human cells.
Collapse
Affiliation(s)
- Jorge
A. Colón Rosado
- Department of Chemistry, Michigan
State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan
State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Pang M, Jones JJ, Wang TY, Quan B, Kubat NJ, Qiu Y, Roukes ML, Chou TF. Increasing Proteome Coverage Through a Reduction in Analyte Complexity in Single-Cell Equivalent Samples. J Proteome Res 2024. [PMID: 38832920 DOI: 10.1021/acs.jproteome.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The advancement of sophisticated instrumentation in mass spectrometry has catalyzed an in-depth exploration of complex proteomes. This exploration necessitates a nuanced balance in experimental design, particularly between quantitative precision and the enumeration of analytes detected. In bottom-up proteomics, a key challenge is that oversampling of abundant proteins can adversely affect the identification of a diverse array of unique proteins. This issue is especially pronounced in samples with limited analytes, such as small tissue biopsies or single-cell samples. Methods such as depletion and fractionation are suboptimal to reduce oversampling in single cell samples, and other improvements on LC and mass spectrometry technologies and methods have been developed to address the trade-off between precision and enumeration. We demonstrate that by using a monosubstrate protease for proteomic analysis of single-cell equivalent digest samples, an improvement in quantitative accuracy can be achieved, while maintaining high proteome coverage established by trypsin. This improvement is particularly vital for the field of single-cell proteomics, where single-cell samples with limited number of protein copies, especially in the context of low-abundance proteins, can benefit from considering analyte complexity. Considerations about analyte complexity, alongside chromatographic complexity, integration with data acquisition methods, and other factors such as those involving enzyme kinetics, will be crucial in the design of future single-cell workflows.
Collapse
Affiliation(s)
- Marion Pang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Jeff J Jones
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Ting-Yu Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Baiyi Quan
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Nicole J Kubat
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Yanping Qiu
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Michael L Roukes
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Blvd, Pasadena, California 91125, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Yang Z, Jin K, Chen Y, Liu Q, Chen H, Hu S, Wang Y, Pan Z, Feng F, Shi M, Xie H, Ma H, Zhou H. AM-DMF-SCP: Integrated Single-Cell Proteomics Analysis on an Active Matrix Digital Microfluidic Chip. JACS AU 2024; 4:1811-1823. [PMID: 38818059 PMCID: PMC11134390 DOI: 10.1021/jacsau.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 06/01/2024]
Abstract
Single-cell proteomics offers unparalleled insights into cellular diversity and molecular mechanisms, enabling a deeper understanding of complex biological processes at the individual cell level. Here, we develop an integrated sample processing on an active-matrix digital microfluidic chip for single-cell proteomics (AM-DMF-SCP). Employing the AM-DMF-SCP approach and data-independent acquisition (DIA), we identify an average of 2258 protein groups in single HeLa cells within 15 min of the liquid chromatography gradient. We performed comparative analyses of three tumor cell lines: HeLa, A549, and HepG2, and machine learning was utilized to identify the unique features of these cell lines. Applying the AM-DMF-SCP to characterize the proteomes of a third-generation EGFR inhibitor, ASK120067-resistant cells (67R) and their parental NCI-H1975 cells, we observed a potential correlation between elevated VIM expression and 67R resistance, which is consistent with the findings from bulk sample analyses. These results suggest that AM-DMF-SCP is an automated, robust, and sensitive platform for single-cell proteomics and demonstrate the potential for providing valuable insights into cellular mechanisms.
Collapse
Affiliation(s)
- Zhicheng Yang
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Jin
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
| | - Yimin Chen
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Hongxu Chen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Siyi Hu
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
| | - Yuqiu Wang
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Zilu Pan
- Division
of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fang Feng
- Division
of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mude Shi
- Guangdong
ACXEL Micro & Nano Tech Co. Ltd., Foshan, Guangdong Province 528000, China
| | - Hua Xie
- University
of the Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan
Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Division
of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanbin Ma
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
- Guangdong
ACXEL Micro & Nano Tech Co. Ltd., Foshan, Guangdong Province 528000, China
| | - Hu Zhou
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou
Institute for Advanced Study, University
of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Sipe SN, Slavov N. Single-Cell Proteomics Accelerates toward Proteoforms. J Proteome Res 2024; 23:1545-1546. [PMID: 38698756 DOI: 10.1021/acs.jproteome.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Sarah N Sipe
- Parallel Squared Technology Institute, Watertown, Massachusetts 02472, United States
| | - Nikolai Slavov
- Parallel Squared Technology Institute, Watertown, Massachusetts 02472, United States
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Khan S, Conover R, Asthagiri AR, Slavov N. Dynamics of Single-Cell Protein Covariation during Epithelial-Mesenchymal Transition. J Proteome Res 2024:10.1021/acs.jproteome.4c00277. [PMID: 38663020 PMCID: PMC11502509 DOI: 10.1021/acs.jproteome.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Physiological processes, such as the epithelial-mesenchymal transition (EMT), are mediated by changes in protein interactions. These changes may be better reflected in protein covariation within a cellular cluster than in the temporal dynamics of cluster-average protein abundance. To explore this possibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the data revealed that functionally coherent protein clusters dynamically changed their protein-protein correlations without concomitant changes in the cluster-average protein abundance. These dynamics of protein-protein correlations were monotonic in time and delineated protein modules functioning in actin cytoskeleton organization, energy metabolism, and protein transport. These protein modules are defined by protein covariation within the same time point and cluster and, thus, reflect biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offers a window into protein regulation during physiological transitions.
Collapse
Affiliation(s)
- Saad Khan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rachel Conover
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Anand R Asthagiri
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Parallel Squared Technology Institute, Watertown, Massachusetts 02472, United States
| |
Collapse
|
12
|
Khan S, Conover R, Asthagiri AR, Slavov N. Dynamics of single-cell protein covariation during epithelial-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572913. [PMID: 38187715 PMCID: PMC10769332 DOI: 10.1101/2023.12.21.572913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Physiological processes, such as epithelial-mesenchymal transition (EMT), are mediated by changes in protein interactions. These changes may be better reflected in protein covariation within cellular cluster than in the temporal dynamics of cluster-average protein abundance. To explore this possibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the data revealed that functionally coherent protein clusters dynamically changed their protein-protein correlations without concomitant changes in cluster-average protein abundance. These dynamics of protein-protein correlations were monotonic in time and delineated protein modules functioning in actin cytoskeleton organization, energy metabolism and protein transport. These protein modules are defined by protein covariation within the same time point and cluster and thus reflect biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offer a window into protein regulation during physiological transitions.
Collapse
Affiliation(s)
- Saad Khan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Rachel Conover
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Anand R. Asthagiri
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Parallel Squared Technology Institute, Watertown, MA 02472, USA
| |
Collapse
|
13
|
Manda V, Pavelka J, Lau E. Proteomics applications in next generation induced pluripotent stem cell models. Expert Rev Proteomics 2024; 21:217-228. [PMID: 38511670 PMCID: PMC11065590 DOI: 10.1080/14789450.2024.2334033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Induced pluripotent stem (iPS) cell technology has transformed biomedical research. New opportunities now exist to create new organoids, microtissues, and body-on-a-chip systems for basic biology investigations and clinical translations. AREAS COVERED We discuss the utility of proteomics for attaining an unbiased view into protein expression changes during iPS cell differentiation, cell maturation, and tissue generation. The ability to discover cell-type specific protein markers during the differentiation and maturation of iPS-derived cells has led to new strategies to improve cell production yield and fidelity. In parallel, proteomic characterization of iPS-derived organoids is helping to realize the goal of bridging in vitro and in vivo systems. EXPERT OPINIONS We discuss some current challenges of proteomics in iPS cell research and future directions, including the integration of proteomic and transcriptomic data for systems-level analysis.
Collapse
Affiliation(s)
- Vyshnavi Manda
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jay Pavelka
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
14
|
Truong T, Kelly RT. What's new in single-cell proteomics. Curr Opin Biotechnol 2024; 86:103077. [PMID: 38359605 PMCID: PMC11068367 DOI: 10.1016/j.copbio.2024.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In recent years, single-cell proteomics (SCP) has advanced significantly, enabling the analysis of thousands of proteins within single mammalian cells. This progress is driven by advances in experimental design, with maturing label-free and multiplexed methods, optimized sample preparation, and innovations in separation techniques, including ultra-low-flow nanoLC. These factors collectively contribute to improved sensitivity, throughput, and reproducibility. Cutting-edge mass spectrometry platforms and data acquisition approaches continue to play a critical role in enhancing data quality. Furthermore, the exploration of spatial proteomics with single-cell resolution offers significant promise for understanding cellular interactions, giving rise to various phenotypes. SCP has far-reaching applications in cancer research, biomarker discovery, and developmental biology. Here, we provide a critical review of recent advances in the field of SCP.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
15
|
Webber KGI, Huang S, Truong T, Heninger JL, Gregus M, Ivanov AR, Kelly RT. Open-tubular trap columns: towards simple and robust liquid chromatography separations for single-cell proteomics. Mol Omics 2024; 20:184-191. [PMID: 38353725 PMCID: PMC10963139 DOI: 10.1039/d3mo00249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Nanoflow liquid chromatography-mass spectrometry is key to enabling in-depth proteome profiling of trace samples, including single cells, but these separations can lack robustness due to the use of narrow-bore columns that are susceptible to clogging. In the case of single-cell proteomics, offline cleanup steps are generally omitted to avoid losses to additional surfaces, and online solid-phase extraction/trap columns frequently provide the only opportunity to remove salts and insoluble debris before the sample is introduced to the analytical column. Trap columns are traditionally short, packed columns used to load and concentrate analytes at flow rates greater than those employed in analytical columns, and since these first encounter the uncleaned sample mixture, trap columns are also susceptible to clogging. We hypothesized that clogging could be avoided by using large-bore porous layer open tubular trap columns (PLOTrap). The low back pressure ensured that the PLOTraps could also serve as the sample loop, thus allowing sample cleanup and injection with a single 6-port valve. We found that PLOTraps could effectively remove debris to avoid column clogging. We also evaluated multiple stationary phases and PLOTrap diameters to optimize performance in terms of peak widths and sample loading capacities. Optimized PLOTraps were compared to conventional packed trap columns operated in forward and backflush modes, and were found to have similar chromatographic performance of backflushed traps while providing improved debris removal for robust analysis of trace samples.
Collapse
Affiliation(s)
- Kei G I Webber
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Siqi Huang
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Thy Truong
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Jacob L Heninger
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Michal Gregus
- Northeastern University, Barnett Institute of Biological and Chemical Analysis, Department of Chemistry and Chemical Biology, College of Science, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Northeastern University, Barnett Institute of Biological and Chemical Analysis, Department of Chemistry and Chemical Biology, College of Science, Boston, MA 02115, USA
| | - Ryan T Kelly
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| |
Collapse
|
16
|
Ye Z, Sabatier P, Martin-Gonzalez J, Eguchi A, Lechner M, Østergaard O, Xie J, Guo Y, Schultz L, Truffer R, Bekker-Jensen DB, Bache N, Olsen JV. One-Tip enables comprehensive proteome coverage in minimal cells and single zygotes. Nat Commun 2024; 15:2474. [PMID: 38503780 PMCID: PMC10951212 DOI: 10.1038/s41467-024-46777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Mass spectrometry (MS)-based proteomics workflows typically involve complex, multi-step processes, presenting challenges with sample losses, reproducibility, requiring substantial time and financial investments, and specialized skills. Here we introduce One-Tip, a proteomics methodology that seamlessly integrates efficient, one-pot sample preparation with precise, narrow-window data-independent acquisition (nDIA) analysis. One-Tip substantially simplifies sample processing, enabling the reproducible identification of >9000 proteins from ~1000 HeLa cells. The versatility of One-Tip is highlighted by nDIA identification of ~6000 proteins in single cells from early mouse embryos. Additionally, the study incorporates the Uno Single Cell Dispenser™, demonstrating the capability of One-Tip in single-cell proteomics with >3000 proteins identified per HeLa cell. We also extend One-Tip workflow to analysis of extracellular vesicles (EVs) extracted from blood plasma, demonstrating its high sensitivity by identifying >3000 proteins from 16 ng EV preparation. One-Tip expands capabilities of proteomics, offering greater depth and throughput across a range of sample types.
Collapse
Affiliation(s)
- Zilu Ye
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| | - Pierre Sabatier
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Javier Martin-Gonzalez
- Core Facility for Transgenic Mice, Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Akihiro Eguchi
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Maico Lechner
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ole Østergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jingsheng Xie
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuan Guo
- Tecan Group Ltd., Männedorf, Switzerland
| | | | | | | | | | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Ctortecka C, Clark NM, Boyle B, Seth A, Mani DR, Udeshi ND, Carr SA. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576369. [PMID: 38328197 PMCID: PMC10849471 DOI: 10.1101/2024.01.20.576369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mass spectrometry (MS)-based single-cell proteomics (SCP) has gained massive attention as a viable complement to other single cell approaches. The rapid technological and computational advances in the field have pushed the boundaries of sensitivity and throughput. However, reproducible quantification of thousands of proteins within a single cell at reasonable proteome depth to characterize biological phenomena remains a challenge. To address some of those limitations we present a combination of fully automated single cell sample preparation utilizing a dedicated chip within the picolitre dispensing robot, the cellenONE. The proteoCHIP EVO 96 can be directly interfaced with the Evosep One chromatographic system for in-line desalting and highly reproducible separation with a throughput of 80 samples per day. This, in combination with the Bruker timsTOF MS instruments, demonstrates double the identifications without manual sample handling. Moreover, relative to standard high-performance liquid chromatography, the Evosep One separation provides further 2-fold improvement in protein identifications. The implementation of the newest generation timsTOF Ultra with our proteoCHIP EVO 96-based sample preparation workflow reproducibly identifies up to 4,000 proteins per single HEK-293T without a carrier or match-between runs. Our current SCP depth spans over 4 orders of magnitude and identifies over 50 biologically relevant ubiquitin ligases. We complement our highly reproducible single-cell proteomics workflow to profile hundreds of lipopolysaccharide (LPS)-perturbed THP-1 cells and identified key regulatory proteins involved in interleukin and interferon signaling. This study demonstrates that the proteoCHIP EVO 96-based SCP sample preparation with the timsTOF Ultra provides sufficient proteome depth to study complex biology beyond cell-type classifications.
Collapse
Affiliation(s)
- Claudia Ctortecka
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Natalie M. Clark
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Brian Boyle
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Anjali Seth
- Cellenion SASU, 60F avenue Rockefeller, 69008 Lyon, France
| | - D. R. Mani
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Namrata D. Udeshi
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| |
Collapse
|
18
|
Truong T, Sanchez-Avila X, Webber KGI, Johnston SM, Kelly RT. Efficient and Sensitive Sample Preparation, Separations, and Data Acquisition for Label-Free Single-Cell Proteomics. Methods Mol Biol 2024; 2817:67-84. [PMID: 38907148 DOI: 10.1007/978-1-0716-3934-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
We describe a sensitive and efficient workflow for label-free single-cell proteomics that spans sample preparation, liquid chromatography separations, and mass spectrometry data acquisition. The Tecan Uno Single Cell Dispenser provides rapid cell isolation and nanoliter-volume reagent dispensing within 384-well PCR plates. A newly developed sample processing workflow achieves cell lysis, protein denaturation, and digestion in 1 h with a single reagent dispensing step. Low-flow liquid chromatography coupled with wide-window data-dependent acquisition results in the quantification of nearly 3000 proteins per cell using an Orbitrap Exploris 480 mass spectrometer. This approach greatly broadens accessibility to sensitive single-cell proteome profiling for nonspecialist laboratories.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
19
|
Mayer RL, Mechtler K. Immunopeptidomics in the Era of Single-Cell Proteomics. BIOLOGY 2023; 12:1514. [PMID: 38132340 PMCID: PMC10740491 DOI: 10.3390/biology12121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Immunopeptidomics, as the analysis of antigen peptides being presented to the immune system via major histocompatibility complexes (MHC), is being seen as an imperative tool for identifying epitopes for vaccine development to treat cancer and viral and bacterial infections as well as parasites. The field has made tremendous strides over the last 25 years but currently still faces challenges in sensitivity and throughput for widespread applications in personalized medicine and large vaccine development studies. Cutting-edge technological advancements in sample preparation, liquid chromatography as well as mass spectrometry, and data analysis, however, are currently transforming the field. This perspective showcases how the advent of single-cell proteomics has accelerated this transformation of immunopeptidomics in recent years and will pave the way for even more sensitive and higher-throughput immunopeptidomics analyses.
Collapse
Affiliation(s)
- Rupert L. Mayer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
20
|
Végvári Á, Zhang X, Zubarev RA. Toward Single Bacterium Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2098-2106. [PMID: 37713396 PMCID: PMC10557376 DOI: 10.1021/jasms.3c00242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Bacteria are orders of magnitude smaller than mammalian cells, and while single cell proteomics (SCP) currently detects and quantifies several thousands of proteins per mammalian cell, it is not clear whether conventional SCP methods will be suitable for bacteria. Here we report on the first successful attempt to detect proteins from individual Escherichia coli bacteria, with validation of our findings by comparison with two bacteria samples and bulk proteomics data. Data are available via ProteomeXchange with the identifier PXD043473.
Collapse
Affiliation(s)
- Ákos Végvári
- Division of Chemistry I,
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Xuepei Zhang
- Division of Chemistry I,
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Chemistry I,
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
21
|
Sanchez-Avila X, Truong T, Xie X, Webber KGI, Johnston SM, Lin HJL, Axtell NB, Puig-Sanvicens V, Kelly RT. Easy and Accessible Workflow for Label-Free Single-Cell Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2374-2380. [PMID: 37594399 PMCID: PMC11002963 DOI: 10.1021/jasms.3c00240] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Single-cell proteomics (SCP) can provide information that is unattainable through either bulk-scale protein measurements or single-cell profiling of other omes. Maximizing proteome coverage often requires custom instrumentation, consumables, and reagents for sample processing and separations, which has limited the accessibility of SCP to a small number of specialized laboratories. Commercial platforms have become available for SCP cell isolation and sample preparation, but the high cost of these platforms and the technical expertise required for their operation place them out of reach of many interested laboratories. Here, we assessed the new HP D100 Single Cell Dispenser for label-free SCP. The low-cost instrument proved highly accurate and reproducible for dispensing reagents in the range from 200 nL to 2 μL. We used the HP D100 to isolate and prepare single cells for SCP within 384-well PCR plates. When the well plates were immediately centrifuged following cell dispensing and again after reagent dispensing, we found that ∼97% of wells that were identified in the instrument software as containing a single cell indeed provided the proteome coverage expected of a single cell. This commercial dispenser combined with one-step sample processing provides a very rapid and easy-to-use workflow for SCP with no reduction in proteome coverage relative to a nanowell-based workflow, and the commercial well plates also facilitate autosampling with unmodified instrumentation. Single-cell samples were analyzed using home-packed 30 μm i.d. nanoLC columns as well as commercially available 50 μm i.d. columns. The commercial columns resulted in ∼35% fewer identified proteins. However, combined with the well plate-based preparation platform, the presented workflow provides a fully commercial and relatively low-cost alternative for SCP sample preparation and separation, which should greatly broaden the accessibility of SCP to other laboratories.
Collapse
Affiliation(s)
- Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Nathaniel B Axtell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | | | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|